Embodiments of the disclosure relate generally to an apparatus, a vehicle and a method, and particularly to a power recovering and baking method used in electric tractors, electric forklifts and other vehicles.
As a mobile machine, a vehicle is generally designed and specifically configured to transport people or cargo from one place to another. Typical vehicles comprise bicycles, motorcycles, cars/sedans, trucks, haulage motors, tractors, forklifts, buses, ships and air crafts, etc. Traditionally, at least some of vehicles are provided power by engines, e.g. internal combustion engines which burn fuels during operations, for example, diesel, gasoline or natural gas, and convert the power generated by burning fuels into a form of mechanical driving force to drive vehicles moving. However, there are some problems during using diesel , gasoline, natural gas and other resources, which include unrenewable, higher cost and negative impact on environment. Accordingly, developing an electric driving vehicle, for example, a pure electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, a pure electric tractor, a pure electric forklift, etc., gradually becomes a hot research.
To improve the range of the above described varieties of vehicles, the electric motor used in a vehicle is generally arranged to operate in multiple modes, for example, one working mode is normal driving mode and another is regenerative braking mode. Specially, in the regenerative braking mode, the electric motor may be arranged to convert a vehicle traveling mechanical power/torque to an electric power, then under the effect of the control system, the energy source (e.g., a rechargeable battery, a super capacitor, etc.) is charged in the vehicle, thus a portion of power is regenerated. Whereas, the present existing technology is that the energy source in a vehicle may not receive all power generated by regenerative braking in some working environments (e.g. adequate electricity). In this situation, other physic braking devices, e.g. mechanical braking device to dissipate mechanical power, are commonly used. Herein results in questions: relative to various state of charges of an energy source, various braking forces need to be supplied to this mechanical braking device, to worsen the vehicle handling. Moreover, in some cases, such as a case of full charge energy source, operating regenerative braking, for instance, neutral position braking or power output device quick braking, may also bring security issues.
Accordingly, it is desirable to provide an improved apparatus, vehicle and method to solve at least one of the above-mentioned technical problems or technical requirements of the present existing vehicle.
An apparatus is provided. The apparatus includes an energy source and an electric drive system. The energy source is configured to provide electrical power during discharging mode of operation and receive electrical power during charging mode of operation. The electric drive system includes a converter, at least one motor and a controller. The converter is coupled to the energy source. The converter is configured to convert the electrical power received from the energy source into drive electrical power, and configured to convert regenerative electrical power into charge electrical power for charging the energy source. The motor is coupled to the converter. The motor is configured to receive the drive electrical power provided from the converter and provide mechanical power for driving at least one load in drive mode of operation, and configured to convert mechanical power from the load into the regenerative electrical power in regenerative mode of operation. The controller is coupled to the energy source, converter and the motor. The controller is configured to receive at least one first parameter indicating charging status of the energy source, and configured to receive at least one second parameter indicating operation condition of the at least one motor. The controller is configured to send control signals to the converter, based at least in part on a braking command, the at least one first parameter, and the at least one second parameter to allow the electric drive system to controllably generate loss power resulting from the regenerative power.
A vehicle is provided. The vehicle includes an energy source, a converter, at least one motor and a controller. The energy source is configured to provide electrical power during discharging mode of operation and receive electrical power during charging mode of operation. The converter is coupled to the energy source. The converter is configured to convert the electrical power received from the energy source into drive electrical power, and configured to convert regenerative electrical power into charge electrical power for charging the energy source. The motor is coupled to the converter. The motor is configured to receive the drive electrical power provided from the converter and provide mechanical power for driving at least one load, and configured to convert mechanical power from the load into the regenerative electrical power. The controller is coupled to the energy source, converter, and at least one motor. The controller is configured to send first control signals to the converter, based at least in part on a first braking command, to allow a first target braking power corresponding to the first braking command to be solely charged into the energy source. The controller is further configured to send second control signals to the converter, based at least in part on a second braking command, to allow a second target braking power corresponding to the second braking command to be partly charged into the energy source and partly dissipated by the at least one motor.
