This invention relates generally to telecommunications. More particularly, this invention relates to a technique for seamlessly integrating voice and data telecommunication services across a licensed wireless system and an unlicensed wireless system.
Licensed wireless systems provide mobile wireless communications to individuals using wireless transceivers. Licensed wireless systems refer to public cellular telephone systems and/or Personal Communication Services (PCS) telephone systems. Wireless transceivers include cellular telephones, PCS telephones, wireless-enabled personal digital assistants, wireless modems, and the like.
Licensed wireless systems utilize wireless signal frequencies that are licensed from governments. Large fees are paid for access to these frequencies. Expensive base station equipment is used to support communications on licensed frequencies. Base stations are typically installed approximately a mile apart from one another. As a result, the quality of service (voice quality and speed of data transfer) in wireless systems is considerably inferior to the quality of service afforded by landline (wired) connections. Thus, the user of a licensed wireless system pays relatively high fees for relatively low quality service.
Landline (wired) connections are extensively deployed and generally perform at a lower cost with higher quality voice and higher speed data services. The problem with landline connections is that they constrain the mobility of a user. Traditionally, a physical connection to the landline was required.
Currently, unlicensed wireless communication systems are deployed to increase the mobility of an individual using a landline. The mobility range associated with such systems is typically on the order of 100 meters or less. A common unlicensed wireless communication system includes a base station with a physical connection to a landline. The base station has a RF transceiver to facilitate communication with a wireless handset that is operative within a modest distance of the base station. Thus, this option provides higher quality services at a lower cost, but the services only extend a modest distance from the base station.
Thus, there are significant shortcomings associated with current landline systems and licensed wireless systems. For this reason, individuals commonly have one telephone number for landline communications and one telephone number for licensed wireless communications. This leads to additional expense and inconvenience for an individual. It would be highly desirable if an individual could utilize a single telephone number for both landline communications and licensed wireless communications. Ideally, such a system would allow an individual, through seamless handoffs between the two systems, to exploit the benefits of each system.
A method of integrating a licensed wireless system and an unlicensed wireless system includes initiating a wireless communication session in a first region serviced by a first wireless system and maintaining the wireless communication session in a second region serviced by a second wireless system. The first wireless system is selected from the group including a licensed wireless system and an unlicensed wireless system. The second wireless system is the unselected system from the group including the licensed wireless system and the unlicensed wireless system.
The invention also allows the subscriber to roam outside the range of the unlicensed base station without dropping communications. Instead, roaming outside the range of the unlicensed base station results in a seamless handoff (also referred to as a hand over) wherein communication services are automatically provided by the licensed wireless system.
In one embodiment of a system, a mobile station includes a first level 1 level 2, and level 3 protocols for a licensed wireless service. The mobile station also includes a second level 1, level 2, and level 3 protocols for an unlicensed wireless service. An indoor base station is operable to receive an unlicensed wireless channel from the mobile station when the mobile station is within an unlicensed wireless service area. An indoor network controller is coupled to the indoor base station and is adapted to exchange signals with a telecommunications network. The indoor network controller and indoor base station are configured to convert the second level 1, second level 2, and second level 3 protocols into a standard base station controller interface recognized by the telecommunications network. The mobile station, indoor base station, and indoor network controller are configured to establish a communication session on an unlicensed wireless channel using the base station controller interface when the mobile station is within the unlicensed wireless service area.
The invention is more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, in which like reference numerals refer to corresponding parts throughout the several views of the drawings:
The present invention is directed towards seamlessly providing wireless services to a mobile station (MS) using both a licensed wireless system and an unlicensed wireless system. The unlicensed wireless system is a short-range wireless system, which may be described as an “indoor” solution. However, it will be understood through the application that the unlicensed wireless system includes unlicensed wireless systems that cover not only a portion of a building but also local outdoor regions, such as outdoor portions of a corporate campus serviced by an unlicensed wireless system. The mobile station may, for example, be a wireless phone, smart phone, personal digital assistant, or mobile computer. The “mobile station” may also, for example, be a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN) or Plain Old Telephone Service (POTS) terminals to the wireless system. Representative of this type of device is the Phonecell line of products from Telular Corporation of Chicago, Ill. Application of the present invention to this type of device enables the wireless service provider to offer so-called landline replacement service to users, even for user locations not sufficiently covered by the licensed wireless system. Throughout the following description, acronyms commonly used in the telecommunications industry for wireless services are utilized along with acronyms specific to the present invention. A table of acronyms specific to this application is included in Appendix I.
However, if the mobile station is within range of an indoor base station (IBS) 128, a wireless session is conducted using an unlicensed channel of an unlicensed wireless system. In one embodiment, the service area of indoor base station 128 is an indoor portion of a building, although it will be understood that the service region of indoor base station 128 may include an outdoor portion of a building or campus. As indicated by second arrow 124, the mobile station 102 may be connected to the telecommunications network 114 via a second data path 124 including an unlicensed wireless channel 126, an unlicensed wireless service indoor base station (IBS) 128, an access network 130, and an indoor network controller (INC) 132 (also described by the inventors of the present application as an “Iswitch”) to voice/data network 114. The indoor network controller 132 also communicates with network 114 using a base station controller interface 190. As described below in more detail, indoor base station 128 and indoor network controller 132 may include software entities stored in memory and executing on one or more microprocessors (not shown in
The unlicensed wireless channel 126 may be an unlicensed, free spectrum (e.g., spectrum around 2.4 GHz or 5 GHz). The unlicensed wireless service may have an associated communication protocol. As examples, the unlicensed wireless service may be a Bluetooth compatible wireless service, or a wireless local area network (LAN) service (e.g., the 802.11 IEEE wireless standard). This provides the user with potentially improved quality of service in the service regions of the unlicensed wireless service. Thus, when a subscriber is within range of the unlicensed base station, the subscriber may enjoy low cost, high speed, and high quality voice and data services. In addition, the subscriber enjoys extended service range since the handset can receive services deep within a building. This type of service range is not reliably provided by a licensed wireless system. However, the subscriber can roam outside the range of the unlicensed base station without dropping communications. Instead, roaming outside the range of the unlicensed base station results in a seamless handoff (also referred to as a hand over) wherein communication services are automatically provided by the licensed wireless system, as described in more detail in U.S. patent application Ser. No. 10/115,833, the contents of which are hereby incorporated by reference.
Mobile station 102 has a microprocessor and memory (not shown) that includes computer program instructions for executing wireless protocols for managing communication sessions. As illustrated in
In one embodiment of the present invention, the mobile station also includes an unlicensed wireless service physical layer 152 (i.e., a physical layer for unlicensed wireless service such as Bluetooth, Wireless local area network, or other unlicensed wireless channel). The mobile station also includes an unlicensed wireless service level 2 link layer 154. The mobile station also includes an unlicensed wireless service radio resource sublayer(s) 156. An access mode switch 160 is included for the mobile management 148 and call management layers 150 to access the unlicensed wireless service radio resource sublayer 156 and unlicensed wireless service link layer 154 when the mobile station 102 is within range of an unlicensed wireless service indoor base station 128
The unlicensed radio resource sublayer 156 and unlicensed link layer 154 may include protocols specific to the unlicensed wireless service utilized in addition to protocols selected to facilitate seamless handoff between licensed and unlicensed wireless systems, as described below in more detail. Consequently, the unlicensed radio resource sublayer 156 and unlicensed link layer 154 need to be converted into a format compatible with a conventional base station controller interface protocol 190 recognized by a MSC, SGSN, or other voice or data network.
Referring to
The licensed wireless service may comprise any licensed wireless service having a defined BSS interface protocol 190 for a voice/data network 114. In one embodiment, the licensed wireless service is a GSM/GPRS radio access network, although it will be understood that embodiments of the present invention include other licensed wireless services. For this embodiment, the indoor network controller 132 interconnects to the GSM core network via the same base station controller interfaces 190 used by a standard GSM BSS network element. For example, in a GSM application, these interfaces are the GSM A-interface for circuit switched voice services and the GSM Gb interface for packet data services (GPRS). In a UMTS application of the invention, the indoor network controller 132 interconnects to the UMTS network using a UMTS Iu-cs interface for circuit switched voice services and the UMTS Iu-ps interface for packet data services. In a CDMA application of the invention, the indoor network controller 132 interconnects with the CDMA network using the CDMA A1 and A2 interfaces for circuit switched voice services and the CDMA A10 and A11 interfaces for packet data services.
