The present invention relates to apparatuses or methods for the fabrication of nanostructures. The present invention is especially suited for fabrication of nanostructures on substrates using chemical vapor deposition (CVD), with catalyst and heating, especially in a controlled and high-throughput manner.
Nanotubes, nanowires, and other nanostructures are fascinating materials due to their size, which are on the order of below 1 nm to 100 nm and their unique electrical and physical properties. They have been shown to function as transistors, sensors, field emission sources, diodes, quantum wires, resonators and many other devices. Various methods of synthesis of nanostructures are known.
Earlier-developed methods generally synthesize bulk nanostructured materials or conglomerations of nanostructures (e.g. using laser ablation or arc-discharge). More recently, methods have been investigated that directly synthesize nanostructures on a desired substrate. For example, U.S. Pat. No. 6,346,189, entitled “Carbon nanotube structures made using catalyst islands”, discloses a method in which carbon nanotubes are directly grown on substrates in known locations through patterned catalyst deposition and the CVD method. Existing methods for fabricating nanotubes, nanowires, and other nanostructures generally suffer from very low throughput and efficiency.
For example, consider a method to increase throughput by CVD synthesis of carbon nanotubes on the wafer scale such as described in Franklin, Nathan R. et al. “Patterned Growth of Single Walled Carbon Nanotubes on Full 4″ Wafers”, Appl. Phys. Lett. 79 (2001), 4571-4573. In the discussed method, catalyst is deposited on a 4-inch silicon wafer, which is placed in a large CVD system for nanotube synthesis. Unfortunately, the end product from this method is not uniform throughout the entire wafer due to non-uniform local environments (e.g. temperature and feedstock gas concentration) throughout different areas on the wafer. This method is also a “hit or miss” technique, in which the entire workpiece (substrate) is exposed to the synthesis conditions all at once.
A different and non-global approach is described in two articles: Alexandrescu, R. et al. “Synthesis of Carbon Nanotubes by CO2-Laser-Assisted Chemical Vapor Deposition”, Infrared Phys. Technol. 44 (2003), 43-50 (hereinafter, Alexandrescu 2003); and Rohmund, F. et al. “Carbon Nanotube Films Grown by Laser-Assisted Chemical Vapor Deposition”, J. Vac. Sci. Technol. B 20 (2002), 802-811 (hereinafter, Rohmund 2002). In the approach described by these articles, a single CO2 laser is used to locally irradiate (heat) an area on a substrate in the presence of catalytic species and hydrocarbon gas. The laser heats the substrate. The laser also heats the gas through use of C2H4, included within the gas, which absorbs some of the CO2 laser radiation and heats other, non-absorbant gases within the gas by collisional energy exchange. This technique produces multi-walled carbon nanotube films of varying yields and defect densities, as well as occasional single-walled carbon nanotubes. Unfortunately, a drawback of this approach is that the yield and quality are not well controlled. The nanotube synthesis is not uniform, and, again, this approach is questionable for device reproducibility and sufficient throughput, especially if desired for use in high-volume production.
What is needed are systems and methods for manufacture of nanometer scaled devices that give improved control over manufacturing conditions, and systems and methods that are capable of high production throughput.
According to one embodiment of the present invention, an apparatus for fabricating nanostructure-based devices on workpieces includes: a stage for supporting a workpiece, a radiating-energy source, and a feedstock delivery system. The workpiece has catalyst thereon. The radiating-energy source is configured to focus radiating energy, from a position spaced apart from said workpiece, toward a work region of the workpiece to directly heat catalyst at the work region, without directly heating catalyst at one or more other work regions of the workpiece. At least the work region is within a chamber. The feedstock delivery system delivers feedstock gas to the catalyst at the work region. The feedstock delivery system includes a feedstock heating system. The feedstock heating system is configured to heat the feedstock gas not merely by any global heating of the chamber or any direct excitation of gas over the work region by the focused radiating energy.
According to another embodiment of the present invention, there is a method for fabricating nanostructure-based devices on a workpiece. The workpiece includes multiple sections, which are referred to in the present paragraph as dies. The method includes the steps of: positioning a die of the workpiece and an energy source in alignment for said energy source to radiate energy onto a surface of the die, the surface being within a chamber; heating feedstock gas to within a predetermined temperature range, and then delivering the heated feedstock gas into the chamber, to flow across the surface of the die; and radiating energy from the energy source externally onto the surface of the die, to thereby heat a catalyst at the surface of the die, wherein a nanostructure is formed at the heated catalyst.
