1. Field of the Invention
This invention relates to cryogenic cooling systems and, in particular, to an apparatus and a method for extracting cooling power from a cooling system regenerator.
2. Description of the Related Art
It is often desirable to cool devices, e.g., semiconductor electronics, superconducting electronics, superconducting magnets, sub-Kelvin cooling stages, and the like, to low temperatures, such as temperatures near absolute zero. The cooling systems that provide cooling to such devices are inherently thermally linked to a room-temperature environment and/or intermediate temperature environments via various structures, e.g., mechanical structures, electrical cabling and leads. The cooling capacity of such systems is also impacted by thermal radiation from the environment. These extraneous thermal sources result in a parasitic thermal load on the cooling system in addition to the thermal load created by the device or devices to be cooled. Additional thermal loads can cause power loss, cooling inefficiencies, and other problems that could be detrimental to a process or manufacturing operation.
Generally, such cooling systems are generally two-stage pulse tube, Stirling, or Gifford-McMahon type cooling systems having a first stage operating within a range of about 40K to about 100K and a second stage operating in the liquid helium temperature range, i.e., about 2K to about 6K. It is generally desirable to reduce the parasitic heat load on the lowest temperature cooling stage to increase the overall efficiency of the system. Conventionally, this problem has been addressed by operating the first stage of the cooling system at the lowest achievable temperature, resulting in less heat being transferred to the second, or lower temperature, stage. Success by this method, however, is generally limited by the cooling capacity of the first, or upper temperature, stage. Furthermore, more inefficiency (e.g., power and thermal inefficiencies) may result from this approach.
The problem has also been addressed by utilizing a three-stage cooling system having a second stage operating in the range of about 10K to about 20K. Such a system, however, is more costly and complex than a two-stage cooler and may have lower reliability.
The present invention is directed to overcoming, or at least reducing, the effects of one or more of the problems set forth above.
In one aspect of the present invention, an apparatus for extracting cooling power from helium flowing through a cooling system regenerator is provided. The apparatus includes a heat exchanger disposed within the regenerator capable of extracting cooling power from the helium and a thermal link coupled to the heat exchanger for thermally coupling the heat exchanger with a component.
In another aspect of the present invention, an apparatus for extracting cooling power from helium flowing through a cooling system regenerator is provided. The apparatus includes means for transferring heat from a component to the helium flowing through the regenerator, wherein the means for transferring the heat is disposed within the regenerator.
In yet another aspect of the present invention, a cooling system is provided. The cooling system includes a regenerator capable of allowing helium to flow therethrough, a heat exchanger disposed within the regenerator and being capable of extracting cooling power from the helium, and a thermal link coupled to the heat exchanger for thermally coupling the heat exchanger with a component.
In another aspect of the present invention, a method of extracting cooling power from helium in a regenerator is provided. The method includes flowing the helium through a first portion of the regenerator, flowing the helium through a heat exchanger disposed between the first portion and a second portion of the regenerator to transfer heat from the heat exchanger to the helium, and transferring heat from a component via a thermal link to the heat exchanger.
The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which the leftmost significant digit(s) in the reference numerals denote(s) the first figure in which the respective reference numerals appear, and in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The first regenerator 106, and regenerators in general, is a type of heat exchanger that absorbs heat from the helium during a first part of the pressure cycle and returns heat to the helium during a second part of the pressure cycle to enhance the cooling power of the helium. The first pulse tube 106, and pulse tubes in general, function to cool the helium via changes in helium pressures therein. Generally, the first regenerator 106, the first pulse tube 108, and the line 110 comprise an upper stage 112 of the cooling system 100.
Generally, helium gas flows through the first regenerator 106, the line 110, and into the first pulse tube 108. In some embodiments, the gas may also flow through an orifice and into a reservoir, which are included in the flow control components 104. As the helium is compressed, heat in the helium gas is moved from a first end 114 of the first pulse tube 108 toward a second end 116 of the first pulse tube 108, where it is removed. Typically, temperatures proximate the first end 114 of the first pulse tube 108 may be greater than about 20K.
Still referring to
In the illustrated embodiment, a heat exchanger 128 is disposed between a first portion 130 and a second portion 132 of the regenerator 118. In one embodiment, the heat exchanger 128 is disposed with a physical area or zone of the regenerator 118 that operates within a temperature of about 8K to about 20K. The enthalpy difference of the helium is generally greatest within a temperature range of about 8K to about 20K. Generally, variations in the helium enthalpy may lead to thermal irreversibilities as the regenerator 118 is operated based upon temperature gradients. Thus, the regenerator 118 can become a source of cooling, via the heat exchanger 128, and the heat exchanger 128 extracts cooling power from helium flowing through the regenerator 118. In such an embodiment, the second regenerator 118, the line 122, the second pulse tube 120, and the beat exchanger 128 comprise a lower stage 134 of the cooling system 100.
One or more various components 136, such as mechanical structures, electrical cabling, leads, thermal shields, and/or other components linking the second stage 134 and the first stage 112 or linking the second stage 134 and the surrounding environment may be thermally linked to the heat exchanger 128 via a thermal link 138. Referring now to
The thermal link 138 may comprise any desired thermally conductive structure for transmitting heat from the component 136 to the heat exchanger 128. For example, the thermal link 138 may comprise a metallic (e.g., copper, a copper alloy, aluminum, an aluminum alloy, or the like) portion extending between the component 136 and the heat exchanger 128. In other embodiments, the thermal link may comprise a metallic (e.g., copper, a copper alloy, aluminum, an aluminum alloy, or the like) braid covering at least a portion of a cable or lead and extending to the heat exchanger 128. The thermal link may, in one embodiment, comprise a heat pipe extending between the component 136 and the heat exchanger 128. Generally, a heat pipe comprises a sealed container made of a high thermal conductivity material having inner surfaces with a capillary wicking material.
The heat exchanger 128 may comprise various configurations, such as those shown in
Alternatively, a second illustrative embodiment of the heat exchanger 128, is shown in
The thermal intercept 204, in various embodiments, may have configurations corresponding to the embodiments of the heat exchanger 128 depicted in
While the heat exchanger 128, the thermal links 138, 202, and the thermal intercept 204 are shown in
While the embodiments concerning
Implementing the multi-stage cooling system illustrated by embodiments of the present invention to extract cooling power from helium provides for improved thermal efficiencies over the prior art systems by using previously unutilized cooling power of helium flowing through the regenerator 118 to cool one or more related components, thus decreasing the parasitic thermal load on the cooling system.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
This application claims the benefit of U.S. Provisional Application No. 60/350,672, filed Jan. 22, 2002, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3825063 | Cowans | Jul 1974 | A |
4491171 | Zenkner | Jan 1985 | A |
5101894 | Hendricks | Apr 1992 | A |
5412952 | Ohtani et al. | May 1995 | A |
6164077 | Feger | Dec 2000 | A |
6263677 | Hafner et al. | Jul 2001 | B1 |
6286318 | Maguire et al. | Sep 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20030163996 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
60350672 | Jan 2002 | US |