The present invention relates generally to apparati capable of carrying out an extraction of an infusible material, and methods of use thereof, and more particularly to an apparatus for separating an extract of an infusible material from a mixture of the extract and the infusible material, after extraction of the infusible material has taken place.
Solvent extraction of an infusible material typically involves the removal of one or more of the extractable constituents of an infusible material, by contact with a solvent, to form an extract. In many common extractions, a suitable solvent material may be mixed with an infusible material, resulting in a mixture of an extract and the infusible material after extraction has taken place. An exemplary common type of extraction is the extraction of constituents from infusible plant-based materials using water, and particularly hot water, as a solvent, to form a mixture of a substantially aqueous extract and the infusible plant-based material after extraction has taken place.
A number of input parameters affecting the process of extraction may be associated with the characteristics of the infusible material itself, independent from the solvent extraction apparatus. Three exemplary known infusible material characteristics in particular include:
A further number of input parameters known to affect the process of extraction may typically be controlled by the solvent extraction apparatus and method of performing the extraction. Such exemplary extraction parameters related to the extraction apparatus and method of use include:
The final properties of the extract produced by a solvent extraction process are typically affected and controlled by the above-described infusible material and extraction apparatus and method characteristics. Exemplary such final properties of the extract resulting from the solvent extraction process include:
For many common solvent extractions, particularly exemplary solvent extractions of plant materials using hot water to produce a beverage such as coffee or tea, for example, the preferred characteristics for the extraction process may be similar. For example, in some common exemplary extractions, smaller particles of the infusible material may be preferred over larger particles, since with larger particles, the outer surface of the particles may be undesirably over-extracted by the solvent during the extraction, while the inner core of the larger particles remains undesirably under-extracted. In such a case, the use of smaller infusible material particles may desirably contribute to more consistent extraction of the infusible material particles. Further, the extraction process may also proceed more quickly using smaller particles of infusible material, and therefore desirably take less time to complete. Such desirable faster extraction may also facilitate a more consistent temperature throughout the extraction, particularly in cases where a non-heated solvent extraction apparatus is used, wherein hot solvent, such as hot water for example, is placed in the extraction apparatus at an initial temperature, and the temperature of the extract and infusible material mixture decreases as the extraction process proceeds. Accordingly, there may typically exist a preferred extraction time period for a given infusible material particle size, wherein the preferred extraction time is shorter for relatively smaller particle sizes.
An additional desirable benefit of using smaller particles of infusible material for an extraction process may be realized in extractions where the infusible material and the extract separate due to density (i.e. wherein the infusible material generally floats or sinks in the extract). In such cases of unequal infusible material and extract densities such as in the exemplary case of extractions to produce coffee where the infusible material typically floats in the extract, if larger infusible material particles are used, the resulting slower extraction process may undesirably over-extract the bottom layers of the infusible material in contact with the extract, and undesirably under-extract the top layers of the infusible material which may be floating substantially above the extract. In such cases, the use of smaller infusible material particles which may complete extraction more quickly may desirably reduce the occurrence of such under and over-extraction.
In some common exemplary extractions, the above-described relatively faster extraction resulting from using smaller infusible material particles may also desirably reduce the extraction of some undesirable constituents of infusible material. For example, in the case of coffee extractions, faster extraction may desirably reduce the amount of caffeine extracted from the infusible material. Relatively high levels of caffeine may be undesirable due to its bitter flavour and stimulant properties. Additionally, relatively faster extraction may reduce variation in temperature of the extract and infusible material mixture during extraction using some types of extraction apparatus, as described above. Such reduced temperature variation may reduce extraction of sour constituents of coffee by lower than ideal temperature extraction, or reduce extraction of bitter constituents of coffee by higher than ideal temperature extraction, for example.
For reasons such as those detailed above, the use of relatively fine infusible material particles may be desirable for conducting extractions to produce a desirable extract product. However, some exemplary commonly known extraction apparati, such as a traditional french press coffee and/or tea making apparatus, for example, may be limited in the lower bounds of infusible material particle size that are practical for use in the apparatus. In some common extraction apparati like an exemplary french coffee press, and variations thereon, a piston or filter component is used to separate infusible material from the extract upon completion of extraction. Such separation may be achieved by physically filtering the extract to flow through a layer of retained infusible material accumulated on the surface of the piston or filter component and then through a filtering means in the piston or filter component as the piston or filter is pushed through the mixture of extract and infusible material from one end of the extraction apparatus to the other. In other similar known extraction apparati, a piston or filter component may be powered mechanically or pneumatically, for example to physically move the component and filter the extract.
Although smaller infusible material particle size may be desirable as explained above, commonly known extraction apparati such as a french coffee press as described above typically cannot function acceptably with infusible particle sizes below a certain size, as such smaller particles may typically unacceptably clog the filtering means, or pass through or around the filtering means and into the extract. Common unacceptable outcomes of filter medium clogging in known extraction apparati may include:
Due to the undesirable results of using smaller infusible material particles in some common extraction apparati as described above, many such common extraction apparati according to the prior art (such as french coffee and/or tea press apparati for example) have effectively required the use of larger particle sizes for infusible materials in order to allow separation of the resulting extract and infusible material by use of a piston and filter component. Such required larger infusible material particles typically result in a slower progress of the extraction process, and therefore typically necessitates a relatively longer extraction time. Longer extraction times associated with use of some common extraction apparati may undesirably reduce the quality of the resultant extract by such exemplary factors as:
It is an object of the present invention to provide an improved extract separation apparatus to address some of the shortcomings of extraction apparati known in the art.