In a GSM/GPRS embodiment, indoor network controller 132 appears to the GSM/GPRS core network as a GSM BSS network element and is managed and operated as such. In this architecture the principle elements of transaction control (e.g., call processing) are provided by higher network elements; namely the MSC 116 visitor location registry (VLR) and the SGSN. Authorized mobile stations are allowed access to the GSM/GPRS core network either directly through the GSM radio access network if they are outside of the service area of an indoor base station or via the indoor access network system 100 if they are within the service area of an indoor base station 128.
Since a communication session to the IAN system 100 is transparent to a voice or data network 114, the unlicensed wireless service may support all user services that are typically offered by the wireless service provider. In the GSM case, this preferably includes the following basic services: Telephony; Emergency call (e.g., E911 calling in North America); Short message, mobile-terminated point-to-point (MT/PP); Short message, mobile-originated point-to-point (MO/PP); GPRS bearer services; Handover (outdoor-to-indoor, indoor-to-outdoor, voice, data, SMS, SS). Additionally for GSM, this preferably includes the following supplementary services: Call Deflection; Calling Line Identification Presentation; Calling Line Identification Restriction; Connected Line Identification Presentation; Connected Line Identification Restriction; Call Forwarding Unconditional; Call Forwarding on Mobile Subscriber Busy; Call Forwarding on No Reply; Call Forwarding on Mobile Subscriber Not Reachable; Calling Name Presentation; Call Waiting; Call Hold; Multi Party Service; Closed User Group; Advice of Charge (Information); Advice of Charge (Charging); User-to-user signaling; Barring of All Outgoing Calls; Barring of Outgoing International Calls; Barring of Outgoing International Calls except those directed to the Home PLMN Country; Barring of All Incoming Calls; Barring of Incoming Calls when Roaming Outside the Home PLMN Country; Explicit Call Transfer; Support of Private Numbering Plan; Completion of calls to busy subscribers; Unstructured Supplementary Services Data; SIM Toolkit. Moreover, it preferably includes Regulatory and Other Services such as: lawfully authorized electronic surveillance (also known as “wiretap”); TTY (also known as Telecommunications Device for the Deaf); and Location services.
The IAN-RR protocol supports the IAN “layer 3” signaling functions. This includes the end-to-end GSM signaling between the indoor network controller 132 and mobile station 102, via IAN-RR message relay functions in the indoor base station 128. The indoor network controller 132 is responsible for the interworking between these messages and the analogous A-interface messages. The IAN-RR protocol also supports IAN-specific signaling between the mobile station 102, indoor base station 128 and indoor network controller 132; e.g., for mobile station-to-indoor base station bearer path control.
The radio resource layers in the mobile station include an IAN-RR sub-layer 556 and an IEP sublayer 557. The IAN-radio resource (RR) protocol is conveyed in an IAN Encapsulation Protocol (IEP) over the K1 interface 305, with the IEP being administered by the IEP sublayer 555. The IEP packets are transferred over the K1 interface 305 using the services of an unlicensed wireless service layer 2 connection access procedure (L2CAP) link layer.
The IAN-RR protocol is conveyed in an IAN Transfer Protocol (IT) over the K2 interface 310 using an ITP module 702. The ITP messages are transferred using an IAN Secure Tunnel (IST) connection between the indoor base station 128 and the indoor network controller 132. The IST may be provided using standard security protocols. The use of the standard Secure Socket Layer (SSL) protocol 704 running over TCP/IP 706 is shown in
The ITP module also supports non IAN-RR signaling between the indoor base station 128 and the indoor network controller 132. This includes the IBS-to-INC bearer path control signaling. This signaling may trigger, or be triggered by, IAN-RR signaling. We refer to this signaling as the indoor base station Management Application Protocol (IBSMAP) 708.
Referring to
The IAN-GRR RLC entity 955 is responsible for the following tasks. First, it emulates the GPRS RLC layer 905 to provide the expected services to the upper layer protocols. Second, it coordinates with the GPRS RLC 905 entity to manage access mode switching. In one embodiment, the IAN GRR layer includes IANGPRS-SAP and GPRSIAN-SAP interface handlers for access mode switching and modified PLMN/cell reselection behavior in IAN mode.
The IAN GRR entity 955 provides coordination with the GPRS RLC entity 905 through an IAN GPRS-SAP, specifically for access mode switching procedures. The GPRS RLC entity 905 provides coordination with the IAN GRR entity through the GPRSIAN-SAP, specifically for access mode switching procedures.
The basic operation of embodiments of the mobile station, base station, and indoor network controller 132 having been described above in regards to the operation of level 1, level 2, and level 3 layers and voice bearer operation, registration, mobility management, and call management procedures will now be discussed for several embodiments.
Conventional licensed wireless systems include procedures for handing off a communication session to different components of the licensed wireless system. These include, for example, handing off a session to different cells under control of the same base station controller, switching cells under control of different base station controllers but belonging to one MSC, and switching cells under control of different MSCs. In embodiments of the present invention, these protocols have been further adapted to initiate a handoff of a communication session to the unlicensed wireless system when the mobile station is within range of at least one indoor base station controller.
A mobile station 102 is required to register with the base subsystem (BSS) of the network each time the serving location area (or routing area) changes. This provides the network with information regarding the location of the mobile station that may, for example, be used to determine which BTS 108 and BSC 112 will service the communication session. One or more location areas identifiers (LAIs) may be associated with each visitor location register (VLR) in a carrier's network. Likewise, one or more routing area identifiers (RAIs) may be controlled by a single SGSN. In actual implementations, the number of different registration areas controlled by each VLR/SGSN is decided based upon a tradeoff between minimizing network paging and location updating load. The fewer registration areas, the less location updates on the system but the higher the paging load. The higher the number of registration areas, the lower the system paging load but the higher the number of user registrations. A single location area/routing area 1205-y may be associated with multiple base station subsystems (BSS). If this is the case, a mobile-terminated call to a subscriber that is registered in a particular location area will result in paging requests to each BSS associated with that location area. Note that there is not necessarily a one-to-one relationship between LAI and RAI; there may be multiple GPRS routing areas within a single location area.
Referring to
As illustrated in
In a second umbrella IAN configuration illustrated in
In one embodiment, an IAN registration is performed by the mobile station 102 to manage signal load on the public land mobile network (PLMN) infrastructure. An IAN registration is preferably automatically performed by the mobile set on initial detection of IAN coverage or following a temporary interruption of IAN coverage under certain specific conditions. As described below in more detail, this proactive registration process facilitates seamless handoff for a variety of environments and situations that may be encountered. In one embodiment, an IAN registration does not involve any signaling to the PLMN infrastructure and is wholly contained within the IAN system (i.e., the mobile station, indoor base station and indoor network controller). The IAN registration message delivered to the indoor network controller 132 preferably includes (among other parameters): IMSI; GSM update status, and associated parameters (e.g., LAI and TMSI, if available); GPRS update status, and associated parameters (e.g., RAI and P-TMSI, if available).
In one embodiment, the IAN registration procedure is also used by the indoor network controller 132 to provide the mobile station 102 with the operating parameters associated with the IAN service on the indoor base station 128. This is analogous to the use of the GSM broadcast control channel (BCCH) to transmit system parameters to mobile stations in GSM cells. In this embodiment, the information that is transmitted includes (among other parameters): IAN-LAI (Location Area Identification); IAN-RAI (Routing Area Identification); IAN-CL (Cell Identification); IAN-ARFCN value (for handover purposes); IAN-BSIC value (for handover purposes); Attach/Detach Allowed (ATT) flag setting; GPRS network operating mode; CELL_RESELECT_OFFSET, used to “bias” GSM cell selection in favor of cells with the same registration area as the IAN system; BA (BCCH Allocation) List: and Timer values. These parameters are packaged in an IAN-System-Information wrapper. This package is included in the IAN registration response to the mobile station. The package may also be included in other messages to the mobile station in the event that a system parameter update is required.
In one embodiment the mobile station 102 scans for both GSM and IAN radio coverage at power on or anytime when the mobile station 102 is idle and there is no coverage of any type. If only GSM coverage is detected, then the normal GSM mobility management procedure is initiated. If only IAN coverage is detected, then the mobile station 102 establishes a link to the indoor base station 128 and waits for a IAN-LINK-ATTACH message from the indoor base station 128. On receipt of the IAN-LINK-ATTACH message (indicating that the received signal level at the indoor base station 128 has passed a predefined threshold), the mobile station 102 performs the IAN registration procedure. Based upon the information returned, the mobile station 102 then determines if a full network registration is required and if so what type (e.g., GSM or GPRS). If both GSM and IAN coverage are detected, then the mobile station 102 performs the normal GSM mobility management procedure, then performs the IAN registration procedure.