A method for operating a vehicle is provided. The method includes receiving a target braking torque for a motor of the vehicle, generating a target braking power based at least in part on the target braking torque, and distributing the target braking power into a target loss power depending on charging status of an energy storage of the vehicle. The method further includes calculating reference commands based at least in part on the target loss power, and implementing a control for generating control signals based at least in part on the reference commands to allow the target loss power to be dissipated by an electric drive system of the vehicle.
These and other features and aspects of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Firstly, embodiments of the disclosure relate generally to a vehicle or an improved drive system of a car, or more specifically to a drive system with improved electric braking characteristics used in a vehicle or a car. Specially, in some embodiments, the invention propose a new “electric braking control method” or a new “electric braking power recover distribution method”, which may distribute the energy generated by a motor operating in a regenerative braking mode in accordance with some components' operating mode of a vehicle during operations. For instance, the target braking power may be distributed according to the charging statuses. In some occasions, when the energy source has a low power, whole or part of the power generated by regenerative braking is charged into the energy source. In some other occasions, such as a case of the energy source in a full charge, the target braking power is at least partially distributed into target loss power, which may be the electric drive system generating loss power of a vehicle or a car. For example, in an embodiment, the target loss power may be the loss power of a motor, in a specific embodiment, it may generate a desirable motor control volume based on the target motor loss power, such as a reference current magnitude, furthermore, it also generates a desirable motor current phase delay through a motor torque control circuit, so as to at least operate the motor control based on the reference current magnitude and current phase delay, to control the motor to dissipate partially the target braking power on the motor. In other embodiments, the target loss power may generate loss power through the electric drive system's convertor or the controller.
In some more specific embodiments, this proposed electric braking control method may be operated with a traction motor (TM), namely, when the vehicle or car receive a TM braking command, it may at least partially distribute the TM's target braking power to TM loss power, according to the energy source's charge status.
In some more specific embodiments, this proposed electric braking control method may be operated with a power take-off (PTO) motor, namely, when the vehicle or car receive a PTO motor braking command, at least part of target braking power of the TM may be distributed to the PTO motor loss power, according to the charge status of the PTO motor.
Operating the improved electric braking control method of this invention may obtain varieties of technical effects or technical advantages, one of which is that, the energy generated by the motor in a braking mode can be regenerated maximally to an energy source or an energy storage device of the vehicle so that the vehicle can run longer. Another technical effect or technical advantage is that the vehicle's drive capability is improved through controlling the motor according to the charge status of the energy source to dissipate the motor braking generating energy. A further technical effect or technical advantage is that it may avoid or reduce the use of mechanical braking devices so as to improve the service life of the mechanical braking devices. A further technical effect or technical advantage is that current dump resistors can be omitted to lower the cost. To the those of ordinary skill in the art to which this disclosure belongs, these and other features and aspects of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings.
One or more specific embodiments of this invention may be illustrated in the below. It is firstly that, in these embodiments' specific description, for brief description, the specification couldn't describe in detail the all characters of actual embodiments. It's understandable that, in actual operations of any embodiment, just like the process in any engineering project or designing project, to achieve developer's specific target, or to meet the system relative or commerce relative limitations, various kinds of specific decisions be usually determined, yet which may change from one embodiment to another. Besides, it's also understandable that, although the efforts of development may be complicated and tedious, to one of ordinary skill of the art which this disclosure is relative to, some changes like design, manufacture or production on the basis of the technical content in this disclosure are conventional technical means, which shouldn't be understood that the disclosure content is insufficient.
Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this disclosure belongs. The terms “first”, “second”, and the like, as used herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. “A” or “an” and the like herein do not denote any quantity limit, but only means having at least one. “Or” comprises any one or all of the listed objects. The use of “including,” “comprising”, “having” or “contain” and variations thereof herein are meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Although the terms “connected” and “coupled” are often used to describe physical or mechanical connections or couplings, they are not intended to be so restricted and can include electrical connections or couplings, whether direct or indirect. Furthermore, the mentioned “controller” or “control system” may comprise a single component or a combination of a plurality of active components or negative components connected directly or indirectly, such as one or more integrated circuit chips, to supply corresponding detailed functions.