In a first embodiment of the present invention, an extract separation apparatus for separating an infused extract from a mixture of an infusible material and the extract is described. The apparatus in such first embodiment comprises a plunger element adapted to be inserted into an infusing container containing the mixture and having one or more substantially vertical inner walls oriented substantially parallel to a vertical axis of the container, wherein the plunger element is adapted to be moved within the container along the vertical axis thereof. The plunger element according to the first embodiment comprises a plunging means adapted to move the plunger element within the infusing container along the vertical axis thereof, and a first surface substantially transverse to the vertical axis and comprising sealing means situated at one or more edges of said first surface, wherein said sealing means are adapted for sealing engagement with the one or more inner walls of the infusing container as the plunger element is moved within the container, to define a first chamber containing the mixture of infusible material and extract bounded by said first surface. The plunger element further comprises a second surface extending from said first surface and defining a second chamber, said second surface comprising one or more extract flow openings, wherein said one or more extract flow openings are adapted to permit flow of extract from said first chamber into said second chamber, and wherein at least a portion of said one or more extract flow openings in said second surface are situated at a depth, wherein said depth is separated from said first surface, either above or below said first surface along the vertical axis.
In additional embodiments according to the present invention, the plunger element may additionally comprise one or more of:
one or more vent openings adapted to permit flow of air, and/or at least a portion of a low density component comprised in the mixture, out of the first chamber;
one or more filter elements comprised in one or more of the extract flow openings; and an infusing container adapted to contain the mixture of infusible material and extract, wherein the infusing container comprises one or more substantially vertical inner walls, and the plunger element is adapted to fit within the infusing container.
Referring to
The plunger element 5 further comprises a second surface or wall 15 depending from and oriented substantially perpendicular to the first surface 13, defining second chamber 16 containing extract 3. In some embodiments, the second surface or wall 15 may enclose the second chamber 16, whereas in other embodiments, second chamber 16 may comprise a partially or completely open top and/or bottom, for example. The joint between the first surface 13 and the second surface 15 is substantially leak proof with respect to extract 3 and infusible material 4. The second surface 15 of plunger element 5 also comprises one or more extract flow openings 17. In an exemplary embodiment, at least a portion of the one or more extract flow openings 17 are situated at a depth 18 separated from the first surface 13 along the vertical axis 6, either above or below the first surface 13. The one or more extract flow openings 17 are adapted to permit flow of extract 3 from the first chamber 14 (containing a mixture of extract 3 and infusible material 4) to the second chamber 16 (containing extract 3) as shown by arrow 19. In another embodiment, the second surface or wall 15 may depend from the first surface 13, extending away from the first surface 13 at a non-perpendicular angle. In an exemplary such embodiment, the second surface or wall 15 may extend away from the first surface 13 at an angle between about 45-85 degrees, for example. The further embodiments of the inventive plunger element described below in
The one or more extract flow openings 17 in the second wall 15 typically comprise one or more filter elements 20 within or across the extract flow openings 17, such that extract 3 flowing through the openings 17 must substantially pass through the filter elements 20. The one or more filter elements 20 may be desirably adapted to control the passage of infusible material 4 through the openings 17 to allow substantial separation of the extract 3 from the infusible material 4. In some embodiments, apertures in the filter elements 20 may be small enough to substantially exclude the infusible material 4 from passing through the openings 17. The filter elements 20 may be made from any suitable material such as one or a combination of: polymer, metal, ceramic, composite, cloth, felt, paper, or other suitable materials, for example. The filter elements 20 can be formed by any suitable method, such as by one or more of: stamping, chemical etching, laser etching, molding, weaving, welding, machining, sintering, felting, foaming, paper making, piercing, or any other method adapted to create small and preferably uniform apertures. A common embodiment of a filter element 20 includes a screen or mesh having many apertures comprised of a suitable material as described above. Additionally, the filter elements 20 may be multi-staged, comprising a plurality of individual filter elements.
In the exemplary embodiment of the present invention shown in
In embodiments of the invention including an infusing container 2, the infusing container 2 may be made from any suitable material such as one or more of: glass, plastic, ceramic, metal or other suitable material, for example. Additionally, the infusing container 2 may optionally include a double-layered wall, such as a double metal wall, with a vacuum or other suitable and preferably insulative substance between the two walls of the infusing container 2, such as to reduce variations in temperature inside the container 2 during the extraction process. Further, the plunger element 5 and first wall 13 and second wall 15 components thereof may be made from any suitable material such as one or more of: polymer, composite, metal, ceramic or other suitable materials, for example.
Sealing means 12 may comprise any suitable known seal material and/or design. Exemplary such seal designs may include single or multiple lip seals, single or multiple wiper seals, and single or multiple U-cup seal designs, for example. Suitable such single or multiple U-cup seal designs may desirably be self-energising, such that an outer edge of the U-cup seal actively engages and seals with the inner wall of container 2 as plunger element 5 is moved within the container 2 and against the fluid mixture of extract 3 and infusible material 4. Exemplary suitable seal materials may comprise one or more of: silicone, polymers (such as polyurethane for example) and silicone or polymer materials impregnated with carbon or other additives, for example. Additionally, sealing means 12 may comprise one or more such suitable seal materials by themselves, or alternatively, such seal materials may surround or be overmolded over a support material, such as a metal or composite support material, for example. The above-described exemplary sealing means materials and designs may also apply to sealing means incorporated in other embodiments of the invention, such as those described below.