There is also the possibility that a mobile user may initially be outside of the IAN coverage zone but eventually move into the IAN coverage zone. Consequently, in one embodiment, at anytime when the mobile station 102 is idle, in GSM coverage and there is no IAN coverage, the mobile station 102 periodically scans for IAN coverage. If IAN coverage is detected, the mobile station 102 initiates the IAN registration procedure described above.
In some environments, such as inside a building, there may be IAN coverage but no GSM coverage. For this case, it is desirable that GSM scanning and other procedures be performed to enable the mobile station 102 to handoff to GSM upon exiting the IAN coverage zone. In one embodiment, at anytime when the mobile station 102 is idle, in IAN coverage and there is no GSM coverage, the mobile station 102 continues to perform normal GSM PLMN search procedures. If GSM coverage is detected, the mobile station 102 records the identification of the preferred GSM cell for handover or loss of IAN coverage situations. At anytime when the mobile station is idle, in IAN coverage and there is GSM coverage, the mobile station 102 continues to perform normal GSM cell reselection procedures.
In one embodiment, the mobile station 102 records the identification of the preferred GSM cell for handover or loss of IAN coverage situations. At power off with IAN coverage, a detach indication (if required by the PLMN network or normally sent by the mobile station at power off) is sent by the mobile station 102 to the PLMN via the IAN. This indication is encoded per the current GSM mode of operation (e.g., GSM or GPRS). At anytime when the mobile station 102 is operating in IAN mode (i.e., after successful IAN registration on the IAN), the mobile station 102 takes the CELL_RESELECT_OFFSET value into account in it GSM PLMN search and cell reselection procedures; i.e., the offset value “encourages” the mobile station 102 to show preference for a GSM cell in the same registration area as the indoor base station 128.
In one embodiment, voice bearer establishment between the MSC 116 and the mobile station 102 takes place in three stages in the IAN broadband architecture solution: First, the indoor network controller 132 establishes a connection to the MSC-INC circuit allocated by the MSC 116 during the A-interface circuit assignment process. In the broadband architecture, this is a TDM-to-VoIP connection, converting the TDM channel to the MSC 116 into a VoIP channel to the indoor base station 128. Second, the indoor network controller 132 sends a message to the indoor base station 128, directing it to establish VoIP connectivity to the VoIP channel established in step one. Finally, the indoor base station 128 directs the mobile station 102 to establish a voice link over the unlicensed air interface, and the indoor base station 128 connects this channel to the channel established in step two. Acknowledgements are returned from mobile station 102 to indoor base station 128 to indoor network controller 132 to MSC 116, completing the process.
In both cases illustrated in
Referring to the hybrid case of
Referring to
In step f, if ciphering is not necessary, the MSC 116 signals service acceptance via the CM-SERVICE-ACCEPT message. The indoor network controller 132 relays this message to the mobile station 102. The procedure continues at step-g. If ciphering is necessary from the MSC's perspective (not shown in figure), the MSC 116 sends a BSSMAP CIPHER-MODE-COMMAND message to the indoor network controller 132, including the Encryption Information parameter. The indoor network controller 132 relays this to the mobile station 102 in the CIPHER-MODE-COMMAND message. The mobile station 102 responds with a CIPHER-MODE-COMPLETE message, which the indoor network controller 132 encapsulates in a BSSMAP CIPHER-MODE-COMPLETE message to the MSC 116. The mobile station 102 stores the Cipher Mode Setting. Note that this is only needed to enable ciphering if the call is subsequently handed over to GSM; the request for GSM ciphering does not result in the activation of GSM ciphering for the IAN call. If the BSSMAP CIPHER-MODE-COMMAND message includes an identity request (i.e., Cipher Response Mode parameter indicates IMEISV request), then the mobile station 102 includes the mobile station identity in the CIPHERING-MODE-COMPLETE message.
Receipt of either the CM-SERVICE-ACCEPT message or the CIPHER-MODE-COMMAND message indicates to the mobile station 102 that the MM connection is established. In step g, on receipt of a confirmation that the MM connection is established (i.e., receipt of the CM-SERVICE-ACCEPT), the mobile station 102 sends a SETUP message to the indoor network controller 132 and the indoor network controller 132 relays a DTAP SETUP message to the MSC 116. The Bearer Capability IE indicates “speech”. In step h, a DTAP CALL-PROCEEDING message is returned to the indoor network controller 132 by the MSC 116. This message is delivered to the mobile station. In step i, a BSSMAP ASSIGNMENT-REQUEST message is sent by the MSC 116 to the indoor network controller 132. A circuit identity code (CIC) for the selected trunk is included in this message. In step j, The indoor network controller 132 establishes a media gateway connection to the endpoint identified by the CIC. In step k, the indoor network controller 132 sends a IBSMAP-ACTIVATE-CH message to the indoor base station 128; this message triggers VoIP channel establishment in the indoor base station 128. The indoor base station 128 relays an IAN-ACTIVATE-CH message to the mobile station 102, triggering voice link establishment between the mobile station 102 and indoor base station 128. In step 1, the mobile station-IBS and IBS-INC voice channels are now established and a voice path exists between the indoor network controller 132 and mobile station 102.
In step m, the mobile station returns an IAN-ACTIVATE-CH-ACK message to the indoor base station 128 and the indoor base station 128 returns an IBSMAP-ACTIVATE-CH-ACK message to the indoor network controller 132. The indoor network controller 132 sends a BSSMAP ASSIGNMENT-COMPLETE message to the MSC 116. An end to end bearer path is now established between the MSC 116 and mobile station 102. In step n, the MSC 116 constructs an ISUP IAM using the B subscriber address, and sends it towards the called party's destination exchange PSTN 2505. In step o, the destination exchange responds with an ISUP ACM message. The MSC 116 sends a DTAP ALERTING or PROGRESS message to the indoor network controller 132. The message is propagated to the mobile station 102. ALERTING is used, for example, to direct the mobile station 102 to provide a ringback signal to the calling user; PROGRESS is used, for example, to notify the mobile station that the ringback signal is available inband from the network. Either way, the user hears the ringback tone. In step p, the called party answers and the destination exchange indicates this with an ISUP ACM message. The MSC 116 sends a DTAP CONNECT message to the indoor network controller 132. This in turn is delivered to the mobile station 102. In step q, a chain of acknowledgements are returned completing the two way path at each hop. In step r, the end-to-end two way path is now in place and voice communication begins.
In step c, the GMSC 2605 queries the home location register (HLR) 2610 for routing, sending the MAP Send-Routing-Information request message. The HLR 2610 queries the current serving MSC 116 using the MAP Provide-Roaming-Number request message. In step d, the MSC 116 returns a roaming number, MSRN, in the MAP Provide-Roaming-Number response message and the HLR 2610 relays this to the GMSC 2605 in the MAP Send-Routing-Information response message. In step e, the GMSC 2605 relays the call to the MSC 116. In step f, the MSC 116 sends a BSSMAP PAGING message to all BSCs in the location area, including the indoor network controller. The indoor network controller 132 retrieves the user IAN record corresponding to the IMSI in the PAGING message. If no record is found, or a record is found but the user is not in the active state, the indoor network controller 132 ignores the PAGING message. Otherwise, it sends an IAN-PAGING-REQUEST message to the mobile station. In step g, the mobile station requests the establishment of a logical IAN-RR session from the indoor base station 128 using the IAN-RR-REQUEST message. This message includes the resources that are required for the session (i.e., signaling channel and voice channel). The indoor base station 128 verifies that it can provide the necessary resources to handle the request (i.e., air interface resources and indoor network controller connectivity). In step h, the indoor base station 128 signals its acceptance of the IAN-RR session request. In step I, the mobile station sends an IAN-PAGING-RESPONSE message to the indoor network controller. In step j, optionally, the MSC 116 may initiate the standard GSM authentication procedure. If ciphering is necessary from the MSC's 116 perspective (not shown in figure), the MSC 116 sends a BSSMAP CIPHER-MODE-COMMAND message to the indoor network controller 132, including the Encryption Information parameter. The indoor network controller 132 relays this to the mobile station in the CIPHER-MODE-COMMAND message. The mobile station 102 responds with a CIPHER-MODE-COMPLETE message, which the indoor network controller 132 encapsulates in a BSSMAP CIPHER-MODE-COMPLETE message to the MSC 116. The mobile station stores the Cipher Mode Setting. Note that this is only needed to enable ciphering if the call is subsequently handed over to GSM; the request for GSM ciphering does not result in the activation of GSM ciphering for the IAN call. If the BSSMAP CIPHER-MODE-COMMAND message includes an identity request (i.e., Cipher Response Mode parameter indicates IMEISV request), then the mobile station 102 includes the mobile station identity in the CIPHERING-MODE-COMPLETE message.
