Vehicle radiator fans are used in vehicles to transport cool ambient air over the vehicle's radiator so that the cooled radiator fluid may be transported into the vehicle's combustion engine to cool the engine. Based on an engine temperature signal, the vehicle's engine control module generates a control signal that is communicated to a fan speed controller that actuates the motor of the vehicle radiator fan. Typically, the motor of the vehicle radiator fan operates at either full speed or reduced low speed based on the current engine temperature.
When the fan speed controller actuates the motor of a vehicle radiator fan, the vehicle's electrical system provides power to the vehicle radiator fan. However, the inrush current required to start the motor of the vehicle radiator fan causes a brief voltage drop in the vehicle's electrical system. More significantly, the current surge drawn by the radiator fan results in a proportional increase in current draw from the alternator. This in turn translates into the alternator exerting a higher mechanical load on the engine causing the engine speed (revolution per minute, or RPM) to drop abruptly. In some vehicles, the abrupt increase in loading from the alternator and the attendant RPM drop may cause the vehicle engine to stall. This voltage drop may have an adverse effect on other electronic devices in the vehicle that are voltage sensitive. Further, the mechanical forces imposed on the motor of the vehicle radiator fan during the startup of the motor may have an adverse impact on the radiator fan motor. For example, the wear and tear on the radiator fan motor may shorten the useful life of the radiator fan motor.
Conversely, when the fan speed controller shuts off the vehicle radiator fan, there may be an undesirable brief voltage rise in the vehicle's electrical system. Here, when the vehicle radiator fan shuts off, mechanical load of the alternator abruptly decreases resulting in an abrupt increase in the vehicle engine speed. More significantly, the repeated cycling of the vehicle's radiator fan between the on and off states will eventually adversely affect the life of the radiator fan motor, and may potentially adversely affect some electronic components in the vehicle.
Accordingly, in the arts of vehicle radiator fan control, there is a need in the arts for improved methods, apparatus, and systems for controlling the operation of a vehicle's radiator fan.
Embodiments of the radiator fan soft-start controller provide a system and method for controlling operation of a vehicle radiator fan motor. One embodiment receives one of a low-speed radiator fan control signal or a high-speed radiator fan control signal from an engine control module; provides a first soft start of the radiator fan motor in response to receiving the low-speed radiator fan control signal, wherein the first soft start is defined by a first increasing power ramp that starts at a zero-power level and ends at a low-speed power level; and provides a second soft start of the radiator fan motor in response to receiving the high-speed radiator fan control signal, wherein the second soft start is defined by a second increasing power ramp that starts at the zero-power level and ends at a high-speed power level.
The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views.
Embodiments of the radiator fan soft-start controller 100 provide pulse width modulated (PWM) power to the vehicle's radiator fan motor (interchangeably referred to herein as the radiator fan). Using PWM technology, the fan is initially provided a low power amount that gradually starts the fan motor. As time progresses, during a startup period, the power provided to the fan motor gradually increases and reaches a desired level that operates the fan motor at an intended speed. Accordingly, problems arising from the abrupt power input to the fan motor, and the associated current inrush and voltage drop, provided by legacy vehicle electric systems 102 are avoided.
Some embodiments may be configured to end fan motor operation using PWM technology. The fan is initially fully powered so as to operate at an intended speed. When the vehicle electric system 102 turns the fan off, the radiator fan soft-start controller 100 begins to gradually reduce the amount of power provided to the fan motor. As time progresses, during a soft shutdown period, the power provided to the fan motor gradually decreases and reaches a zero-power level that reduces the fan motor to zero revolutions per minute (RPM). Accordingly, problems arising from the abrupt power loss to the fan motor provided by legacy vehicle electric systems 102 is avoided.
The disclosed systems and methods for a radiator fan soft-start controller 100 will become better understood through review of the following detailed description in conjunction with the figures. The detailed description and figures provide examples of the various inventions described herein. Those skilled in the art will understand that the disclosed examples may be varied, modified, and altered without departing from the scope of the inventions described herein. Many variations are contemplated for different applications and design considerations. However, for the sake of brevity, each and every contemplated variation is not individually described in the following detailed description.