The plunger element 5 may also optionally include one or more vent openings 22. The vent openings 22 are adapted to permit the flow of air out of the first chamber 14 through the vent openings 22, as represented in
In some embodiments of the invention, such as that shown in
In some common exemplary embodiments of the invention, the extraction apparatus 1 may be configured for extracting a hot beverage extract 3 from infusible plant material 4, such as in embodiments where infusible material 4 may comprise coffee grounds, tea leaves or herbal infusibles, for example, and extract 3 may comprise coffee, tea or herbal tisane, respectively. In the common example of coffee extraction, the extraction of ground coffee infusible material 4 may result in a coffee extract 3, and one or more aromatic coffee oil low density constituents 24.
Referring now to
Following the separation of extract 3 (and potentially also low density constituent 24 if present) from the infusible material 4 by moving the plunger element 5 inside the infusing container 2, the separated extract 3 (and any low density constituent 24) may be stored in the third extract chamber 27 until desired for use without further contact with infusible material 4. The infusing container 2 may also optionally include a pouring spout 30, which may be used to pour the separated extract 3 from the third chamber 27 for consumption or other use. The infusing container 2 may further optionally include a handle (not shown) to facilitate lifting or moving the extraction apparatus 1 by a user.
Referring to
Plunger element 105 additionally comprises sealing means 112 situated at the edge of a first surface or wall 113 of the plunger element 105, which is oriented substantially transverse to the vertical axis 106.
The plunger element 105 further comprises a second surface or wall 115 depending from and oriented substantially perpendicular to the first surface 113, defining a fluid chamber 116, which is substantially open at one end. Similar to the plunger element 5 shown in
The one or more extract flow openings 117 in the second wall 115 typically comprise one or more filter elements 120 within or across the extract flow openings 117, such that extract flowing through the openings 117 as shown by arrow 119 must substantially pass through the filter elements 120. Similar to exemplary plunger element 5 of
In the exemplary embodiment of the present invention shown in
The plunger element 105 and first wall 113 and second wall 115 components thereof may be made from suitable materials such as described above in reference to plunger element 5 of
In another embodiment, the one or more vent openings 122 may be operable to control an amount of infusible material 4 which may pass through vent openings 122. In one example thereof, vent openings 122 may desirably substantially prevent passage of infusible material 4. In another example thereof, vent openings may be adjustable or configurable such that they are operable to controllably permit a desired amount of infusible material 4 through the vent openings 122 and into the separated extract 3 in the extract chamber 27. The passage of a controlled and typically very small amount of infusible material 4 through the vent openings 122 into separated extract 3, may be desirable in some cases, or by some users, to affect the taste of the separated extract 3, for example.
In the exemplary embodiment of the present invention shown in
Referring to
Plunger element 205 additionally comprises sealing means 212 situated at the edge of a first surface or wall 213 of the plunger element 205, which is oriented substantially transverse to the vertical axis 206. Sealing means 212 may be essentially similar in design and construction to the sealing means 12 described above with respect to
The plunger element 205 further comprises a second surface or wall 215 depending from and oriented substantially perpendicular to the first surface 213, defining a fluid chamber 216. Similar to the plunger element 5 shown in
In the exemplary embodiment of the present invention shown in
Similar to the exemplary plunger element 5 of
In the exemplary embodiment of the present invention shown in
The plunger element 205 and first wall 213 and second wall 215 components thereof may be made from any suitable materials such as such exemplary materials described above in reference to plunger element 5 of
In the exemplary embodiment shown in
In an alternative embodiment, plunger element 205 may optionally also comprise a vent opening (not shown) in the first surface 213, to provide for the passage of air and/or at least a portion of any low density extractable constituents through the first surface 213. Such optional vent opening may be similar to vent opening 22 of
In some embodiments of the invention, such as that shown in
Referring to
Exemplary plunger element 305 additionally comprises sealing means 312 situated at the edge of a first surface or wall 313 of the plunger element 305, which is substantially circular in cross-section and oriented substantially transverse to the vertical axis 306, similar to plunger 205 of
The plunger element 305 further comprises a substantially cylindrical second surface or wall 315 depending from and oriented substantially perpendicular to the first surface 313, with a plug or end wall portion 321 closing the bottom of the second surface or wall 315, defining a fluid chamber 316. Similar to the plunger element 5 shown in
Similar to exemplary plunger element 5 of
The plunger element 305 and first wall 313 and second wall 315 components thereof may be made from suitable materials such as described above in reference to plunger element 5 of
As the plunger element 305 is moved inside an infusing container, the porous sleeve 320 and extract flow openings 317 are adapted to permit the flow of any air present in the infusing container through the porous sleeve 320 and the extract flow openings 317, and into chamber 316, as represented in
Referring to
Plunger element 405 additionally comprises sealing means 412 situated at the edge of a first surface or wall 413 of the plunger element 405, which is oriented substantially transverse to the vertical axis 406. In use inside infusing container 402, the first surface 413 and sealing means 412 of the plunger element 405 define a first chamber 414 containing the mixture of extract 403 and infusible material 404.
The plunger element 405 further comprises substantially cylindrical second surface or wall 415, defining second chamber 416 containing extract 403. The second surface 415 of plunger element 405 also comprises extract flow opening 417 situated across the bottom of the second surface 415, at a depth 418 below the first surface 413 along the central axis 406. The extract flow opening 417 is adapted to permit flow of extract 403 from the first chamber 414 (containing a mixture of extract 403 and infusible material 404) to the second chamber 416 (containing extract 403) as shown by arrow 419. In other alternative embodiments, second surface 415 may optionally have another shape, such as a rectangular prism or conical frustum, for example
The extract flow opening 417 in the second wall 415 typically comprises one or more filter elements 420 within or across the extract flow opening 417, such that extract 403 flowing through the opening 417 as shown by arrow 419 must substantially pass through the filter elements 420. Similar to exemplary plunger element 5 of
The second surface 415 may optionally extend below filter element 420, as shown in
The infusing container 402 may be made from suitable materials such as described above in reference to infusing container 2 of
As in plunger element 5, plunger element 405 may typically also include one or more vent openings 422 adapted to permit the flow of air and/or a portion of any low density extractable constituents 424 through the vent openings 422, as represented in
Referring to
Plunger element 505 additionally comprises sealing means 512 situated at the edge of a first surface or wall 513 of the plunger element 505, which is oriented substantially transverse to the vertical axis 506. In use inside infusing container 502, the first surface 513 and sealing means 512 of the plunger element 505 define a first chamber 514 containing the mixture of extract 503 and infusible material 504.