In
In some embodiments, the input power supplied to the electric drive system 101 by the energy source 102 may be direct-current power, alternating current power, or a suitable combination of them. For example, in some embodiments, the energy source 102 may be a battery or a battery pack, but non-limited. The battery or the battery pack mentioned herein may include a lead-acid battery, a nickel cadmium battery, a nickel metal hydride battery, a lithium ion battery, a lithium polymer battery, etc. In other embodiments, the battery or the battery pack includes, for example, hydrogen fuel, bio fuel, gas, fuel cell, flywheel batteries, super capacitors, or combinations of the above, and various other suitable energy supply mechanisms being capable of powering the electric drive system 102.
In some embodiments, the energy source 102 may be an onboard device, which may be integrated with the vehicle 100. In other embodiments, the energy source 102 may be located outside the vehicle 100. For example, the vehicle 100 may supply an onboard energy access (not shown) electrically coupled to a power grid or other power equipment. The onboard energy access is configured to convert the power received from the power grid or other power equipment to power with suitable form (e.g. DC power), and supply the converted power to the electric drive system 101. The onboard energy access may also be configured to charge the energy source 102, when the storage energy of the energy source 102 is at least partially exhausted. In some embodiments, the energy source 102 may be a combination of the onboard energy source and the onboard energy access, also namely, it may supply power to the electric drive system 101 through the onboard energy source, also supply power to the electric drive system 101 through the onboard energy access, or through their combination.
In the illustrated embodiment, the electric power supplied by the energy source 102 is DC power, which is transported to the electric drive system 101 through a circuit connected between the energy source 102 and the electric drive system 101. In some embodiments, a DC-link (not shown) connects the energy source 102 and the electric drive system 101, and the DC-link may include one or more capacitors in series and/or in parallel, and is configured to filter the DC power supplied by the energy source 102 and supply the DC power with a certain voltage to the electric drive system 101.
Further referring to
In an embodiment, the convertor 104 is configured to operate bidirectional energy change operations. More specifically, when the vehicle 100 operates in a first working mode, such as a drive mode, the convertor 104 is configured to convert a first power 122 from the energy source 102 (e.g. DC power) to a second power 124 (e.g. AC power) supplied to a motor 106. In other embodiments, the convertor 104 may be configured to receive the DC power converted by the DC-DC converter arranged between the energy source 102 and the converter 104. The motor 106 supplies a mechanical power or mechanical torque to the load system 103 in the effect of the second power 124. In a specific embodiment, the motor 106 may be a three-phase AC motor, or more specifically a brushless DC motor. In other embodiments, the motor 106 may be any other types of motors, like a permanent magnet synchronous motor, etc. In the illustrated embodiment, the motor 106 and the load system 103 are coupled through a transmission system 108 (e.g. gear case) which could adjust the mechanical output torque or velocity of the motor 106. In some other embodiments, the transmission system 108 may be excluded. In this illustrated embodiment, the load system 103 includes a first drive wheel 112 and a second drive wheel 114 operating in the effect of the mechanical energy or mechanical torque supplied by the motor 106 or the transmission system 108, to drive the vehicle 100 to take specific actions (e.g. forward, backward, turn, etc.). In other embodiments, the load system 103 may include one or more than two drive wheels, and in some other embodiments, the load system 103 may also include other types of load devices.
Sequentially shown as
The convertor 104 mentioned herein may be any suitable type of convertors, such as an inverter with full-bridge topology structure, etc. The convertor 104 may include multiple switch devices which are turned on and/or off in the effect of the control signal 134 of the controller 116 to convert electric. The switch devices mentioned herein may be suitable varieties of switch devices based on semiconductors including but not limited to, bipolar transistor, metal oxide field effect transistor, turn off thyristor, insulated gate bipolar transistor, gate converter thyristor and devices based on silicon carbide, etc.