In step k, the MSC sends a DTAP SETUP message to the indoor network controller. The indoor network controller 132 relays the message to the mobile station 102. In step 1, on receipt of the SETUP message, the mobile station sends a CALL-CONFIRMED message to the indoor network controller 132. A DTAP CALL-CONFIRMED message is returned to the MSC 116 by the indoor network controller 132. Steps i-m are the same as those described above for
Embodiments of the present invention also permit supplementary GSM services to be provided. GSM has standardized a large number of services. Beyond call origination and termination, the following services shall be supported by the IAN system: Service Standard (Stage 3); Short Message Services 04.11; Supplementary Service Control 04.80; Calling Line Identification Presentation (CLIP) 04.81; Calling Line Identification Restriction (CLIR) 04.81; Connected Line Identification Presentation (CoLP) 04.81; Connected Line Identification Restriction (CoLR) 04.81; Call Forwarding Unconditional 04.82; Call Forwarding Busy 04.82; Call Forwarding No Reply 04.82; Call Forwarding Not Reachable 04.82; Call Waiting (CW) 04.83; Call Hold (CH) 04.83; Multi Party (MPTY) 04.84; Closed User Group (CUG) 04.85; Advice of Charge (AoC) 04.86; User Signaling (UUS) 04.87; Call Barring (CB) 04.88; Explicit Call Transfer (ECT) 04.91; and Name Identification 04.96.
These supplementary services involve procedures that operate end-to-end between the mobile station 102 and the MSC 116. Beyond the basic GSM 04.08 direct transfer application part (DTAP) messages already described for MO and MT calls, the following 04.08 DTAP messages are used for these additional supplementary service purposes: CP-DATA; CP-ACK; CP-ERROR; REGISTER; FACILITY; HOLD; HOLD-ACKNOWLEDGE; HOLD-REJECT; RETRIEVE; RETRIEVE-ACKNOWLEDGE; RETRIEVE-REJECT; RETRIEVE-REJECT; RETRIEVE-REJECT; RETRIEVE-REJECT; USER-INFORMATION; CONGESTION-CONTROL. These DTAP message are relayed between the mobile station 102 and MSC 116 by the indoor base station 128 and indoor network controller 132 in the same manner as in the other call control and mobility management embodiments.
As noted above, the mobile station may be, for example, a wireless phone, smart phone, personal digital assistant, or mobile computer. The mobile station may also be, for example, a fixed wireless device providing a set of terminal adapter functions for connecting Integrated Services Digital Network (ISDN) or Plain Old Telephone Service (POTS) terminals to the wireless system. Furthermore,
In one alternate embodiment, the mobile station-as-terminal adapter element is combined with the IBS element, creating a type of IBS that can serve both (a) IAN-equipped cell phones via the unlicensed interface (i.e., the normal IBS function described herein), and (b) POTS, ISDN or other fixed terminals (via the fixed wireless function described above). Note that these embodiments are transparent from the INC perspective.
Other terminal adapter types than those listed above may be employed with embodiments of the present invention. For example: (1) a terminal adapter that supports cordless telephones rather than POTS phones; (2) a terminal adapter that supports standard Session Initiation Protocol (SIP) telephones; and (3) a terminal adapter that also integrates a corded handset and user interface, such as one would find on a desk phone. Representative of the latter type of device is the Phonecell® SX5D Fixed Wireless Phone from Telular Corporation of Chicago, Ill. In each case, the invention described herein describes how these terminal adapter functions can be connected to the wireless system via the unlicensed network.
The use of other standard Bluetooth capabilities together with embodiments of the present invention is possible. For example, there is a Bluetooth standard capability called “SIM Access Profile” that allows one Bluetooth device (e.g., an embedded cell phone subsystem in a car) to access the SIM that is in another Bluetooth device (e.g., the user's normal cell phone), allowing the first device to take on the “personality” associated with the SIM (i.e., that of the user's normal cell phone). The embodiments described above could make use of this standard capability to give the terminal adapter-attached devices (e.g., a POTS phone) the personality of the user's cell phone.
In one embodiment, and as described in greater detail below, the indoor network controller (INC) 132 provides functions equivalent to that of a GSM BSC, and as such controls one or more (virtual) IAN cells, which may also be known as unlicensed mobile access (UMA) cells. In one embodiment, there may be a single UMA cell per INC and, in an alternative embodiment, there may be one UMA cell per access point (AP) connected to an INC. The latter embodiment may be less desirable due to the large number of APs expected to be used, so the UMA architecture permits flexible groupings of APs into UMA cells. In one embodiment, each UMA cell may be identified by a cell global identifier (CGI), with an unused absolute radio frequency channel number (ARFCN) assigned to each UMA cell. Each UMA cell may be mapped to a physical boundary by associating it with specific GSM location areas served by the MSC. GSM cells within the location areas mapped to an UMA cell are configured with ARFCN-to-CGI mappings for that UMA cell. Further, this ARFCN may be advertised in the BA list by the GSM cells to permit handovers. Note that UMA cells may use the same location area identifiers (LAI) as existing GSM cells, or a new LAI may be used for UMA cells. The latter is useful in reducing paging in GSM cells when a mobile station is known to be registered via an INC. The above discussion applies equally to GPRS routing areas and routing area identifiers (RAIs).
In one embodiment, customer premise equipment (CPE) includes the mobile station and the access point (AP) through which the mobile station may access the UMA network controller (UNC), which is also known as the indoor network controller (INC) in this description, for UMA service. UMA CPE addressing parameters may include the parameters described below.
In one embodiment, the UMA CPE addressing includes the international mobile subscriber identity (IMSI) associated with the SIM in the mobile equipment as a parameter. In one embodiment, the IMSI is provided by the UMA mobile station to the UNC when it requests UMA service via the K2 interface to the UNC. Unlike the GSM BSC, the UNC manages a context for each mobile station that is operating in UMA mode. Therefore, the UNC maintains a record for each served mobile station. For example, IMSI may be used by the UNC to find the appropriate mobile station record when the UNC receives a BSSMAP paging message.
In one embodiment, the UMA CPE addressing includes the address associated with the unlicensed interface in the mobile equipment (e.g., 802.11 MAC address) as a parameter. This identifier may be provided by the UMA mobile station to the UNC when it requests UMA service via the K2 interface. The UNC may use this address as an alternative to the IMSI to limit the transfer of the IMSI over the K2 interface and to assist in the routing of messages.
In one embodiment, the UMA CPE addressing includes the temporary logical link identifier (TLLI) assigned to the mobile station by the serving GPRS support node (SGSN) as a parameter. This identifier may be provided via standard Gb-interface procedures. The UNC may track this address for each served mobile station to support GSM Gb-interface procedures (e.g., so that downlink GPRS packets may be routed to the correct mobile station).
In one embodiment, the UMA CPE addressing includes the access point ID (AP-ID) as a parameter. The AP-ID may be the MAC address of the unlicensed mode access point through which the mobile station is accessing UMA service. This identifier may be provided by the UMA mobile station to the UNC when it requests UMA service via the K2 interface. In one embodiment, the AP-ID is be used by the UNC to support location services (e.g., enhanced 911 service) to the user based on the AP from which the service is being accessed. The AP-ID may also be used by the service provider to restrict UMA service access only to authorized APs.
Other CPE addressing parameters that may be used depend on the security requirements of the K2 interface (e.g., the need to manage UMA mobile station IP addresses for message routing via tunneled IPSec connections, or the need to manage local credentials assigned to the mobile station by the UNC).
In one embodiment, in order to facilitate the mobility management functions in GSM/GPRS, the coverage area is split into logical registration areas called location areas (for GSM) and routing areas (for GPRS). Mobile stations may be required to register with the network each time the serving location area (or routing area) changes. One or more location areas identifiers (LAIs) may be associated with each visited location register (VLR) in a carrier's network. Likewise, one or more routing area identifiers (RAIs) may be controlled by a single SGSN.