The plunger element 505 further comprises a substantially cylindrical second surface or wall 515 with a plug or end wall portion 521 located at the bottom of the second surface or wall 515, defining second chamber 516 containing extract 503 and typically also a relatively small portion of infusible material 504. The bottom plug section 521 of second surface 515 comprises extract flow opening 517 situated at a depth 518 below the first surface 513 along the vertical axis 506. Due to the relatively small area of opening 517 relative to the cross-sectional area of the infusing container 502, the extract flow opening 517 is adapted to permit flow of extract 503 and a relatively small portion of the total infusible material 504 from the first chamber 514 to the second chamber 516 as shown by arrow 519. In alternative embodiments, the relative size of extract flow opening 517 may be varied in order to vary the relative amount of infusible material 504 allowed to enter second chamber 516. Further, in alternative embodiments, the second wall 515 of the plunger element 505 may optionally have another shape, such as a rectangular prism, or conical frustum, for example.
The plunger element 505 and first wall 513 and second wall 515 components thereof may be made from suitable materials such as described above in reference to plunger element 5 of
As in plunger element 5, plunger element 505 may typically also include one or more vent openings 522 adapted to permit the flow of air and/or a portion of any low density extractable constituents 524 through the vent openings 522, as represented in
Referring to
Plunger element 605 additionally comprises sealing means 612 situated at the edge of a first surface or wall 613 of the plunger element 605, which is substantially circular in cross-section and is oriented substantially transverse to the vertical axis 606. In use inside infusing container 602, the first surface 613 and sealing means 612 of the plunger element 605 define a first chamber 614 containing the mixture of extract 603 and infusible material 604. Sealing means 612 are essentially similar to the sealing means 12 described above with respect to
The plunger element 605 further comprises a substantially cylindrical second surface or wall 615 depending from and oriented substantially perpendicular to the first surface 613, defining a second substantially annular chamber 616 containing extract 603. The joint between the first surface 613 and the second surface 615 is substantially leak proof with respect to extract 603 and infusible material 604. Second surface 615 of plunger element 605 comprises plug or top wall portion 621 closing the top of the second surface or wall 615. The second surface 615 of plunger element 605 also comprises one or more extract flow openings 617, at least a portion of which are situated at a depth 618 separated from the first surface 613 along the vertical axis 606. The one or more extract flow openings 617 are adapted to permit flow of extract 603 from the first chamber 614 (containing a mixture of extract 603 and infusible material 604) to the second annular chamber 616 (containing extract 603) as shown by arrow 619. In alternative embodiments, the second wall 615 of the plunger element 605 may optionally have another shape, such as a rectangular prism, or conical frustum, for example.
In the exemplary embodiment of the present invention shown in
In some embodiments of the invention, such as that shown in
As in plunger element 5, plunger element 605 may typically also include one or more vent openings 622 adapted to permit the flow of air and/or a portion of any low density extractable constituents 624 through the vent openings 622, as represented in
The plunger element 605 and first wall 613 and second wall 615 components thereof may be made from suitable materials such as described above in reference to plunger element 5 of
Referring to
Plunger element 705 additionally comprises sealing means 712 situated at the edge of a first surface or wall 713 of the plunger element 705, which is oriented substantially transverse to the vertical axis 706. In use inside infusing container 702, the first surface 713 and sealing means 712 of the plunger element 705 define a first chamber 714 containing the mixture of extract 703 and infusible material 704. In other alternative embodiments, plunger element 705 may comprise another cross-sectional shape to fit a non-cylindrical infusion container 702, wherein sealing means 712 may be situated around the edge or edges of the first surface 713 of the plunger element 705.