Sequentially shown as
In other embodiments, the controller 116 may also receive parameters of other devices, e.g., receive parameters relative to the convertor 104 and operate the electric-brake control algorithm 118 based on the received parameters to distribute reasonably the power generated by the motor 106 in braking. More specifically, in an alternative embodiment, the controller 116 may receive various parameters for the convertor 104 including current, voltage, and/or temperature parameters to make the power generated by the motor 106 in braking to be dissipated in the convertor 104 in some embodiments. More specifically speaking, when the state of charge of the energy source 102 indicates the energy source 102 does not have enough capacity to receive all the regenerative braking power generated by the motor 102, the convertor 104 is controlled, for instance, a part of switch devices of the convertor 104 is controlled to generate controllable conductive dump, to dissipate a portion of the braking power. In some other embodiments, part of the braking power generated by the motor 106 is dissipated in the controller 116 through the controller 116 itself
The controller 116 mentioned herein may include varieties of programmable circuits or devices including Digital Signal Processor (DSP), Field Programmable Gate Array (FPGA), Programmable Logic Controller (PLC) and Application Specific Integrated Circuit (ASIC). The electric-brake control algorithm 118 herein may be operated through software, hardware, or a combination thereof
Sequentially shown in
Similarly, when the controller 116 is operating electric-brake control algorithm 119, at least a portion of the braking power is dissipated in the convertor 104 and/or the controller 116.
In the embodiment shown in
More specifically, when the vehicle 100 operates in a first working mode, such as a drive mode, the TM convertor 104 may be configured to convert the first power 122 from the energy source 102 (e.g. DC power) to a second power 124 (e.g. AC power) supplied to a TM 106. In other embodiments, the convertor 104 may be configured to receive the DC power converted by the DC-DC converter arranged between the energy source 102 and the TM converter 104. The TM 106 supplies a mechanical power or mechanical torque to a load system 103 in the effect of the second power 124. In a specific embodiment, the TM 106 may be a three-phase AC motor, or more specifically a brushless DC motor. In other embodiments, the TM 106 may be any other type of motors, like a permanent magnet synchronous motor, etc. In this illustrated embodiment, the motor 106 and the load system 103 are coupled through a drive system 108 (e.g. gear case), which could adjust the mechanical output torque or velocity of a motor 106. In some other embodiments, the drive system 108 may be excluded. In the illustrated embodiment, the load system 103 includes the first load, such as, a first drive wheel 112 and a second drive wheel 114, operating in the effect of the mechanical energy or mechanical torque supplied by the motor 106 or the vehicle 108, to drive the vehicle 100 to take specific actions like forward and backward etc. In other embodiments, the load system 103 may include one or more than two drive wheels.
In an embodiment, when operating in the first working mode or the drive mode, the PTO convertor 144 and the PTO motor 148 may not work temporarily to stop supplying output mechanical energy or mechanical torque to the PTO device 152. For instance, the electric tractor returns home from a farm after finishing ploughing the farmland. In another embodiment, the PTO convertor 144 and the PTO motor 148 may work at the same time with the TM convertor 104 and the TM 106, like the E-tractor ploughing the farmland rotationally while traveling. In the first working mode, when the PTO motor 148 supplies take-off power, the PTO convertor 144 is configured to convert the first electric power 141 (e.g. DC power) of the energy source 102 to a second power 146 (e.g. AC power), and supply the second power 146 to the PTO motor 148. In other embodiments, the PTO convertor 144 may be also configured to receive the DC power converted by the DC-DC converter arranged between the energy source 102 and the converter 104. In other embodiments, the PTO convertor 144 and the traction convertor 104 may be configured to receive the input power from the respectively set energy sources, i.e., the traction convertor 104 receives the power from the first power source, and the PTO convertor 144 receives the power from the second power source. The PTO motor 148 in effect of the second power 146 supplies mechanical energy or mechanical torque to the PTO device 152 in the load 103. The operating functions of the PTO devices 152, includes but is limited to, dressing plants, ploughing the land, listing materials, shoveling material, excavating materials and pouring materials, etc. In a specific embodiment, the PTO motor 148 may be a three-phase AC motor, or more specifically a brushless DC motor. In other embodiments, the PTO motor 106 may also be other types of motors, like a permanent magnet synchronous motor. In this schematic embodiment, the PTO motor 148 is coupled directly to the PTO device 152, in other embodiments, the PTO motor 148 and the PTO device 152 are coupled through a drive system 108 (e.g. gear case), which could adjust the mechanical output torque or velocity of a power taker-off motor 148.