In one embodiment, a GSM cell is identified within the location or routing area by adding a cell identity (CI) to the location or routing area identification. The cell global identification (CGI) is the concatenation of the location area identification and the cell identity. In one embodiment, the cell identity is unique within a location area.
One embodiment of a UMA cell identification approach is described below. In this embodiment, a single UNC provides service for one or more UMA location areas and one or more UMA routing areas, and each UMA location area (or routing area) is distinct from, or the same as, the location area (or routing area) of the overlapping GSM cell. A UMA cell is identified within the UMA location or routing area by adding a cell identity (CI) to the location or routing area identification. The UMA cell global identification (UMA-CGI) is the concatenation of the location area identification and the cell identity. In one embodiment, a UMA cell may be a pre-defined partition of the overall UMA coverage area identified by a UMA-CGI value. Note that cell identification, like UMA information, may be transparent to the AP, such that the AP is not aware of its associated UMA-CGI value. The UMA components (e.g., mobile station and UNC) may support the ability to partition the overall UMA coverage area.
In one embodiment, a partitioning method may include implementing a one-to-one or a many-to-one correspondence between GSM cell identity and UMA cell identity. Given the identification of a preferred GSM cell in a particular area, it may be possible to determine the corresponding UMA cell identity based, for example, on UNC provisioning. An example of a one-to-one relationship is mapping a GSM cell to a UMA cell. An example of a many-to-one relationship is mapping a GSM location area (and associated GSM cells) to a UMA cell. This may be required for enhanced 911 emergency call routing purposes, as described under “Emergency Services” below.
In one embodiment, when a UMA mobile station connects to the UNC for UMA service, it sends the CGI value and a path loss criterion parameter (C1) of the current GSM camping cell, as well as the neighbor cells, to the UNC. The UNC maps the GSM camping cell's CGI value to a corresponding UMA cell's CGI value based on mapping logic provisioned in the UNC. This may be a one-to-one mapping (e.g., if there is one UMA cell per GSM cell) or a many-to-one mapping (e.g., if there is one UMA cell per GSM location area). If no GSM coverage is available in the UMA service area, the UNC may assign the mobile station to a default “no GSM coverage” UMA cell. A single UNC may serve one MSC. This does not preclude UNC embodiments that combine multiple UNC “instances,” as defined above, in a single device. Each UNC may also be assigned a unique “UMA-Handover-CGI” value used for GSM-to-UMA handover purposes. For example, this may be the value provisioned in the GSM RAN BSC's ARFCN-to-CGI tables and in the MSCs (e.g., to point to the UNC).
In one embodiment, at least three UMA operating configurations may be identified. In a common core configuration, the UMA LAI and an umbrella GSM RAN LAI (e.g., that serves the subscriber's neighborhood) may be different, and the network may be engineered such that the same core network entities (e.g., MSC and SGSN) serve both the UMA cells and the umbrella GSM cells. One advantage of this configuration is that subscriber movement between the UMA coverage area and the GSM coverage area does not result in inter-system (e.g., MAP) signaling (e.g., location updates and handovers are intra-MSC).
In a separate core configuration, the UMA LAI and umbrella GSM RAN LAI are different, and the network may be engineered such that different core network entities serve the UMA cells and the umbrella GSM cells. One advantage of this configuration is that engineering of the UMA and GSM networks can be more independent than in the Common Core Configuration. This configuration is illustrated in
In a common LAI configuration, the UMA LAI and GSM RAN LAI are the same (e.g., different cells within the same LAI). Advantages of this configuration are that subscriber movement (while idle) between the UMA coverage area and the GSM coverage area may not result in any location update signaling, and that the mobile station can easily switch to GSM mode if UMA mode resources are temporarily unavailable (e.g., to respond to paging). This configuration is illustrated in
In one embodiment, as described above, a UMA registration process does not employ signaling to the PLMN infrastructure and is contained within the UMA system (i.e., between the mobile station and UNC). The UMA registration process may serve at least two purposes. It may inform the UNC that a mobile station is connected through a particular AP and is available at a particular IP address. The UNC may keep track of this information, for example, for mobile-terminated calling. The registration process may also provide the mobile station with the operating parameters associated with the UMA service on the AP. This may be analogous to the use of the GSM broadcast control channel (BCCH) to transmit system parameters to mobile stations in GSM cells. GSM system information message content that is applicable in UMA mode may be delivered to the mobile station during the UMA registration process.
Similarly, a UMA deregistration process may allow the mobile station to explicitly inform the UNC that it is leaving UMA mode, allowing the UNC to free resources that it may have assigned to the mobile station. The UNC may also support implicit UMA deregistration, wherein a secure channel to the mobile station is abruptly terminated.
In one embodiment, as described above, when a UMA mobile station connects to the UNC for UMA service, it may send a CGI value and a path loss criterion parameter (C1) of the current GSM camping cell, as well as the neighbor cells, to the UNC. Using this information, as well as internal database information, the UNC may be able to determine if it is the correct serving UNC for the mobile station, and if it is not the correct serving UNC, to redirect the mobile station to the correct UNC. The correct serving UNC may be the UNC whose UMA service area overlaps the mobile station's umbrella GSM coverage. In one embodiment, the correct serving UNC might be attached to the same MSC as the GSM BSC to which the umbrella GSM cell belongs. In an alternative embodiment, the correct serving UNC might be attached to a different MSC that may hand-over to the MSC that provides umbrella GSM coverage to the mobile station, allowing the UNC to handover calls to and from GSM. It may also enable certain location-based services (e.g., E911 Phase 1, as described below) that can be tied to the location of the GSM cell. An internal database used by the UNC may map GSM location areas to serving UNCs and conserve the amount of data that needs to be managed. This database may only need to change when a new UNC or a new GSM location area is added.
If no GSM coverage is available when a mobile station connects to the UNC for UMA service, then the UNC may not reliably determine the location of the mobile station for the purposes of assigning the mobile station to the correct serving UNC (e.g., to enable handover and location-based services). The UNC may permit the operator to determine the service policy in this case (e.g., the operator may provide service to the user with certain limitations, possibly with a user interface indication on the mobile station).
In one embodiment, as described above, a UMA device may encounter different radio environments as illustrated in
In one embodiment, at power on, and when the mobile station is idle and there is no coverage of any type, the mobile station may scan for both GSM and UMA radio coverage. If GSM coverage is detected, then the normal GSM mobility management procedure may be initiated. This condition may apply when no UMA coverage has been detected by the mobile station when GSM coverage is detected, or prior to the completion of the UMA registration process. If UMA coverage is detected, then the UMA mobile station establishes a wireless LAN (WLAN) link to the AP and monitor signal quality. When the received signal level at the mobile station passes a predefined threshold, the mobile station performs the UMA registration procedure. Based upon the information returned, the mobile station may determine if a full network registration is required, and if so, what type (e.g., GSM or combined GSM/GPRS). This procedure may apply when no GSM coverage exists or when UMA coverage is detected prior to detecting GSM coverage.
In one embodiment, when the mobile station is idle in GSM coverage, and there is no UMA coverage, the mobile station periodically scans for UMA coverage. If UMA coverage is detected, the mobile station may initiate the UMA registration procedure described above.
In one embodiment, when the mobile station is idle in UMA coverage and there is no GSM coverage, the mobile station continues to perform normal GSM PLMN search procedures. If GSM coverage is detected, the mobile station may send the GSM cell information to the UNC for possible UMA redirection purposes as described above. Alternatively, the mobile station may disable normal GSM PLMN search procedures to conserve power.
In one embodiment, when the mobile station is idle in UMA coverage, and there is GSM coverage, the mobile station may continue to perform normal GSM cell reselection procedures and may store the identification of the selected GSM cell to speed the transition to GSM mode, if required. Alternatively, the mobile station may disable normal GSM cell reselection procedures to conserve power.
In one embodiment, at power off in UMA coverage, a detach indication may be sent by the mobile station to the PLMN via the UMAN (e.g., if required by the PLMN network or normally sent by the mobile station at power off). This indication may be encoded per the current GSM mode of operation (e.g., GSM or GPRS).
In one embodiment, the UMA environment may be an IEEE 802.11 environment. In this case, the mobile station periodically performs an active scan for available 802.11 APs. When an AP is discovered, it may be matched against a stored profile of user preferences and security credentials, in which case the mobile station may automatically associate with the AP. The mobile station may enter low-power sleep mode, waking up periodically to measure signal quality for determining when to trigger UMA registration.