The plunger element 705 further comprises a second surface or wall 715 depending from and oriented substantially perpendicular to the first surface 713, defining a second fluid chamber 716, which is substantially open at one end. Similar to the plunger element 5 shown in
The one or more extract flow openings 717 in the second wall 715 typically comprise one or more filter elements 720 within or across the extract flow openings 717, such that extract flowing through the openings 717 as shown by arrow 719 must substantially pass through the filter elements 720. Similar to exemplary plunger element 5 of
In the exemplary embodiment of the present invention shown in
The infusing container 702 may be made from suitable materials, and in such a manner as described above in reference to infusing container 2 of
Referring to
Plunger element 805 additionally comprises sealing means 812 situated at the edge of a first surface or wall 813 of the plunger element 805, which is substantially circular in cross-section, and is oriented substantially transverse to the vertical axis 806. Sealing means 812 may be essentially similar in design and construction to the sealing means 12 described above with respect to
The plunger element 805 further comprises a substantially cylindrical second surface or wall 815 depending from and oriented substantially perpendicular to the first surface 813, with a plug or end wall portion 821 closing the bottom of the second surface or wall 815, defining a second fluid chamber 816. Similar to the plunger element 5 shown in
The one or more extract flow openings 817 in the second wall 815 typically comprise one or more filter elements 820 within or across the extract flow openings 817, such that extract flowing through the openings 817 as shown by arrow 819 must substantially pass through the filter elements 820. Similar to exemplary plunger element 5 of
The plunger 805 also comprises an adjustment means adapted to allow the adjustment of the effective depth 818 of the one or more extract flow openings 817 relative to the first surface 813, such as exemplary threaded adjustment screw 833 shown in
As in plunger element 5, plunger element 805 may typically also include one or more vent openings 822 adapted to permit the flow of air and/or a portion of any low density extractable constituents through the vent openings 822, as represented in
Referring now to
Also similar to plunger 805 above, plunger 905 comprises a first surface or wall 913 which is substantially circular in cross-section, and is oriented substantially transverse to the vertical axis 906, with sealing means 912 situated around the edge thereof. Sealing means 912 may be essentially similar in design and construction to the sealing means 12 described above with respect to
As in plunger 805 above, plunger 905 further comprises a substantially cylindrical second surface or wall 915 depending from first surface 913, with a plug or end wall portion 921 closing the bottom of the second surface or wall 915, defining a second fluid chamber 916. The second surface 915 of plunger element 905 also comprises one or more extract flow openings 917 adapted to permit flow of extract into chamber 916 as shown by arrow 919, wherein at least a portion of the one or more extract flow openings 917 is situated at a depth 918 below the first surface 913 along the vertical axis 906. In other alternative embodiments, second surface 915 may optionally have another shape, such as a rectangular prism or conical frustum, for example.
Similar to plunger 805, extract flow openings 917 in the second wall 915 typically comprise one or more filter elements 920 within or across the extract flow openings 917. Similar to exemplary plunger element 5 of
Plunger element 905 also includes one or more vent openings 922 adapted to permit the flow of air and/or a portion of any low density extractable constituents through the vent openings 922, as represented in
The plunger 905 also comprises an adjustment means adapted to allow the adjustment of the effective opening size of the one or more vent openings 922 in the first surface 913 of the plunger 905, such as exemplary adjustable aperture slider 934 shown in
In a further embodiment of the invention, a plunger element according to the invention, and similar to plunger elements 805 and/or 905 illustrated and described above, may be adapted to allow a user of the invention to actively control the flow of extract through the plunger in use. In such an embodiment the plunger may comprise one or more of: extract flow openings, vent openings and extract flow path openings (similar to openings 917, 922 and 926 above, respectively) which may be adjustable by the user before or during use of the plunger to control the flow of extract through the openings while pressing the plunger through the mixture of extract and infusible material. Such adjustable openings may be controlled by the user to vary the size of the openings (such as with adjustable aperture slider 934 above), the location or depth of the openings relative to the plunger (such as with adjustment screw 833 described above), or to otherwise control the flow of extract through the openings in the plunger. The user may similarly actively control the passage of any infusible material through the openings in the plunger, to allow the user to substantially prevent or controllably allow passage of a portion of infusible material through the plunger. Further, the user may also similarly actively control the flow of any low-density constituents through the vent openings in the plunger during use. In such an embodiment, the plunger may also be adapted to allow the user to actively control the flow of extract, and optionally also of low density constituents and/or infusible material through the plunger during use by means of interchangeable or replaceable filter elements (similar to filter elements 920, 925 and 929 described above, for example) comprised in one of more of the extract flow openings, vent openings and extract flow path openings of the plunger. In such a case, the user may actively control the flow of one or more of: extract, low density constituent and infusible material, by interchanging or replacing one or more such filter elements with replacement elements having varying filtration and flow characteristics. It may be understood by a person skilled in the art that any of the additional plunger apparatus features described above in reference to other embodiments of the invention may also be applied to the present embodiment as may be suitable or desired.
In an alternative embodiment of the inventive extract separation apparatus, a plunger element adapted to fit and move along a vertical axis within an infusing container according to the invention may comprise a first surface comprising sealing means at an edge of the first surface adapted to seal against the inside walls of the infusing container. In such an embodiment, the first surface is oriented at an oblique angle relative to the vertical axis and is adapted to contact the inside walls of the infusing container at an oblique angle, in contrast to embodiments described above where the first surface is substantially perpendicular to the infusing container walls and vertical axis. In such alternative embodiment, at least a portion of the obliquely angled first surface of the plunger may comprise one or more extract flow openings, such that when the plunger is in use within the infusing container, a first portion of the one or more extract flow openings is located at a depth along the vertical axis below a second portion of the one of more extract flow openings. In an exemplary such alternative embodiment adapted for use in an infusing container having cylindrical walls, the obliquely angled first surface of the plunger may comprise a substantially oval disc, angled relative to the vertical axis of the infusing container. It may be understood by a person skilled in the art that any of the additional plunger apparatus features described above in reference to other embodiments of the invention may also be applied to the present embodiment as may be suitable or desired.
In a second alternative embodiment of the inventive extract separation apparatus, a plunger adapted to fit and move along a vertical axis within an infusing container according to the invention may comprise a curved, or substantially non-planar, first surface. The first surface may comprise sealing means at an edge of the first surface adapted to seal against the inside walls of the infusing container. In such an embodiment, the curved first surface comprises first and second segments, each having one or more extract flow openings therein, such that when the plunger is in use within the infusing container, the one or more extract flow openings in the first segment are located at a depth along the vertical axis below the one or more extract flow openings in the second segment of the first surface. In an exemplary such alternative embodiment, the curved first surface of the plunger element is substantially “Z” shaped in a cross-sectional view parallel to the vertical axis, such that one end of the “Z” comprises a first segment, and the other end of the “Z” comprises a second segment, at a depth above the first segment relative to the vertical axis. It may be understood by a person skilled in the art that any of the additional plunger apparatus features described above in reference to other embodiments of the invention may also be applied to the present embodiment as may be suitable or desired.