Throughout the following detailed description, various examples for systems and methods for a radiator fan soft-start controller 100 are provided. Related features in the examples may be identical, similar, or dissimilar in different examples. For the sake of brevity, related features will not be redundantly explained in each example. Instead, the use of related feature names will cue the reader that the feature with a related feature name may be similar to the related feature in an example explained previously. Features specific to a given example will be described in that particular example. The reader should understand that a given feature need not be the same or similar to the specific portrayal of a related feature in any given figure or example.
The following definitions apply herein, unless otherwise indicated.
“Substantially” means to be more-or-less conforming to the particular dimension, range, shape, concept, or other aspect modified by the term, such that a feature or component need not conform exactly. For example, a “substantially cylindrical” object means that the object resembles a cylinder, but may have one or more deviations from a true cylinder.
“Comprising,” “including,” and “having” (and conjugations thereof) are used interchangeably to mean including but not necessarily limited to, and are open-ended terms not intended to exclude additional, elements or method steps not expressly recited.
Terms such as “first”, “second”, and “third” are used to distinguish or identify various members of a group, or the like, and are not intended to denote a serial, chronological, or numerical limitation.
“Coupled” means connected, either permanently or releasably, whether directly or indirectly through intervening components. “Secured to” means directly connected without intervening components.
“Communicatively coupled” means that an electronic device exchanges information with another electronic device, either wirelessly or with a wire-based connector, whether directly or indirectly through a communication network 108. “Controllably coupled” means that an electronic device controls operation of another electronic device.
Returning to
The fan speed controller 108 is configured to receive fan turn on and turn off signals from the vehicle's engine control module 126. When the engine block temperature sensor 128 detects engine block temperature exceeding one or more predefined threshold temperatures, the sensor 128 communicates a signal via connection 130 to the engine control module 126. In other vehicle electric systems 102, the sensor 128 communicates temperature information to the engine control module 126. Here, the engine control module 126 compares the sensed engine block temperature with the one or more predefined threshold temperatures.
In an example embodiment, the engine control module 126 in the vehicle's electric system 102 is configured to output one of a low fan speed control signal on connection 132 to operate the radiator fan motor 134 at a low speed, or a high fan speed control signal on connection 136 to operate the radiator fan motor 134 at a higher speed, based on the sensed temperature of the engine block. Preferably, the radiator fan motor 134 is a variable speed, direct current (DC) motor. However, any suitable radiator fan motor 134 may be controlled by embodiments of the radiator fan soft-start controller 100.
For example, but not limited to, the vehicle electric system 102 may be configured to operate the radiator fan motor 134 at its full speed (highest speed in RPM) and a lower speed, such as half speed (lower speed in RPM). Other vehicles may be configured to operate the radiator fan motor 134 at more than two speeds, or may be configured to operate the radiator fan motor 134 at a single speed. Some types of engine control modules 126 may output different control signals via a single connector (where fan speed is specified by a specific voltage or in a digital signal). Embodiments of the radiator fan soft-start controller 100 can be configured to receive any suitable fan speed signal from a vehicle's engine control module 126. Other embodiments may be configured to receive a temperature signal directly from the engine block temperature sensor 128.
Some embodiments of the radiator fan soft-start controller 100 and/or the engine control module 126 may be configured to adjust or determine fan speed based on ambient temperature. For example, the radiator fan motor 134 may be operated at a lower speed on a cold winter night, as contrasted with the need for a higher speed on a hot summer day.
The example vehicle electric system 102 described herein with a low fan speed and a high fan speed is intended to conceptually disclose embodiments of the radiator fan soft-start controller 100. One skilled in the art appreciates that there are many ways in which the radiator fan motor 134 can be actuated based on the sensed engine block temperature. Any vehicle electric systems 102 that control the radiator fan motor 134 now known or later developed are intended to be within the scope of this disclosure and to be protected by the accompanying claims.