Sequentially shown as
In an embodiment, when the vehicle 120 operates in a second working mode, such as a regenerative braking mode, the convertor 104 nay also be configured to convert the first power 124 (e.g. three-phase AC power) from the motor 106 to a second power 122(e.g. DC power), wherein, the second power 141 is provided to the energy source 102, e.g. a chargeable battery or a super capacitor, etc. to charge it, thus to regenerate a portion of energy to be used in the following drive mode operations, or to supply other assistance PTO. Obviously, as above described, the second power 141 may be configured to power other devices inside the vehicle 100(e.g. powering a heating device or an air-conditioning device, etc.), and/or power the other devices outside the vehicle 100, e.g. a power network.
Sequentially shown as
In an embodiment, the controller 116 is configured, at least based on a first command 126, first and second parameter signals 128, 132, to operate the traction electric-brake control algorithm 121 and send control signals 134 to the TM (TM) converter 104 to distribute the braking power generated by the motor 106 in the regenerative braking mode. More specifically speaking, operating the traction electric-brake control algorithm 121 according to various input commands 126 and the first, second parameter signals 128, 132, etc. may result in different distribution of the regenerative braking power. For instance, in a condition, when the first input command 126 instructs the TM 106 to generate a relative smaller first braking power and the energy source 102 has lower power or can receive much charge power, the regenerative braking power from the energy source 102 is regenerated back to the energy source 102. In another condition, when the first input command 126 instructs the TM 106 to generate a second braking power which is bigger than the first braking power and the state of charge of the energy source 102 indicates the energy source 102 do not have capacity to receive all the regenerative braking power generated by the motor 102, the convertor 104 is controlled to output parameters of the power 124 to the TM 106, such as adjusting the current magnitude and postponing current phase, to make the TM 106 to generate self-controllably some energy, thus achieving desirable braking effect. That is to say, a portion of loss power acquired by the regenerative braking is dissipated through controlling the TM 106, to make the state of charge of the energy source 102 has no impact on the braking torque or braking force, thus offering the person controlling the vehicle a better drive capability.
In an embodiment, the controller 116 is configured, at least based on the first parameter signal 128, the third parameter signal 154, and the second command signal 138, etc., to operate the PTO electric-brake control algorithm 123, and to send a control signal 142 to the PTO convertor 144, thus to distribute the braking power generated by the PTO motor 148 in the regenerative braking mode. More specifically speaking, operating the PTO electric-brake control algorithm 123 according to various second input commands 126 and the first, third parameter signals 128, 154, etc. may result in different distributions of the regenerative braking power. For instance, in a case, when the second input command 138 instructs the PTO motor 148 to generate relative smaller first braking power and the energy source 102 is in low power or may receive much charge power, all the regenerative braking power from the PTO motor 148 may be regenerated back to the energy source 102. In another case, when the second input command 138 instructs the PTO motor 148 to generate a second braking power which is bigger than the first braking power and the state of charge of this energy source 102 indicates the energy source 102 does not have capacity to receive all the regenerative braking power from the PTO motor 148, the convertor 104 is controlled to output parameters of the power 146 to the PTO motor 148, such as adjusting the current magnitude or postponing current phase, etc., to make the PTO motor 148 to generate self-controllably some energy, thus achieving desirable braking effect.
Similarly, when the controller 116 is operating the TM electric-brake control algorithm 121 and the PTO electric-brake control algorithm 123, at least part of the braking energy from the TM 106 and the PTO motor 148 is dissipated in the traction convertor 104, the PTO convertor 144 and/or the controller 116.