In yet a further alternative embodiment, an extract separation apparatus according to the invention may comprise an infusing container with a vertical axis and including a fixed filter element within the container, where the filter element comprises a first surface substantially transverse to a vertical axis of the container and defining a first chamber containing a mixture of extract and infusible material. The fixed filter element also comprises a second surface extending substantially perpendicular to the first surface, the second surface comprising one or more extract flow openings, wherein the one or more extract flow openings are adapted to permit flow of extract from the first chamber into the second chamber, and wherein at least a portion of the one or more extract flow openings in the second surface are situated at a depth, separated from the first surface, either above or below the first surface along the vertical axis of the infusing container. The extract separation apparatus also includes a piston element adapted to fit and move within the infusing container along the vertical axis, and to seal against the inside walls of the infusing container, such that when the first chamber of the infusing container contains a mixture of extract and infusible material, the movement of the piston element within the container forces at least a portion of the extract to flow through the extract flow openings. Depending on the orientation of the second surface of the fixed filter element either above or below the first surface, the piston element may be adapted to fit and move within the infusing container either above or below the filter element, to cause the extract to flow through the extract flow openings. In an exemplary embodiment, the piston element may be operated by a user's hand, or alternatively, may be operated mechanically, pneumatically, or by other suitable means, and may be controlled directly by a user, or by a machine. In a further exemplary embodiment, the piston element may seal a portion of air or other gas within the infusing container, between the fluid mixture and the filter element, such that the movement of the piston element exerts force on the fluid mixture indirectly through the air or other gas, to cause the extract to flow through the extract flow openings. It may be understood by a person skilled in the art that any of the additional separation apparatus features described above in reference to other embodiments of the invention may also be applied to the present embodiment as may be suitable or desired.
In another embodiment of the present invention, an inventive method of separating an extract from a mixture of the extract and an infusible material using an extract separation apparatus according to the invention may be provided. In such a method, a mixture of an infusible material and an extract may be mixed in an infusing container. Then a plunger element according to the invention may be inserted into the infusing container along a vertical axis thereof, where the plunger element comprises: wherein the plunger element comprises:
The exemplary embodiments herein described are not intended to be exhaustive or to limit the scope of the invention to the precise forms disclosed. They are chosen and described to explain the principles of the invention and its application and practical use to allow others skilled in the art to comprehend its teachings.
As will be apparent to those skilled in the art in light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. Accordingly, the scope of the invention is to be construed in accordance with the substance defined by the following claims.
This application claims the benefit of priority of and is a continuation of application Ser. No. 14/318,371, filed Jun. 27, 2014now U.S. Pat. No. 9,408,490, issued on Aug. 9, 2016; which is a division of application Ser. No. 12/991,425, filed Nov. 5, 2010, now U.S. Pat. No. 8,770,097, issued on Jul. 8, 2014; which in turn is a U.S. National Stage Entry of International Application Number PCT/CA2009/000604, filed May 12, 2009, and published on Nov. 19, 2009 as WO 2009/137915; which claims the benefit of priority to U.S. Provisional Patent Application No. 61/127,430, filed May 12, 2008.
Number | Name | Date | Kind |
---|---|---|---|
1025206 | Rounds | May 1912 | A |
1581877 | Schultz | Apr 1926 | A |
1954064 | Blitz | Apr 1934 | A |
2299918 | Mollenkamp | Oct 1942 | A |
2468661 | Gladstone | Apr 1949 | A |
2629376 | Gallice et al. | Jul 1949 | A |
2516703 | Kent | Jul 1950 | A |