In one embodiment, the UMA environment may be a Bluetooth environment. In this case, the mobile station previously paired with the Bluetooth AP through which it will access UMA service. Periodically, the mobile station may enter a page scan receive mode, and respond to an AP transmit page to establish a link-level connection. Once a link-level control channel is established, and if the mobile station is not otherwise active, it may enter a low-power Bluetooth state (e.g., park mode) to conserve power. Periodically, the AP may poll the mobile station to allow it to re-enter active-power mode. This periodic traffic may also be used by the mobile station to measure signal quality to determine when to perform the UMA registration procedure.
A UMA device engaged in a voice call, a data transaction or a simultaneous voice/data transaction may encounter a transition from GSM coverage to UMA coverage or a transition from UMA coverage GSM coverage. In one embodiment, when the coverage transitions from GSM to UMA coverage, calls may be handed over transparently between the GSM RAN and the UMAN. In the case of voice, the handover may be accomplished by a handover function. In the case of data, session management controls may provide a common end-user experience to that provided in GPRS. Normal registration actions may occur upon a return to the idle state, if appropriate. In one embodiment, when the coverage transitions from UMA to GSM coverage, calls may be handed over transparently between the UMAN and the GSM RAN. In the case of voice, the handover may be accomplished by a handover function. In the case of data, session management controls may provide a common end-user experience to that provided in GPRS.
As described in detail below, location area identification may be used to support UMA-based emergency services. When a wired caller dials 911, the address and phone number of the caller are displayed on a screen at the 911 service center. Enhanced 911 (E911) provides dispatchers with the location of callers and their phone number. This is also known as automatic number information (ANI) and automatic location information (ALI). The FCC has ordered wireless service providers to address the issue in an effort to improve 911 calling from mobile phones.
In phase one of the E911 requirements, wireless service providers are required by the FCC to have the capability to send wireless 911 calls to an E911 public safety answering point (PSAP) containing the location of the cell tower through which the E911 call was processed and the mobile directory number (MDN) or “call back number” of the wireless phone placing the 911 call. In UMA, the emergency call is handled like a normal GSM emergency call origination. The MSC inserts the location identifier into the call signaling to the E911 tandem, the call and location identifier are delivered to the PSAP, and the PSAP uses the identifier to look up the cell site's location in the ALI database. The granularity of the UMA cell may be chosen to allow appropriate PSAP routing and comparable size as a GSM cell (for reasonable location resolution).
In phase two of the E911 requirements, wireless service providers are required by the FCC to have the ability to send the caller's actual location to the E911 PSAP. The location accuracy requirements differ depending on whether a network-based or handset based approach is chosen. The network-based accuracy requirement is within 300 meters 95% of the time and within 100 meters 67% of the time. The handset based accuracy requirement is within 150 meters 95% of the time and within 50 meters. The UMA network provides latitude and longitude information for the AP that is routing the UMA mobile station emergency call. This may be done statically (e.g., by manually entering the location information for all the APs intended to be used for UMA service) or dynamically (e.g., using DHCP to obtain location information for a serving AP).
In one embodiment of a GSM E911 phase one solution, a BSC receives a GSM 04.08 CM service request message that indicates an emergency call establishment request from the mobile station. The BSC forwards the message to the MSC in a GSM 08.08 BSSMAP complete layer 3 information (CL3I) message. The BSC may include the cell global identifier (CGI) associated with the serving cell in the CL3I message. The MSC (or associated emergency services support system) may map the CGI value it receives from the BSC into the Emergency Services Routing Number (ESRN) that is statically associated with the cell. The ESRN may be represented as a 10-digit NANP number, and may also be referred to as the pseudo-ANI, or pANI. The MSC may send the call, with the ESRN, to an E911 tandem switch, which may use ESRN to query a selective routing database to come up with an emergency service number (ESN). The E911 tandem may use the ESN to route the call to the appropriate PSAP, including the calling user's MSISDN in the ISUP calling party number parameter and the ESRN in the ISUP generic digits parameter. The PSAP may use the ESRN to query an ALI database that may return the geographic address associated with the cell.
It will be appreciated by one of ordinary skill in the art that other specific embodiments are possible. In general, the information needed for phase one E911 support is the cell identifier that may be provided by the BSC to the MSC. By a series of transformations in the core network, the cell identifier may be mapped into an ESRN value, which the PSAP may use to query an ALI database to determine the geographic location information associated with the cell.
A GSM 1900 approach to E911 phase two support is defined in J-STD-036-A, “Enhanced Wireless 9-1-1, Phase 2.” The condensed network reference model is illustrated in
In one embodiment, UMA elements (e.g., mobile station and UNC) may be transparent for E911 calls that require phase one location. In one embodiment, the call may be handled like a normal emergency call origination. The MSC inserts the UMA cell's location identifier (ESRN) into the call signaling to the E911 tandem, the call and location identifier may be delivered to the PSAP, and the PSAP may use the identifier to look up the cell site's location in the ALI database. In one embodiment, a UMA cell may be defined to encompass a set of GSM location areas belonging to the MSC to which a UNC is attached. However, the serving area of the resulting UMA cell may be too large to provide reasonable granularity for emergency services. For example, if the UMA cell is sufficiently large, it may map to more than one PSAP, which may complicate PSAP routing.
The partitioning of a physical UMA coverage area associated with a UNC, into multiple UMA cells, is described above under mobility management. As described therein, when a UMA mobile station connects to the UNC for UMA service, it may provide the GSM cell information to the UNC. The UNC may then map the GSM cell information to a corresponding UMA cell's CGI value. This may be a one-to-one mapping (e.g., if there is one UMA cell per GSM cell) or a many-to-one mapping (e.g., if there is one UMA cell per PSAP routing area or one UMA cell per GSM location area). If no GSM coverage is available in the UMA service area, the UNC assigns the mobile station to a default “no GSM coverage” UMA cell, subject to refinement based on AP location information, that may be provided for E911 phase two purposes, as described below. The UNC may provide the UMA CGI to the MSC during call establishment, including an emergency call. The MSC (or associated emergency services support system) may map the UMA CGI value into an ESRN value that may be statically associated with the cell, and that has an entry in the ALI database. For example, if there is one UMA cell per GSM cell, then the ESRN for the existing GSM cells is reused and no new ALI database records are needed. In one embodiment, partitioning of the UNC coverage area into UMA cells may be eliminated if the UNC supports E911 phase two and the core network emergency services support systems can map the provided latitude/longitude to a geographic address that can be looked up in the ALI database by a phase one PSAP
In one embodiment, the UNC determines the location information for the AP that the mobile station uses to access the UMA service. When the UMA mobile station performs the UMA registration procedure described above, one of the parameters that the UNC provides to the mobile station in the response may be a “location available” indicator. If the UNC does not have a location estimate (i.e., latitude and longitude) for the AP, then the indicator is set to “no location is available.” Otherwise, the indicator is set to “location is available”. “No location is available” would typically be the case the first time the UMA mobile station connects to the UNC for service. In that case, the user may be informed of the setting of the “location available” indicator via a user interface icon on a display screen in the mobile station. The mobile station may provide a convenient way for the user to access an “enter UMA location” function. Invocation of this function may enable the user to enter street address information associated with the current location. Once entered, the mobile station may send this information to the UNC. The UNC may process the information (e.g., performs a geocoding operation) to attempt to derive a location estimate. If this procedure results in the creation of a location estimate for the AP, then the UNC may store this information in the AP record, which may also include the AP-ID. When a location estimate is added to an AP record, and the associated AP is serving one or more UMA mobile station, the UNC may send a message to each mobile station with the location available indicator set to the value “location is available.” The user may be informed of the change in the setting of the “location available” indicator via a change to the user interface icon on the mobile station display screen. The description above is for an embodiment involving user-entered AP address information.
In another embodiment, the WLAN access network supports new location capabilities (e.g., those based on DHCP GEOPRIV extensions, as described in IETF Internet Draft: “draft-ietf-geopriv-dhcp-civil-01”) that provide the street address or geographic location of the AP to the mobile station, and the mobile station may pass this information to the UNC when it connects for UMA service. In one embodiment, the mobile station contains GPS technology that may allow it to acquire a position estimate, which it may pass to the UNC when it connects for UMA service. Once the location information associated with the serving AP is stored in the UNC, E911 phase two location queries may be handled. In one embodiment, from the core network's perspective, the UNC may provide a BSS-based, serving mobile location center (SMLC) function. When there is a need for phase two location, the MSC may send a BSSMAP Perform Location-request message to the UNC. The UNC may retrieve the AP's location information and respond with a BSSMAP perform-location-response message containing the location estimate. In one embodiment, it may be an operator option to configure the UMA service such that emergency calls are made via GSM mode if “no location is available”. This option may be configured in the UNC and the UNC may include this configuration setting in the UMA operating parameters sent to the mobile station during the UMA Registration process.