In an embodiment, the controller 116 is configured, at least based on the first parameter signal 128, the third parameter signal 154, and the second command signal 138, etc. to operate the PTO motor electric-brake control algorithm 125, and to send a control signal 142 to this PTO convertor 144, thus to distribute reasonably the braking power generated by the PTO motor 148 in a regenerative braking mode. In another case, when the second input command 138 instructs the PTO motor 148 to generate a third braking power (larger than the mentioned second braking power in conjunction with
In the embodiment shown in
In the embodiment shown in
Shown in
The TM braking power calculation unit 204 is configured to receive the TM target braking torque signals 202 and the TM feedback velocity 206, and to calculate the TM target braking power 208 of the TM based on the below formula: E=T×V, where E is the TM target braking power, T is the TM target braking torque, and V is the TM actual velocity.
The pre-set power distribution unit 212 receives the TM target braking power 208 calculated by the TM braking power calculation unit 204, and distributes the TM target braking power 208 in accordance with pre-set rules. In an embodiment, the pre-set power distribution unit 212 is configured to preferentially regenerate the TM target braking power 208 back to the energy source 102, also i.e., when the energy source 102 can receive all the TM target braking power 208, the pre-set power distribution unit 212 may set a target mechanical braking power 246 distributed to the mechanical braking device 248 as zero, and send all of a sub target braking power 214 generated in the distribution back to the energy source 102. In an embodiment, when the state of charge of the energy source 102 demonstrates the energy source 102 do not have enough capacity to receive all the target braking power 208, the pre-set power distribution unit 212 regenerates the target braking power 208 to the energy source 102 as much as possible, and then dissipates rest of the TM target braking power 208 in the TM 106 and the mechanical braking device 248. In some embodiments, if the rest power after the TM target braking power 208 is regenerated to the energy source 102 is smaller than the maximum dumping power generated by the TM 106, also i.e., when the TM 106 is able to bear the rest energy after the TM target braking power 208 charging the energy source 102, the pre-set power distribution unit 212 may set the target mechanical braking power 246 distributed to the mechanical braking device 248 as zero.
The TM target dump calculation unit 216 is configured to obtain the TM target loss power 226 through a subtraction between the sub target braking power 214 from the pre-set power distribution unit 212 and the energy source target charging power (or energy source chargeable power) 224. In an embodiment, the energy source target charging power (or energy source chargeable power) 224 is calculated by the charging energy calculation unit 222 according to the signal 218 denoting the state of charge of the energy source 102. The TM target loss power 226 is employed by the reference current calculation unit 228 to calculate a reference current magnitude signal 232. The reference current magnitude signal 232 indicates the desirable magnitude value of the current from the TM convertor 104 to the TM 106. The reference current magnitude signal 232 is provided to the TM control unit 242. In an embodiment, the TM control unit 242 generates a control signal 244 at least based on the reference current magnitude 232 and the current phase delay command 238 from the traction torque regulation unit 236 to control the TM convertor 104 to change or adjust the parameters of the power output from the TM convertor 104 to the TM 106, thus the regenerative braking power of the TM 106 is distributed reasonably.
In the embodiment shown in
In the embodiment of
Furthermore, in the embodiment shown in
Shown as
The PTO braking power calculation unit 304 is configured to receive a PTO target braking torque signal 302 and a PTO feedback velocity signal 306, and calculate the TM target braking power 308 based on the following formula: E=T×V, where E is the PTO target braking power, T is the PTO target braking torque, and V is the PTO actual velocity.
In an embodiment, the PTO target dump calculation unit 312 is configured to acquire the PTO target loss power 314 through subtraction between the PTO target braking power 308 from the PTO braking power calculation unit 304 and the energy source target charge power (or energy source chargeable power) 224. In an embodiment, the energy source target charge power (or energy source chargeable power) 224 is calculated by the charging power calculation unit 222 according to the signal 218 denoting the state of charge of the energy source 102. The PTO target loss power 314 is employed by the current reference calculation unit 316 to calculate a reference current magnitude signal 318 instructing the desirable magnitude value of the current from the PTO convertor 144 to the PTO motor 106. The reference current magnitude signal 318 is provided to the PTO motor control unit 328. In an embodiment, the PTO motor control unit 328 generates a control signal 322 at least based on the reference current magnitude 318 and the current phase delay command 326 from the PTO torque regulation unit 324 to control the PTO convertor 144 to change or adjust the parameters of the power transferred to the PTO motor 148, thus the regenerative braking power of the PTO motor 148 is distributed reasonably.