2592485 | Stair | Apr 1952 | A |
2882899 | Nogier et al. | Jul 1955 | A |
2793790 | Kahler | May 1957 | A |
3158084 | Cohn | Nov 1964 | A |
3260510 | Ranson | Jul 1966 | A |
3319577 | Herreshoff | May 1967 | A |
3561888 | Jordan | Feb 1971 | A |
3589683 | Robin | Jun 1971 | A |
3657993 | Close | Apr 1972 | A |
3752604 | Dorn | Aug 1973 | A |
3927608 | Doyel | Dec 1975 | A |
3935318 | Mihailide | Jan 1976 | A |
3954614 | Wright | May 1976 | A |
3955634 | Slator et al. | May 1976 | A |
4066722 | Pietruszewski et al. | Jan 1978 | A |
4151092 | Grimm et al. | Apr 1979 | A |
4189385 | Greenspan | Feb 1980 | A |
4602558 | Kaper et al. | Jul 1986 | A |
4645132 | Fregnan | Feb 1987 | A |
4650583 | Bondanini | Mar 1987 | A |
4804550 | Bardsley et al. | Feb 1989 | A |
4852474 | Malich et al. | Aug 1989 | A |
4945824 | Borgmann | Aug 1990 | A |
4950082 | Carlson | Aug 1990 | A |
5106239 | Krebsbach | Apr 1992 | A |
5141134 | Machado | Aug 1992 | A |
5174194 | Piana | Dec 1992 | A |
D348590 | Scott | Jul 1994 | S |
5335588 | Mahlich | Aug 1994 | A |
5464574 | Mahlich | Nov 1995 | A |
5472274 | Baillie | Dec 1995 | A |
5478586 | Connor | Dec 1995 | A |
5487486 | Meneo | Jan 1996 | A |
5494410 | Maier-Laxhuber et al. | Feb 1996 | A |
5526733 | Klawuhn et al. | Jun 1996 | A |
5549573 | Waskonig | Aug 1996 | A |
D375233 | Hirsch | Nov 1996 | S |
5618570 | Banks et al. | Apr 1997 | A |
5622099 | Frei | Apr 1997 | A |
5636563 | Oppermann et al. | Jun 1997 | A |
5638740 | Cai | Jun 1997 | A |
D384539 | Joergensen | Oct 1997 | S |
5770074 | Pugh | Jun 1998 | A |
5788369 | Tseng | Aug 1998 | A |
D401466 | Joergensen | Nov 1998 | S |
D405642 | Toriba | Feb 1999 | S |
5887510 | Porter | Mar 1999 | A |
D410170 | Sheu | May 1999 | S |
5911810 | Kawabata | Jun 1999 | A |
5913964 | Melton | Jun 1999 | A |
5932098 | Ross | Aug 1999 | A |
D413480 | Joergensen | Sep 1999 | S |
6095032 | Barnett et al. | Aug 2000 | A |
D435195 | Joergensen | Dec 2000 | S |
6220147 | Priley | Apr 2001 | B1 |
D448601 | Yeh | Oct 2001 | S |
D448602 | Bodum | Oct 2001 | S |
D448603 | Yeh | Oct 2001 | S |
D449760 | Yeh | Oct 2001 | S |
6296884 | Okerlund | Oct 2001 | B1 |
D450223 | Joergensen | Nov 2001 | S |
6324966 | Joergensen | Dec 2001 | B1 |
D453446 | Bodum | Feb 2002 | S |
D457377 | Jorgensen | May 2002 | S |
6382083 | Schmed | May 2002 | B2 |
6412394 | Bonanno | Jul 2002 | B2 |
D462233 | Jorgensen | Sep 2002 | S |
D468597 | Kerr | Jan 2003 | S |
6736295 | Lin et al. | May 2004 | B2 |
D493662 | Bodum | Aug 2004 | S |
D494803 | Bodum | Aug 2004 | S |
6797160 | Huang | Sep 2004 | B2 |
6797304 | McGonagle | Sep 2004 | B2 |
6811299 | Collier | Nov 2004 | B2 |
D501354 | Graves et al. | Feb 2005 | S |
D503069 | Dilollo et al. | Mar 2005 | S |
6964223 | O'Loughlin | Nov 2005 | B2 |
6978682 | Foster et al. | Dec 2005 | B2 |
7032505 | Brady | Apr 2006 | B2 |
7093531 | Tardif | Aug 2006 | B2 |
7194951 | Porter | Mar 2007 | B1 |
D542078 | Bodum | May 2007 | S |
7213507 | Glucksman et al. | May 2007 | B2 |
D563713 | Bodum | Mar 2008 | S |
D565887 | Bodum | Apr 2008 | S |
D566454 | Bodum | Apr 2008 | S |
D571610 | Bodum | Jun 2008 | S |
7384182 | Bhavnani | Jun 2008 | B2 |
D573396 | Gauss | Jul 2008 | S |
D584559 | Bodum | Jan 2009 | S |
D587069 | Bodum | Feb 2009 | S |
D594267 | Bodum | Jun 2009 | S |
7578231 | Liu | Aug 2009 | B2 |
D610860 | Bodum | Mar 2010 | S |
D622546 | Bodum | Aug 2010 | S |
7790117 | Ellis et al. | Sep 2010 | B2 |
D628846 | Bodum | Dec 2010 | S |
7858133 | Neace, Jr. et al. | Dec 2010 | B2 |
7882975 | Kelly | Feb 2011 | B2 |
7946752 | Swartz et al. | May 2011 | B2 |
7958816 | Lin | Jun 2011 | B2 |
7992486 | Constantine et al. | Aug 2011 | B2 |
D645290 | Bodum | Sep 2011 | S |
8051766 | Yu et al. | Nov 2011 | B1 |
D652682 | Eyal | Jan 2012 | S |
D653492 | Enghard | Feb 2012 | S |
D654756 | Bodum | Feb 2012 | S |
D655134 | Gilbert | Mar 2012 | S |
D655967 | Bodum | Mar 2012 | S |
8152361 | Swartz et al. | Apr 2012 | B2 |
8177968 | Wang | May 2012 | B2 |
D662354 | Bodum | Jun 2012 | S |
D663155 | Bodum | Jul 2012 | S |
8216462 | OBrien et al. | Jul 2012 | B2 |
8272532 | Michaelian et al. | Sep 2012 | B2 |
8313644 | Harris et al. | Nov 2012 | B2 |
D677103 | Melzer | Mar 2013 | S |
8387820 | Park | Mar 2013 | B2 |
D681388 | Bodum | May 2013 | S |
8448810 | Kelly et al. | May 2013 | B2 |
8529119 | Swartz et al. | Sep 2013 | B2 |
D694579 | Khubani | Dec 2013 | S |
D695138 | Ball | Dec 2013 | S |
D698649 | Quint | Feb 2014 | S |
8641416 | Leiner et al. | Feb 2014 | B2 |
D700807 | Kershaw et al. | Mar 2014 | S |