It will be understood that an embodiment of the present invention relates to a computer storage product with a computer-readable medium having computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter. For example, an embodiment of the invention may be implemented using Java, C++, or other object-oriented programming language and development tools. Another embodiment of the invention may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.
This application is a Continuation-in-Part of the U.S. Nonprovisional application Ser. No. 10/688,470; entitled “Apparatus and Method for Extending the Coverage Area of a Licensed Wireless Communication System Using an Unlicensed Wireless Communication System.” filed Oct. 17, 2003, now U.S. Pat. No. 7,127,250. The application Ser. No. 10/688,470 claims the benefit of U.S. Provisional Application Ser. No. 60/419,785 entitled “Method for Extending the Coverage Area of a Licensed Wireless Communication System Using an Unlicensed Wireless Communication System.” filed Oct. 18, 2002. This application claims the benefit of U.S. Provisional. Application Ser. No. 60/530,141, entitled “Unlicensed Mobile Access (UMA) Architecture,” filed Dec. 16, 2003. This application also claims The benefit of U.S. Provisional Application. Ser. No. 60/552,455, entitled “Unlicensed Mobile Access Mobility Management and Emergency Services,” filed Mar. 12, 2004. This application is also related to commonly owned U.S. application Ser. No. 10/115,833, entitled “Unlicensed Wireless Communications Base Station to Facilitate Unlicensed and Licensed Wireless Communications with a Subscriber Device, and Method of Operation,” filed Apr. 2, 2002; application Ser. No. 10/251,901, entitled “Apparatus for Supporting the Handover of a Telecommunication Session between a Licensed Wireless System and an Unlicensed Wireless System,” filed Sep. 20, 2002; Provisional Application Ser. No. 60/447,575, entitled “Mobile Station Functionality in Support of a System for Extending the Coverage Area of a Licensed Wireless Communication System using an Unlicensed Wireless Communication,” filed Feb. 14, 2003; and Provisional Application Ser. No. 60/468,336, entitled “Method for Installation of Broadband Customer Premise Equipment without User/Operator Configuration,” filed May 5, 2003, the contents of each of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5101501 | Gilhousen et al. | Mar 1992 | A |
5109528 | Uddenfeldt | Apr 1992 | A |
5226045 | Chuang | Jul 1993 | A |
5235632 | Raith | Aug 1993 | A |
5260944 | Tomabechi | Nov 1993 | A |
5260988 | Schellineig et al. | Nov 1993 | A |
5267261 | Blakeney, II et al. | Nov 1993 | A |
5367558 | Gillis et al. | Nov 1994 | A |
5390233 | Jensen et al. | Feb 1995 | A |
5392331 | Patsiokas et al. | Feb 1995 | A |
5406615 | Miller et al. | Apr 1995 | A |
5428601 | Owen | Jun 1995 | A |
5442680 | Schellinger et al. | Aug 1995 | A |
5448619 | Evans et al. | Sep 1995 | A |
5507035 | Bantz et al. | Apr 1996 | A |
5533027 | Akerberg et al. | Jul 1996 | A |
5594782 | Zicker et al. | Jan 1997 | A |
5610969 | McHenry | Mar 1997 | A |
5634193 | Ghisler | May 1997 | A |
5640414 | Blakeney, II et al. | Jun 1997 | A |
5659598 | Byrne | Aug 1997 | A |
5659878 | Uchida et al. | Aug 1997 | A |
5664005 | Emery et al. | Sep 1997 | A |
5673307 | Holland et al. | Sep 1997 | A |
5675629 | Raffel et al. | Oct 1997 | A |
5724658 | Hasan | Mar 1998 | A |
5732076 | Ketseoglou et al. | Mar 1998 | A |
5745852 | Khan et al. | Apr 1998 | A |
5758281 | Emery et al. | May 1998 | A |
5796727 | Harrison et al. | Aug 1998 | A |
5796729 | Greaney et al. | Aug 1998 | A |
5815525 | Smith | Sep 1998 | A |
5818820 | Anderson et al. | Oct 1998 | A |
5822681 | Chang et al. | Oct 1998 | A |
5825759 | Liu | Oct 1998 | A |
5852767 | Sugita | Dec 1998 | A |
5862345 | Okanoue et al. | Jan 1999 | A |
5870677 | Takahashi et al. | Feb 1999 | A |
5887020 | Smith et al. | Mar 1999 | A |
5887260 | Nakata | Mar 1999 | A |
5890055 | Chu et al. | Mar 1999 | A |
5890064 | Widergen et al. | Mar 1999 | A |
5903834 | Wallstedt et al. | May 1999 | A |
5915224 | Jonsson | Jun 1999 | A |
5926760 | Khan et al. | Jul 1999 | A |
5936949 | Pasternak et al. | Aug 1999 | A |
5940512 | Tomoike | Aug 1999 | A |
5946622 | Bojeryd | Aug 1999 | A |
5949773 | Bhalla et al. | Sep 1999 | A |
5960341 | LeBlanc et al. | Sep 1999 | A |
5995828 | Nishida | Nov 1999 | A |
6016318 | Tomoike | Jan 2000 | A |
6035193 | Buhrmann et al. | Mar 2000 | A |
6052592 | Schellinger et al. | Apr 2000 | A |
6101176 | Honkasalo | Aug 2000 | A |
6112080 | Anderson et al. | Aug 2000 | A |
6112088 | Haartsen | Aug 2000 | A |
6119000 | Stephenson et al. | Sep 2000 | A |
6130886 | Ketseoglou et al. | Oct 2000 | A |
6134227 | Magana | Oct 2000 | A |
6138019 | Trompower et al. | Oct 2000 | A |
6226515 | Pauli | May 2001 | B1 |
6236852 | Veerasamy et al. | May 2001 | B1 |
6243581 | Jawanda | Jun 2001 | B1 |
6256511 | Brown | Jul 2001 | B1 |
6263211 | Brunner | Jul 2001 | B1 |
6269086 | Magana et al. | Jul 2001 | B1 |
6320873 | Nevo et al. | Nov 2001 | B1 |
6327470 | Ostling | Dec 2001 | B1 |
6359872 | Mahany et al. | Mar 2002 | B1 |
6374102 | Brachman et al. | Apr 2002 | B1 |
6381457 | Carlsson et al. | Apr 2002 | B1 |
6389059 | Smith et al. | May 2002 | B1 |
6415158 | King et al. | Jul 2002 | B1 |
6430395 | Arazi et al. | Aug 2002 | B2 |
6445921 | Bell | Sep 2002 | B1 |
6463307 | Larsson et al. | Oct 2002 | B1 |
6493629 | Van Bosch | Dec 2002 | B1 |
6539237 | Sayers et al. | Mar 2003 | B1 |
6542516 | Vialen et al. | Apr 2003 | B1 |
6553219 | Vilander et al. | Apr 2003 | B1 |
6556822 | Matsumoto | Apr 2003 | B1 |
6556825 | Mansfield | Apr 2003 | B1 |
6556830 | Lenzo | Apr 2003 | B1 |
6574266 | Haartsen | Jun 2003 | B1 |
6587444 | Lenzo et al. | Jul 2003 | B1 |
6633761 | Singhal | Oct 2003 | B1 |
6643512 | Ramaswamy | Nov 2003 | B1 |
6647426 | Mohammed | Nov 2003 | B2 |
6658250 | Ganesan et al. | Dec 2003 | B1 |
6665276 | Culbertson et al. | Dec 2003 | B1 |
6675009 | Cook | Jan 2004 | B1 |
6680923 | Leon | Jan 2004 | B1 |
6711400 | Aura | Mar 2004 | B1 |
6766160 | Lemilainen | Jul 2004 | B1 |
6788656 | Smolentzov et al. | Sep 2004 | B1 |