According to another embodiment of the present invention, there is an apparatus for fabricating nanostructure-based devices on a workpiece. The workpiece has catalyst on it. The workpiece includes multiple work sections (e.g., dies). The apparatus includes: a stage for supporting the workpiece, a radiating-energy source configured to directly heat catalyst on at least one die via simultaneously emitted multiple prongs of radiating energy, and a feedstock delivery system for delivery of feedstock gas to the catalyst.
According to another embodiment of the present invention, there is a method for fabricating nanostructure-based devices on a workpiece. The workpiece includes multiple work regions, the method comprises: positioning a work region of the workpiece, and an energy emission system, in alignment for the energy emission system to radiate energy toward a surface of the work region, the surface being within a chamber; flowing feedstock gas to the surface of the work region; and emitting simultaneously multiple beams of radiating energy from the energy emission system externally onto the surface of the die, to thereby heat catalyst disposed on the surface of the die, wherein a nanostructure is formed at the heated catalyst.
The above-mentioned embodiments and other embodiments of the present invention are further made apparent, in the remainder of the present document.
In order to more fully describe some embodiments of the present invention, reference is made to the accompanying drawings. These drawings are not to be considered limitations in the scope of the invention, but are merely illustrative.
The description above and below and the drawings of the present document refer to examples of currently preferred embodiments of the present invention and also describe some exemplary optional features and/or alternative embodiments. It will be understood that the embodiments referred to are for the purpose of illustration and are not intended to limit the invention specifically to those embodiments. For example, preferred features are, in general, not to be interpreted as necessary features. On the contrary, the invention is intended to cover alternatives, variations, modifications and equivalents and anything that is included within the spirit and scope of the invention. To mention just one example, although the drawings show a horizontal stage, other embodiments are possible—for example, an embodiment in which a stage is oriented vertically, or in any other orientation.
Embodiments of the present invention may include any features described in U.S. patent application Ser. No. ______, filed on the same day as the present patent application, entitled “Apparatus and Method for Fabrication of Nanostructures Using Decoupled Heating of Constituents”, attorney docket number ATO-002.00, which is hereby incorporated by reference in its entirety for all purposes.
As will be further seen, embodiments of the present invention are especially suitable for exerting precise control over fabrication conditions, even for high-volume processing, even of large-scale workpieces, e.g., 300 mm wafers or larger wafers, e.g., silicon wafers or the like or other wafers suitable or desired for use as substrates.
The apparatus 30 includes a stage 32 for supporting a workpiece 10. The workpiece 10 has catalyst (e.g., iron or gold nanoparticles, or the like, or others) disposed (e.g., deposited) on it. The workpiece 10 includes multiple work regions (e.g., dies) upon it (see
The apparatus 30 preferably further includes a stage drive 43 that can adjust position of the workpiece 10 relative to the radiating-energy source 34. The stage drive 43 can selectively present any of different work regions of the workpiece 10 for irradiation, with other work regions thereby not presented for irradiation. Thus, one work region can be individually processed, followed by a next work region, and so forth. Uniformity, reproducibility, and reliability of the integrated nanostructures is enhanced by working on only one work region at a time.
Preferably, the stage drive 43 can translate the workpiece, as well as rotate the workpiece. Preferably, the apparatus 30 further includes, or is interfaced with, an automated workpiece exchange system (not specifically shown in
According to one embodiment of the present invention, a CVD apparatus decouples the temperature and heating of the catalyst, workpiece, and feedstock gases, to gain greater control over nanostructure synthesis, to achieve high uniformity, and limit unwanted heating effects. Features of this embodiment of the present invention are shown in
According to one embodiment of the present invention, a CVD apparatus includes a radiating-energy source 34 that simultaneously emits multiple prongs of energy (e.g., multiple laser beams) as the focused radiating energy 26. Features of this embodiment of the present invention are shown schematically in
The apparatus 30 optionally further includes an adjustable electric field generator and/or an adjustable magnetic field generator for use in affecting and controlling direction of nanostructure growth. Optionally, the feedstock gas input guide 36 (and preferably also the gas exhaust guide 38) are configured to be adjustable in position and also in direction of flow, relative to at least the workpiece 10, and preferably relative to the radiating-energy source 34 as well. Adjustment in position may include orthogonal distance (e.g., “Z direction”) to the surface of the work region 22. Adjustment in position may further include positional adjustment in two orthogonal dimensions (e.g., “X and Y directions”) in the plane of the work region 22. The adjustment may be performed by an automatic drive (not shown) that translates (e.g., in X, Y, and Z directions) the nozzle 40 (and preferably also a portion of the gas exhaust guide 38) relative to other parts of the apparatus 30. Preferably, the automatic drive is fully computer-controlled.