D701425 | Pearson | Mar 2014 | S |
8667662 | Kelly | Mar 2014 | B2 |
8695486 | Bodum | Apr 2014 | B2 |
8770097 | McLean et al. | Jul 2014 | B2 |
D729584 | Weston et al. | May 2015 | S |
9408490 | McLean | Aug 2016 | B2 |
20010053399 | Herod | Dec 2001 | A1 |
20030047081 | McGonagle | Mar 2003 | A1 |
20030070979 | Huang | Apr 2003 | A1 |
20030205145 | Chang | Nov 2003 | A1 |
20040206243 | Foster et al. | Oct 2004 | A1 |
20050000886 | Reynolds et al. | Jan 2005 | A1 |
20050046211 | Nole et al. | Mar 2005 | A1 |
20050109689 | Trachtenbroit | May 2005 | A1 |
20060118481 | Trachtenbroit | Jun 2006 | A1 |
20060151381 | Wennerstrom | Jul 2006 | A1 |
20070028779 | Pigliamcampo et al. | Feb 2007 | A1 |
20070151461 | Edmark | Jul 2007 | A1 |
20070187421 | Constantine et al. | Aug 2007 | A1 |
20070251956 | Wasserman et al. | Nov 2007 | A1 |
20070284300 | Bidlingmeyer et al. | Dec 2007 | A1 |
20080041860 | Wiedmeyer et al. | Feb 2008 | A1 |
20100263549 | Lee | Oct 2010 | A1 |
20100294772 | Judge | Nov 2010 | A1 |
20100319549 | Kelty et al. | Dec 2010 | A1 |
20110056385 | McLean et al. | Mar 2011 | A1 |
20110168644 | Harris et al. | Jul 2011 | A1 |
20110309094 | Bodum | Dec 2011 | A1 |
20120067890 | Cahen et al. | Mar 2012 | A1 |
20120097042 | Lin | Apr 2012 | A1 |
20120199160 | Galbis | Aug 2012 | A1 |
20120216682 | Bodum | Aug 2012 | A1 |
20120328750 | Giordano | Dec 2012 | A1 |
20130001143 | Nelson | Jan 2013 | A1 |
20130142592 | Khowaylo et al. | Jun 2013 | A1 |
20130175278 | Kah, Jr. | Jul 2013 | A1 |
20130213240 | O'Brien | Aug 2013 | A1 |
20130233869 | Tamarit Rios | Sep 2013 | A1 |
20130284030 | Katz et al. | Oct 2013 | A1 |
20140001208 | Bodum | Jan 2014 | A1 |
20140008310 | Weston et al. | Jan 2014 | A1 |
20140054301 | Guoqing | Feb 2014 | A1 |
20140060337 | Vamum | Mar 2014 | A1 |
20140072684 | Madden | Mar 2014 | A1 |
20140076908 | Pinelli | Mar 2014 | A1 |
20140197082 | Weston et al. | Jul 2014 | A1 |
20140311353 | McLean et al. | Oct 2014 | A1 |
20150196158 | Velasquez | Jul 2015 | A1 |
20170027372 | McLean | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1019251 | Oct 1977 | CA |
2418741 | Aug 2004 | CA |
200974622 | Nov 2007 | CN |
201595680 | Oct 2010 | CN |
201691689 | Jan 2011 | CN |
201831469 | May 2011 | CN |
20104815 | Jun 2001 | DE |
1267684 | May 2006 | EP |
1249992 | Jan 1961 | FR |
Entry |
---|
International Preliminary Report on Patentability, dated Nov. 17, 2010, and International Search Report, dated Aug. 6, 2009, for related application PCT/CA2009/000604, and 4 pages. |
La Marzocco International, “Swift EPS_B Operating Manual V1.0,” copyright 2002, pp. 1-31 (incl. pp. 8-12, 19, 25, 20-30), La Marzocco, International, USA. |
Macap, <http://www.macapit/english/prodotto.asp?cat=1&subcat=4>, accessed Mar. 15, 2005, posted as early as 2002, p. 1. |
1st-Line Equipment, <http://www.1st-line.net/cgi-bin/category.cgi?item=CPS&type=store>, accessed Mar. 15, 2005, posted as early as 2002, pp. 1-2. |
Coffeegeek, <http://www.coffeegeek.com/reviews/accessories/autotamper/tenacioustommy>, posted Oct. 24, 2002, pp. 1-5. |
Schomer, D.C., <http://www.lucidcafe.com/cafeforum/schomertable11.html>, revised Oct. 24, 1997, copyright 1996-97, pp. 1-2. |
Crankshaw, J., <http://home.att.net/˜jcrankshaw/tamper.htm>, accessed Sep. 16, 2003, copyright 199-2002, pp. 1-3. |
Coffee Research Institute, “Tamping,” <http//www.coffeeresearch.org/espresso/tamping.htm>, accessed Nov. 26, 2004, posted 2001 or earlier, pp. 1-3. |
Medium Espro Press, available at https://www.kickstarter.com/projects/bruceconstantine/the-medium-espro-press, Feb. 26, 2013. |
Espro Press, available at https://www.kickstarter.com/projects/bruceconstantine/the-espro-press?ref=nav_search, Nov. 25, 2011. |
European Supplemental Search Report in related application No. EP 09745330, dated Jul. 28, 2015. |
“Magnetic Tambaroo Coffee Press Cleaner” (Bed Bath & Beyond Listing), Web page <https://www.bedbathandbeyond.com/store/product/magnetic-tambaroo-reg-coffee-press-cleaner/1041423585>, 2 pages, captured Aug. 3, 2017. |
“Bodum Chambord Coffee Press with Bonus Coffee Catcher, 8-Cup” (Amazon Listing), Web page <https://www.amazon.com/Bodum-Chambord-Coffee-Press-Catcher/dp/B00006B1MQ>, 7 pages, captured Aug. 3, 2017. |
Number | Date | Country | |
---|---|---|---|
20170027372 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61127430 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12991425 | US | |
Child | 14318371 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14318371 | Jun 2014 | US |
Child | 15227241 | US |