In the embodiment of
Furthermore, in the embodiment shown in
In the embodiment of
Furthermore, in the embodiment shown in
Referring to
In an embodiment, the method 1100 still includes a step 1104 where the TM target braking power is generated at least based on the TM target braking torque from the step 1102. For instance, in an embodiment, when the controller 116 is operating the TM electric-brake control algorithm 118, the TM braking power calculation unit 204 in
In an embodiment, the method 1100 still includes a step 1106 where the TM target braking power calculated in the step 1104 is distributed according to pre-set rules. In an embodiment, when operating the step 1106, the energy is distributed according to the state of charge of the energy source 102, such as, when the energy source 102 may receive all the TM target braking power, meanwhile, the TM may transfer all the target braking power generated according to the target braking torque to the energy source 102. In another embodiment, when operating the step 1106, it may also distribute the energy according to the loss power produced by the TM 148. For example, when the state of charge of the energy source 102 denotes the energy source 102 do not have enough capacity to receive all the TM target braking power 208, and the rest energy after the TM target braking power 208 regenerated back to the energy source 102 is smaller than the maximum loss power of the TM 106, also i.e., when the TM 106 may bear the rest energy after the TM target braking power 208 charging the energy source 102, it may regenerate a portion of the TM target braking power 208 back to the energy source 102, and the rest portion is dissipated in the TM 106. In other embodiments, when the state of charge of the energy source 102 denotes the energy source 102 does not have enough capacity to receive all the TM target braking power 208, and the rest energy after the TM target braking power 208 regenerated to the energy source 102 is larger than the maximum loss power of the TM 106, also i.e., the TM 106 fails to bear rest energy after the TM target braking power 208 charging the energy source 102, a portion of the TM target braking power 208 is dissipated in the mechanical braking device.
In an embodiment, the method 1100 still includes a step 1108 where the TM target loss power is generated according to step 1106 operating energy distribution rules. As above, the TM target loss power has different values in different conditions.
In an embodiment, the method 1100 still includes a step 1110 where the TM target loss power is generated at least according to the reference current signal. In an embodiment, the reference current calculation unit 228 as
In an embodiment, the method 1100 still includes a step 1112 where motor control is implemented based at least in part on a current command (e.g. reference current magnitude signal) produced in the step 1110 and a current phase delay command of another one control circuit. In an embodiment, the TM control unit 242 in
Understandably, the method 1100 for controlling the vehicle in
In an embodiment, the method includes a step 1302 where the PTO target braking torque is received. In some embodiments, the controller 116 (shown in
In an embodiment, the method 1300 still includes a step 1304 where a PTO target braking power is generated based at least in part on the PTO target braking torque from the step 1302. For instance, in an embodiment, when the controller 116 operates the PTO electric-brake control algorithm 123, the PTO braking power calculation unit 304 in
In an embodiment, the method 1300 still includes a step 1306 where a PTO target loss power is generated. In an embodiment, the PTO target loss power calculation unit 312 in
In an embodiment, the method 1300 still includes a step 1308 where a reference current signal (or current command) is generated based at least in part on the PTO motor target loss power from the step 1306. In an embodiment, the reference current calculation unit 312 in
In an embodiment, the method 1300 still includes a step 1310 where the motor control is implemented based at least in part on the reference current signal (e.g. reference current magnitude signal) from the step 1308 and the current phase delay command of another one control circuit. In an embodiment, the PTO motor control unit 328 in
Understandably, the method 1300 controlling the vehicle operating in
Furthermore, in some embodiments, similar to operating the TM electric-brake control method, the method 1400 after the step 1306 may also include a step where the PTO target loss power is limited according to maximum motor loss value and the minimum motor loss value of the PTO motor. If the PTO target loss value is larger than the maximum motor loss value generated from the PTO motor, in an embodiment, a braking resistor may be used to dissipate extra energy.
While only certain features of the invention have been illustrated and described herein in conjunction with typical embodiments, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
201310429818.0 | Sep 2013 | CN | national |