The present application is based on, and claims priority from, Taiwan Patent Application No. 101147891, filed Dec. 17, 2012, the disclosure of which is hereby incorporated by reference herein in its entirety.
The present disclosure generally relates to an apparatus and method for enabling a passive optical network (PON) on supporting time synchronization.
With the development and deployment of PON network technology, the network technology has been developed to transmit synchronous information to make the backend optical network unit (ONU; ONU also known as the client) precisely synchronizing with the high-level clock source of the optical line termination (OLT). For example, the IEEE 1588 precision time protocol (PTP) developed by the Institute of Electrical and Electronic Engineers (IEEE) is used to provide the slave clock for synchronization with the master clock through the wired network. The PTP transmits synchronous timing signals through IP network or Ethernet, to achieve time precision of sub-microsecond level, which is regarded as an economic and effective way of clock distribution and system synchronization.
The IEEE 1588 synchronization mechanism provides precision synchronization of the slave clock with the master clock.
Refer to
When the slave clock receives the synchronization message 110, the mechanism records a time point ST1 of the slave clock, and transmits the delay request message 130 to the master clock end. The delay request message 130 comprises a time point ST2 of the slave clock when transmitted. When the master clock end receives the delay request message 130, the mechanism records a time point MT2 of the main clock at that time, and transmits back the delay response message 140 to the slave clock end, thereby the slave clock end may obtain the time point MT2. According to the message exchanged up to now, there are four timestamps at the slave clock end, i.e. the time point MT1, the time point ST1, the time point MT2, and the time point ST2.
Therefore, the time difference amount between the master clock and its slave clock, and the propagation delay time between the master clock end and the slave clock end may be calculated as follows:
Since ST1=MT1+Offset+Delay, and MT2=ST2−Offset+Delay,
so Delay=((ST1−MT1)+(MT2−ST2))/2, and Offset=((ST1−MT1)−(MT2−ST2))/2.
Accordingly, the use of the time difference amount Offset between the master clock and its slave clock may thereby adjust the time of the slave clock in synchronization with the time of the master clock. In the IEEE 1588, the synchronization scheme is called delay request response mechanism.
In the synchronization of an OLT with an ONU in the existing PON networks, in addition to the propagation delay between the OLT and the ONU may be learned through the ranging, the ONU is responsible for locking the clock from the OLT, so that each ONU may avoid collision in accordance with the time slot for upstream bandwidth allocation arranged by the OLT. In the specification of the PON, the OLT also transmits the time of day clock (ToD) of the OLT to the ONU. Since the ONU locks the OLT clock, so the time of day clocks of both the OLT and the ONU exit only a small difference, which generally are considered to be the same value.
Usually the PTP synchronization needs both ends exchanging multiple messages to determine the error between the slave clock and the master clock. In existing PON networks, a synchronization method is that the OLT and the ONU are clock sources, respectively. The OLT is the master clock and the ONU is the slave clock when the OLT synchronizes with the ONU via the PTP. There is a technique, wherein the synchronization of the OLT and the ONU may learn the propagation delay between the OLT and the ONU through ranging, so when the OLT synchronizes with the ONU, it does not need transmitting multiple protocol messages back and forth as the PTP synchronization, simply bears the information in a fixed location of a GPON (Gigabit-capable PON) Transmission Convergence (GTC) frame, and then adds the known propagation delay to obtain the needed setting timing when the ONU receives the GTC frame. Another technique re-defines a timestamp reference point for synchronization of the OLT and the ONU of the PON network. Since the reference timestamp point used by IEEE 1588 is not encapsulated into the PON frame when on Ethernet over PON, therefore the technology re-defines the PON timestamp reference point for the OLT synchronizing with the ONU.
In another synchronization method of existing PON networks, the OLT and the ONU do not maintain the PTP clock respectively. The PON network is only responsible for transmitting synchronization package. i.e., the OLT master clock directly synchronizes with the ONU slave clock. Since when the PTP is executed, the delay time of two directions between the master clock end and a slave clock end must be equal, otherwise error will be induced. Some technologies provide solutions. For example, a technology tries to generate an equal delay for all PTP commands passing on the PON, so that the master clock directly synchronizing with the slave clock may use the standard synchronization calculation method to obtain a precision time.
Understanding these synchronization mechanisms, synchronization technologies, and delay controlling technologies for existing PON networks, it will be an important issue on how to design a technology that only uses the synchronization information of the OLT informing the ONU to enable the PON network on supporting time synchronization capability and then make the slave clock connected to the ONU backend able to synchronize with the OLT upstream master clock.
The exemplary embodiments of the disclosure may provide an apparatus and method for enabling a passive optical network (PON) on supporting time synchronization.