Typically, the vehicle electric system 102 provides electrical power to the various vehicle components for a power source 138. The power source 138 may be one or more batteries, a generator, an alternator, or a combination thereof. The purpose of the radiator fan soft-start controller 100 is to control the power provided to the radiator fan motor 134 from the power source 138. Accordingly, the radiator fan soft-start controller 100 is coupled to the power source 138 via connection 140, and optionally via a fuse 142 power source 138. The regulated power is provided from the radiator fan soft-start controller 100 to the radiator fan motor 134 via connection 144. (In some embodiments, the optional fuse 142 and/or a secondary fuse may be included on connection 144.)
In the preferred embodiment, the low-speed fan input 114 of the fan speed controller 108 is configured to communicatively couple to the low-speed output connector 132 that is coupled to a legacy engine control module 126. The high-speed fan input 116 of the fan speed controller 108 is configured to communicatively couple to the high-speed output connector 136 that is coupled to the legacy engine control module 126. Here, the radiator fan soft-start controller 100 can be incorporated into a legacy vehicle electric system 102. The fan speed controller 108 provides a suitable control signal, via connection 146, to the processor system 104 that indicates the intended operational speed of the radiator fan motor 134. Here, the control signal on connection 146 may be an analog signal or a digital signal.
Based on the intended operational speed of the radiator fan motor 134, the processor system 104 outputs a control signal to the PWM power switch 120 residing in the PWM 110. Preferably, the PWM power switch 120 is a solid-state electric power switch that passes power from the power source 138 to the radiator fan motor 134, via connection 144, when actuated (gated) to an on state (conducting state). That is, a power pulse is initially generated by turning PWM power switch 120 to an on state to begin each one of the series of power pulses. The PWM power switch 120 blocks power when in an off state (non-conducting state). Here, the power pulse is ended by turning the PWM power switch 120 to the off state to end each one of the series of power pulses.
The control signal communicated from the processor system 104, via connection 148, controls the PWM power switch 120 between the on state and the off state. The optional oscillator 118, via connection 150, may be included to facilitate the transition from the on state to the off state of the PWM power switch 120.
In some embodiments, the PWM power switch 120 passes the power to the radiator fan motor 134 via an optional low pass filter 112. The low pass filter 112 is configured to smooth out and average, or otherwise condition, the transitioning power signal. Any suitable low pass filter 112 (or high pass filter) may be used in the various embodiments.
When the radiator fan soft-start controller 100 employs an analog signal-based system, an analog circuit creates the pulse magnitude control ramp signals. An analog embodiment may use fewer components that the example digital signal-based system illustrated in
When the radiator fan soft-start controller 100 employs a digital signal-based system, the processor system 104 retrieves and executes the PWM logic 122. The PWM logic 122 provides instructions to enable the processor system 104 to regulate power to the radiator fan motor 134 by control of the PWM 110. The PWM logic 122 may optionally include instructions that enable the processor system 104 to track and record various operating conditions that may be saved into the operating history 124. The information stored in the operating history 124 may be used for diagnostic purposes or the like.
As noted herein, embodiments of the radiator fan soft-start controller 100 provide pulse width modulated (PWM) power to the vehicle's radiator fan motor 134. During a low-speed soft-start period 202, using PWM technology, the radiator fan motor 134 is initially provided a low power amount at time T1 that gradually starts the radiator fan motor 134. As time progresses, during the low-speed startup period 202 that ranges from T1 to T2, the average power provided to the radiator fan motor 134 gradually increases the speed of the radiator fan motor 134. At the end of the low-speed startup period 202, the radiator fan motor 134 reaches the intended speed since a desired average power level is provided that operates the fan motor at the intended low speed, beginning at time T2. That is, the low-speed startup period 202 is defined as an increasing power ramp that starts at a zero-power level and ends at a low-speed power level.
At the end of the soft startup period 202, the average power provided to the radiator fan motor 134, via the filter 112, corresponds to the power amount needed to operate the radiator fan motor 134 at the intended low speed. For example, if the low-speed power corresponds to a half speed for the radiator fan motor 134, the duration of the full voltage power pulse 304 for a sustained half speed operation period 204, beginning at T2 and ending at T3, would be generated by a series of PWM power pulses 304 that have a duration that is the same as a duration where the PWM power switch 120 is off (wherein no power is transferred, via the filter 112, to the radiator fan motor 134), as conceptually illustrated during the period 204 in
During a high-speed soft-start period 206, using PWM technology, the radiator fan motor 134 is initially provided a low power amount at time T5 that gradually starts the radiator fan motor 134. As time progresses, during the high-speed startup period 206 that ranges from T5 to T6, the average power provided to the radiator fan motor 134 gradually increases and reaches a desired average power level that operates the fan motor at the intended high speed, beginning at time T6.