6801519 | Mangel | Oct 2004 | B1 |
6801772 | Townend et al. | Oct 2004 | B1 |
6801777 | Rusch | Oct 2004 | B2 |
6807417 | Sallinen | Oct 2004 | B2 |
6824048 | Itabashi et al. | Nov 2004 | B1 |
6826154 | Subbiah et al. | Nov 2004 | B2 |
6829227 | Pitt | Dec 2004 | B1 |
6842462 | Ramjee et al. | Jan 2005 | B1 |
6845095 | Krishnarajah et al. | Jan 2005 | B2 |
6895255 | Bridgelall | May 2005 | B1 |
6909705 | Lee et al. | Jun 2005 | B1 |
6922559 | Mohammed | Jul 2005 | B2 |
6925074 | Vikberg et al. | Aug 2005 | B1 |
6937862 | Back et al. | Aug 2005 | B2 |
6970719 | McConnell et al. | Nov 2005 | B1 |
6993359 | Nelakanti et al. | Jan 2006 | B1 |
7009952 | Razavilar et al. | Mar 2006 | B1 |
7069022 | Rajaniemi et al. | Jun 2006 | B2 |
7127250 | Gallagher et al. | Oct 2006 | B2 |
7369859 | Gallagher | May 2008 | B2 |
20010029186 | Canyon et al. | Oct 2001 | A1 |
20010031645 | Jarrett | Oct 2001 | A1 |
20010046214 | Kang | Nov 2001 | A1 |
20010046860 | Lee | Nov 2001 | A1 |
20010049790 | Faccin et al. | Dec 2001 | A1 |
20020045459 | Morikawa | Apr 2002 | A1 |
20020066036 | Makineni | May 2002 | A1 |
20020075844 | Hagen | Jun 2002 | A1 |
20020082015 | Wu | Jun 2002 | A1 |
20020085516 | Bridgelall | Jul 2002 | A1 |
20020102974 | Raith | Aug 2002 | A1 |
20020118674 | Faccin et al. | Aug 2002 | A1 |
20020132630 | Arazi et al. | Sep 2002 | A1 |
20020142761 | Wallstedt et al. | Oct 2002 | A1 |
20020147008 | Kallio | Oct 2002 | A1 |
20020147016 | Arazi et al. | Oct 2002 | A1 |
20020155829 | Proctor, Jr. et al. | Oct 2002 | A1 |
20020160811 | Jannette et al. | Oct 2002 | A1 |
20020164984 | Thakker | Nov 2002 | A1 |
20020166068 | Kilgore | Nov 2002 | A1 |
20020191575 | Kalavade et al. | Dec 2002 | A1 |
20020197984 | Monin et al. | Dec 2002 | A1 |
20030007475 | Tsuda et al. | Jan 2003 | A1 |
20030031151 | Sharma et al. | Feb 2003 | A1 |
20030043773 | Chang | Mar 2003 | A1 |
20030087653 | Leung | May 2003 | A1 |
20030112789 | Heinonen | Jun 2003 | A1 |
20030119480 | Mohammed | Jun 2003 | A1 |
20030119490 | Mohammed | Jun 2003 | A1 |
20030119527 | Labun | Jun 2003 | A1 |
20030119548 | Mohammed | Jun 2003 | A1 |
20030130008 | Rajaniemi et al. | Jul 2003 | A1 |
20030139180 | McIntosh et al. | Jul 2003 | A1 |
20030142673 | Patil | Jul 2003 | A1 |
20030176186 | Mohammed | Sep 2003 | A1 |
20030193952 | O'Neill | Oct 2003 | A1 |
20030210199 | Sward et al. | Nov 2003 | A1 |
20030219024 | Purnadi et al. | Nov 2003 | A1 |
20040008649 | Wybenga | Jan 2004 | A1 |
20040009749 | Arazi et al. | Jan 2004 | A1 |
20040013099 | O'Neill | Jan 2004 | A1 |
20040037312 | Spear | Feb 2004 | A1 |
20040053623 | Hoff et al. | Mar 2004 | A1 |
20040068571 | Ahmavaara | Apr 2004 | A1 |
20040077355 | Krenik et al. | Apr 2004 | A1 |
20040077356 | Krenik et al. | Apr 2004 | A1 |
20040077374 | Terry | Apr 2004 | A1 |
20040116120 | Mohammed et al. | Jun 2004 | A1 |
20040147223 | Cho | Jul 2004 | A1 |
20040162105 | Reddy et al. | Aug 2004 | A1 |
20040171378 | Rautila | Sep 2004 | A1 |
20040192211 | Gallagher et al. | Sep 2004 | A1 |
20040202132 | Heinonen | Oct 2004 | A1 |
20040203346 | Myhre et al. | Oct 2004 | A1 |
20040203737 | Myhre et al. | Oct 2004 | A1 |
20040203800 | Myhre et al. | Oct 2004 | A1 |
20040203815 | Shoemake et al. | Oct 2004 | A1 |
20040218563 | Porter et al. | Nov 2004 | A1 |
20040219948 | Jones et al. | Nov 2004 | A1 |
20040240525 | Karabinis et al. | Dec 2004 | A1 |
20040259541 | Hicks et al. | Dec 2004 | A1 |
20040264410 | Sagi et al. | Dec 2004 | A1 |
20050064896 | Rautiola et al. | Mar 2005 | A1 |
20050101245 | Ahmavaara | May 2005 | A1 |
20050101329 | Gallagher | May 2005 | A1 |
20050130659 | Grech et al. | Jun 2005 | A1 |
20050181805 | Gallagher | Aug 2005 | A1 |
20050186948 | Gallagher | Aug 2005 | A1 |
20050198199 | Dowling | Sep 2005 | A1 |
20050207395 | Mohammed | Sep 2005 | A1 |
20050255879 | Shi | Nov 2005 | A1 |
20050265279 | Markovic | Dec 2005 | A1 |
20050266853 | Gallagher | Dec 2005 | A1 |
20050271008 | Gallagher | Dec 2005 | A1 |
20050272424 | Gallagher | Dec 2005 | A1 |
20050272449 | Gallagher | Dec 2005 | A1 |
20060009201 | Gallagher | Jan 2006 | A1 |
20060009202 | Gallagher | Jan 2006 | A1 |
20060019656 | Gallagher | Jan 2006 | A1 |
20060019657 | Gallagher | Jan 2006 | A1 |
20060019658 | Gallagher | Jan 2006 | A1 |
20060025143 | Gallagher | Feb 2006 | A1 |
20060025144 | Gallagher | Feb 2006 | A1 |
20060025145 | Gallagher | Feb 2006 | A1 |
20060025146 | Gallagher | Feb 2006 | A1 |
20060025147 | Gallagher | Feb 2006 | A1 |
20060079258 | Gallagher | Apr 2006 | A1 |
20060079259 | Gallagher | Apr 2006 | A1 |
20060079273 | Gallagher | Apr 2006 | A1 |
20060079274 | Gallagher | Apr 2006 | A1 |
20060094431 | Saifullah et al. | May 2006 | A1 |
20060098598 | Gallagher | May 2006 | A1 |
20060099935 | Gallagher et al. | May 2006 | A1 |
20060114871 | Buckley et al. | Jun 2006 | A1 |
20060153110 | Morgan et al. | Jul 2006 | A1 |
20060291455 | Katz et al. | Dec 2006 | A1 |
20070238448 | Gallagher et al. | Oct 2007 | A1 |
20080108319 | Gallagher | May 2008 | A1 |
20080207170 | Khetawat et al. | Aug 2008 | A1 |
20090054070 | Gallagher et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
0936777 | Aug 1999 | EP |
1 207 708 | May 2002 | EP |
2282735 | Apr 1995 | GB |
WO 9204796 | Mar 1992 | WO |
WO 9724004 | Jul 1997 | WO |
WO 9948312 | Sep 1999 | WO |
WO 9948315 | Sep 1999 | WO |
WO 0028762 | May 2000 | WO |
WO 0051387 | Aug 2000 | WO |
WO 0245456 | Jun 2002 | WO |
WO 03039009 | May 2003 | WO |
WO 03039009 | May 2003 | WO |
WO 03039009 | May 2003 | WO |
WO 03092312 | Nov 2003 | WO |
WO 2004002051 | Dec 2003 | WO |
WO 2004034219 | Apr 2004 | WO |
WO 2004039111 | May 2004 | WO |
WO 2005006597 | Jan 2005 | WO |
WO 2005060292 | Jun 2005 | WO |
WO 2005107169 | Nov 2005 | WO |
WO 2005107297 | Nov 2005 | WO |
PCTUS2005040689 | Mar 2006 | WO |
WO 2005114918 | Mar 2006 | WO |
PCTUS2008054623 | Feb 2008 | WO |
WO 2008106360 | Sep 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20050186948 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60419785 | Oct 2002 | US | |
60530141 | Dec 2003 | US | |
60552455 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10688470 | Oct 2003 | US |
Child | 11013883 | US |