One exemplary embodiment relates to an apparatus for enabling a passive optical network (PON) on supporting time synchronization. The PON has an optical line terminal (OLT) and at least one optical network unit (ONU). The apparatus may comprise a boundary clock device deployment unit configured to make the PON equivalent to a boundary clock device; wherein the OLT maintains a first precision time protocol (PTP) boundary clock, and the at least one ONU maintains a second PTP boundary clock, and in between the OLT and a master clock at a front end of the OLT, and in between a slave clock at a backend of the at least one ONU and the at least one ONU, a respective PTP is used to maintain synchronization.
Another exemplary embodiment relates to an apparatus for enabling a passive optical network (PON) on supporting time synchronization. The PON has an optical line terminal (OLT) and at least one optical network unit (ONU). The apparatus may comprise a timestamp correction module configured to make at least one network delay between a master clock and a slave clock equivalent to an equivalent path delay; wherein the timestamp correction module makes the at least one ONU responsible for modifying a timestamp information in at least one precision time protocol (PTP) packet from the OLT through the PON, so that the slave clock at a backend of the at least one ONU is equivalent to synchronizing with a virtual master clock.
Yet another exemplary embodiment relates to a method for enabling a passive optical network (PON) on supporting time synchronization. The PON has an optical line terminal (OLT) and at least one optical network unit (ONU). The method may comprise: deploying the PON equivalent to a boundary clock device; maintaining a first precision time protocol (PTP) boundary clock in the OLT, and maintaining a second PTP boundary clock in the at least one ONU; and in between the OLT and a master clock at a frontend of the OLT and in between a slave clock at a backend of the at least one ONU and the at least one ONU, using a respective PTP to maintain synchronization.
Yet another exemplary embodiment relates to a method for enabling a passive optical network (PON) on supporting time synchronization. The PON has an optical line terminal (OLT) and at least one optical network unit (ONU). The method may comprise: making at least one network delay between a master clock and a slave clock equivalent to at least one equivalent path delay; configuring a timestamp correction module in the PON, wherein the timestamp correction module modifies a timestamp information in at least one PTP packet from the master clock at a frontend of the OLT through the PON; and synchronizing, based on a modified timestamp information, the slave clock at a backend of the at least one ONU with a virtual master clock.
Below, exemplary embodiments will be described in detail with reference to accompanying drawings so as to be easily realized by a person having ordinary knowledge in the art. The inventive concept may be embodied in various forms without being limited to the exemplary embodiments set forth herein. Descriptions of well-known parts are omitted for clarity, and like reference numerals refer to like elements throughout.
The disclosed exemplary embodiments of the technology for enabling a passive optical network (PON) on supporting time synchronization uses characteristics of performing counting when the ONU locks the OLT clock, such that no PTP synchronization is performed between the OLT and the ONU, and the synchronization information of the OLT informing the ONU may enable the PON on supporting time synchronization capability. In a first exemplary embodiment, this technique may use the characteristics of continuous maintaining synchronization between the ONU and the OLT of the PON to make the PON equivalent to a boundary clock device. In a second exemplary embodiment, this technique may use a timestamp correction module to make a network delay of the PON equivalent to at least one equivalent path delay, wherein the smallest equivalent path delay of the at least one equivalent path delay is zero path delay. Thus the slave clock at the ONU backend may directly synchronize with the master clock. The timestamp correction module may configure a timestamp record module in the OLT of the PON and configure a timestamp update module in the ONU of the PON. The present disclosure does not limit to these two exemplary embodiments.
Accordingly,
Accordingly,
Each time the ONU receives the time synchronization command from the OLT, it may correct the value TSC of the PTP clock (the boundary clock 420) of the ONU. Take the
Since the PTP clock (the master clock 412) at the frontend of the OLT may be different from the ToD count value the OLT itself, so this ratio may not be 1.
Since the ONU locks the time of the OLT, the local ToD of the ONU is basically considered the same as the local ToD of the OLT. Although the ONU receives the i+1th synchronization command at tt+1ONU, the method of the present disclosure does not require the ONU to update the PTP clock (the boundary clock 420) immediately. The PTP clock (the boundary clock 420) may be updated at any time after ti+1ONU, thus the complexity of the system implementation is reduced. When the ONU updates its PTP clock (the boundary clock 420), assuming that the ToD value of the ONU itself is {tilde over (t)}i+1ONU ({tilde over (t)}i+1ONU may be any value greater than or equal to ti+1ONU as mentioned earlier), since this {tilde over (t)}i+1ONU may be regarded as the ToD value of the OLT itself, thus the count ratio value of the PTP clock (the boundary clock 420) of the ONU to the PTP clock (the master clock 412) at the frontend of the OLT is as follows:
The ratio of formula (2) may be equal to the ratio of the aforementioned formula (1), i.e.