The processing of one work region can proceed either in one period, or in multiple periods. For example, the processing in multiple periods may differ in their parameters, including, e.g., radiation intensity and duration profile (e.g., profile as a function of time or of another parameter), gas flow formulation profile, gas flow volume and speed profile, gas heating intensity and duration profile, direct workpiece heating and/or cooling profile, position of catalyst islands (and alignment or positioning of the radiating-energy source), growth directionality influences, horizontal-versus-vertical orientation of the stage, and the like, and any other parameters. For example, in one period, growth of nanostructures can be directed in one direction, and then in another period, growth of nearby nanostructures can be directed in a perpendicular direction, whereby the nanostructures are made to cross one another.
In the preferred embodiment, a multiple laser beam setup is used to irradiate (heat) the nanostructure catalytic species to the required reaction temperature during which feedstock gases are delivered through the feedstock gas delivery system. The irradiation of the catalyst on a workpiece is done in work regions (e.g., dies) for local area synthesis, which allows for uniformity and reliability that is not possible when the catalyst on the entire area of the workpiece is exposed all at once. The irradiation of catalyst within the die can be done in a single stage (which may be called a period to avoid confusion with the stage 32) or multiple stages (periods). Irradiation in multiple periods allows for different nanostructures and orientations on the same die. Translation of the workpiece relative to the multiple laser beam source allows for die-to-die synthesis of the nanostructures until the entire workpiece is processed. Preferably, the workpiece exchange and die-to-die movement is fully automated and computer controlled. Any or all of the lasers can also be aligned with beam splitters to either increase the area or number of beams or to aid in uniform irradiation of the die. In another embodiment, the focused energy source is a focused acoustic, radio frequency, infrared, or microwave source. These focused energy sources would be focused and positioned so that the desired catalyst in the local area (die) to be exposed is irradiatiated (heated) in a single or in multiple stages.
Various embodiments of the present invention are methods for fabricating nanostructure-based devices on workpieces. Many of these methods are especially applicable to the integration of nanostructures into devices, and in particular the methods and apparatus of achieving large scaled fabrication of nanostructure-based electronic and electromechanical devices in a reliable and controlled way. Some method embodiments of the present invention are discussed below. In general, apparatus embodiments of the present invention may be additionally configured, as necessary, to perform the method steps of the present invention. Similarly, method steps discussed below may be performed according to discussion already made above, in connection with apparatus embodiments.
Several embodiments of the present invention have been discussed. Many of these methods are especially applicable to the integration of nanostructures into devices, and in particular the methods and apparatus of achieving large scaled fabrication of nanostructure-based electronic and electromechanical devices in a reliable and controlled way. For example, the apparatus and methodology can be used on a workpiece on which conventional electronic devices have already been fabricated, and onto which nanostructure-based electronics are to be integrated. The particular fabrication protocols and parameters to be used may be selected, depending on the particular nanostructures sought to be produced. For example, the feedstock delivery system is compatible with various gas precursors to nanotubes, nanowires, and nanostructures, as well as non-reactive gases and carrier gases. For example, Alexandrescu 2003 and Rohmund 2002 describe particular examples of production of nanostructures; embodiments of the present invention can adapt parameters to replicate the production described in Alexandrescu 2003 and Rohmund 2002, which are hereby incorporated by reference in their entirety for all purposes.
For example, the feedstock delivery system is configured to be compatible with a gas precursor that selected from the set consisting of CH4, C2H4, C2H2, CO, Cl2, O2, H2, N2, NH3, SiH4, GeH4, and vapor or carrier gas containing materials including at least one of C, Si, Ge, Ga, In, Sn, N, Ga, Ag, Au, Mo, Se, Te, As, Zn, Cd, Mg, Cu, Al, B, S, P, Ti, V, Pt, and Pd.
Throughout the description and drawings, example embodiments are given with reference to specific configurations. It will be appreciated by those of ordinary skill in the art that the present invention can be embodied in other specific forms. The scope of the present invention, for the purpose of the present patent document, is not limited merely to the specific example embodiments of the foregoing description, but rather is indicated by the appended claims. All changes that come within the meaning and range of equivalents within the claims are to be considered as being embraced within the spirit and scope of the claims.