At the end of the high-speed startup period 206, the average power provided to the radiator fan motor 134 corresponds to the power amount needed to operate the radiator fan motor 134 at the intended high speed. For example, if the high-speed power corresponds to a high speed for the radiator fan motor 134, the PWM power switch 120 remains on to provide full voltage 308 for a sustained high-speed operation period 208, beginning at T6 and ending at T7, would be generated by a series of PWM power pulses 308 that have a duration that is constantly on, as conceptually illustrated during the duration 208 in
One skilled in the art appreciates that the duration and/or frequency of power pulses during a high-speed soft start period 206 will be greater than the power pulses of the low-speed startup period 202. In some embodiments, the duration of the low-speed startup period 202 and the high-speed startup period 206 may be the same. In other embodiments, the duration of the low-speed startup period 202 is different from the duration of the high-speed startup period 206. The example voltage of the vehicle electric system 102 as illustrated in
As noted herein, some embodiments optionally perform a soft shutdown operation. Here, after the engine control module 126 communicates a control signal indicating that the radiator fan motor 134 should be shut off, the radiator fan soft-start controller 100 initiates a soft shutdown operation.
For example, when the radiator fan motor 134 is operating at a low speed, a low-speed soft shutdown period 210 begins at time T3. The low-speed soft shutdown period 210 is initiated by decreasing the duration of the next power pulse 310 that occurs at or after time T3. As time progresses, the duration of each subsequent power pulse 310 is decreased. Finally, at time T4, the low-speed soft shutdown period 210 ends, and no power is provided to the radiator fan motor 134. Here, the soft shutdown is defined by a decreasing power ramp that starts at the low-speed power level and ends at the zero-power level.
Similarly, when the radiator fan motor 134 is operating at a high speed, a high-speed soft shutdown period 212 begins at time T7. The high-speed soft shutdown period 212 is initiated by turning off the power at time T7 for some predefined duration, and then generating a power pulse of a predefined duration. Then, subsequent power pulses 312 have a decreasing duration. As time progresses, the duration of each subsequent power pulse 312 is decreased. Finally, at time T8, the high-speed soft shutdown period 212 ends, and no power is provided to the radiator fan motor 134. The soft shutdown is defined by a decreasing power ramp that starts at the low-speed power level and ends at the zero-power level.
It should be emphasized that the above-described embodiments of the radiator fan soft-start controller 100 are merely possible examples of implementations of the invention. Many variations and modifications may be made to the above-described embodiments. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Furthermore, the disclosure above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in a particular form, the specific embodiments disclosed and illustrated above are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed above and inherent to those skilled in the art pertaining to such inventions. Where the disclosure or subsequently filed claims recite “a” element, “a first” element, or any such equivalent term, the disclosure or claims should be understood to incorporate one or more such elements, neither requiring nor excluding two or more such elements.
Applicant(s) reserves the right to submit claims directed to combinations and subcombinations of the disclosed inventions that are believed to be novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed through amendment of those claims or presentation of new claims in the present application or in a related application. Such amended or new claims, whether they are directed to the same invention or a different invention and whether they are different, broader, narrower, or equal in scope to the original claims, are to be considered within the subject matter of the inventions described herein.
This application is a Continuation of, and claims priority, to copending U.S. application Ser. No. 17/587,996, filed on Jan. 28, 2022, entitled Apparatus and Method For Fan Soft-Start Controller, which claims priority to U.S. application Ser. No. 17/459,013, filed on Aug. 27, 2021, entitled Apparatus and Method For Fan Soft-Start Controller, both of which are hereby incorporated by reference in their entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 17587996 | Jan 2022 | US |
Child | 18229549 | US | |
Parent | 17459013 | Aug 2021 | US |
Child | 17587996 | US |