Therefore, according to the equation (3), the corrected PTP clock (the boundary clock 420) of the ONU is as follows:
Accordingly, the first exemplary embodiment utilizes the characteristics of performing counting for the ONU of the PON by locking the OLT clock, thereby instead of using direct PTP synchronization between the OLT and the ONU, while correcting the PTP clock (boundary clock 420) of the ONU through the time information of the OLT transmitting to the ONU and the local clock or ToD of the ONU. In other words, the synchronization information of the OLT informing the ONU enables the PON having the ability on supporting time synchronization. Wherein, the synchronization information of the OLT transmitting to the ONU includes time points (tiOLT, ti+1OLT) of previous time and next time (i.e., the i-th and the (i+1)-th) of the synchronization packet of the master clock 412 arriving at the OLT, the PTP timestamps (TiMC, Ti+1MC) of these two synchronization packets' contents, the message propagation delay time d between the master clock 412 and the OLT, and so on.
In the first exemplary embodiment, the apparatus for enabling a PON on supporting time synchronization capability may further include a processing unit. The processing unit may be configured in the OLT to multi-transmit a plurality of time synchronization messages to the at least one ONU, and in each transmitting a time synchronization message to the at least one ONU, the time synchronization message includes at least a time point of arriving the OLT from a synchronization packet of a master clock, a PTP timestamp of the synchronization packet's contents, and a propagation delay time between the master clock and the OLT. The apparatus for enabling a PON on supporting time synchronization capability may also comprise a PTP clock correction unit. The PTP clock correction unit may be configured in the at least one ONU, and corrects a PTP clock of the at least one ONU based on the aforementioned information included in the time synchronization message from the OLT.
In the second exemplary embodiment, a timestamp correction mechanism is used to make a PON network delay equivalent to a path delay. The OLT and the ONU do not maintain the PTP clock, while the slave clock connected to the ONU's backend directly performs synchronization with the master clock at the frontend of the OLT. The OLT and the ONU use respective ToD clock as the reference of time recording. The OLT and the ONU corporately modify the timestamp information in the PTP packets passing through the PON, to eliminate the propagation delay between the OLT and the ONU. Its effect is equivalent to the slave clock directly performing synchronization with a virtual master clock. Accordingly,
As shown in
Accordingly,
When the ONU receives a PTP delay request packet 730 transmitted from the slave clock 620 at the time point ST2, the ONU records the receiving time point t3 and uplink transmits the PTP delay request packet 730 to the OLT. When the OLT receives the PTP delay request packet 730, the OLT uplink transmits the PTP delay request packet 730 to the master clock 610. The time point that the PTP delay request packet 730 leaving the OLT is t4. Then, the master clock 610 transmits a PTP delay response packet 740 with a timestamp MT2 to the OLT. After the OLT receives the PTP delay response packet 740, the OLT downlink transmits the PTP delay response packet 740 and the time point t4 to the ONU. The ONU is responsible for modifying the timestamp MT2 contained in the PTP delay response packet 740 to a timestamp MT2′. The MT2′ equals to MT2−(t4−t3), as indicated by an arrow 752. After that, the ONU transmits a PTP delay response packet 750 with the timestamp MT2′ to the slave clock 620 at its backend. Thus, the ONU acts as performing synchronization with the virtual master clock 610.
According to the second exemplary embodiment described above in
Although in this example, time stamp modifications are performed in the ONU, the time stamp modifications may be implemented in the OLT using the same concept.
According to the above-described first exemplary embodiment,
According to the exemplary embodiment of
According to the second exemplary embodiment,
According to the exemplary embodiment of
In summary, the exemplary embodiments of present disclosure provide an apparatus and method for enabling PON on supporting time synchronization capability by utilizing the boundary clock PON technology and the virtual master clock technology. The exemplary embodiments resolve the synchronization error of time synchronization mechanism on the PON network. In the first exemplary embodiment, performing PTP synchronization is not necessary between the OLT and the at least one ONU. When the at least one ONU receives the synchronization information from the OLT, also does not need to perform precision stamp annotation. In the second exemplary embodiment, the synchronization technique may reduce the complexity of buffer management, and the hardware complexity is thus reduced. The OLT and the ONU only maintain respective local clock or the time of day clock; and the slave clock at the ONU's backend and a virtual master clock use a PTP to perform synchronization.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed embodiments. It is intended that the specification and examples be considered as exemplary only, with a true scope of the disclosure being indicated by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
101147891 | Dec 2012 | TW | national |