1. Field of the Invention
The present invention relates to an apparatus and a method for feeding used objects, in particular used beverage containers (in the following referred to as “UBCs”), to a recording and/or sorting unit, wherein the objects are supplied on receiving means and forwarded one by one with a predetermined orientation on a feeding conveyor.
2. Description of Related Art
Breweries, bottlers and manufacturers of mineral water, soft drinks and the like frequently use non refillable bottles made of plastic, glass or metal cans that are part of a deposit/return system, e.g. the PET-cide system in Germany (PET is short for polyethylene terephthalate and PET is a thermoplastic polymer resin of the polyester family). Each UBC represents a deposit fee that has an effect on manufacturers, distributors and consumers motivating the consumers to return the UBCs in the shops, where the returned UBCs either are counted and registered in RVM's (Reverse Vending Machines), or manually accepted by the cashier whereby the consumer gets the deposit fee back. In either case the UBCs are transported to central counting centers, where the UBCs are counted and registered once again and sorted into the different material fractions e.g. PET, glass, aluminum and steel.
Based upon the counting and registration at the counting centre the manufacturers and/or distributors are invoiced for the deposit fee, which amount is collected by the shops. After counting and registration the UBCs are devaluated in e.g. compactors, shredders etc. and the residual products are sent to recycling. Used beverage containers may also be referred to as “empties”.
A system for processing of packages, such as recyclable UBCs, is known from WO 2006/125436 A1. In this system, UBCs are recorded, counted and sorted in a counting and sorting machine. Large numbers of UBCs can be handled per time unit. Due to the high capacity of this system, it may be referred to as a high speed counting and sorting machine. In this system the UBCs are supplied in a receiving container and picked up and advanced on conveyors by means of carriers on said conveyors, said carriers thereby applying a force to the packages. The packages are subsequently fed singly to a recording unit at a high speed. Some of the returned UBCs are possibly glass bottles, and if the share of glass bottles in the returned packages is too large, the feeding unit is unable to provide a sufficient number of packages to the recording unit to utilize the maximum capacity of this known system due to the fragility of the glass bottles.
A feeding system for bottles is known from U.S. Pat. No. 4,489,820. In this system, upright bottles are transferred from laterally adjacent rows on a feed conveyor into a single row of bottles on a downstream conveyor. The bottles align in a single row due to passing a number of conveyors with increasing speed. No external forces are applied to the bottles; they move across the conveyors solely due to gravity. However, the system applies to upright bottles identical in shape and would be unsuitable for e.g. bottles of different shapes in a horizontal position.
For feeding bottles or cans to the recording unit in a reverse vending system, the bottles must be fed singly and orientated correctly. If the high capacity system described in International Patent Application Publication WO 2006/125436 A 1 and corresponding U.S. Patent Application Publication 2008/0277323 is not suitable for this, the alternative is to arrange that UBCs are supplied to a receiving table and orientated manually and placed on a conveyor. This is not considered a cost-effective solution just as this solution is limited in capacity both in the amount of recyclable UBCs which can be handled at the time and the speed at which the UBCs can be processed. Moreover, a manual solution for feeding the UBCs to the recording and sorting units involves a labor intensive and monotone working operation.
Considering the aspects described above, it is an object of the present invention to provide an automated feeding system which is simple in functionality and cost-effective in production and in use.
This is achieved by an apparatus for feeding objects, such as used beverage containers, to a recording and/or sorting unit, wherein the objects are supplied on receiving means and forwarded one by one with a predetermined orientation on at least one feeding conveyor, the receiving means comprises at least one receiving table comprising at least one rotating disk with at least one feeding conveyor provided tangential relative to at least one rotating disk, and with a peripheral barrier essentially circumscribing at least a portion of said receiving table(s).
The receiving table may comprise more rotating disks in a combination with conveyor means transporting the UBCs between the rotary disks. In the preferred embodiment, the one or more disks are provided with a conical inner portion for guiding objects on the disks towards the periphery thereof. The conical portion may cover a maximum 10% of the area of the disk, such as a maximum 25% of the area of the disk, such as a maximum 50% of the area of the disk, such as a maximum 75% of the area of the disk, such as a maximum 90% of the area of the disk, such as 100% of the area of the disk. Thus, in one embodiment of the invention one or more of the rotating disks is a cone. In another embodiment of the invention a pole is provided in the center of one or more of the rotating disks. Said pole is preferably provided to prevent objects from being located in the centre of a rotating disk where no centrifugal forces can guide said object towards the periphery of the rotating disk.
Accordingly, by the invention, there is also provided a method of feeding recyclable UBCs, to a recording and/or sorting unit, by supplying the objects on receiving means and forwarding the objects one by one with a predetermined orientation on at least one feeding conveyor.
Once supplied on the receiving means, the objects are rotated on at least one rotating disk and thereby aligned along a barrier circumscribing at least a portion of said at least one delivery disk so that the objects are aligned and forwarded on a feeding conveyor which is tangentially arranged relative to a rotating disk.
The predetermined orientation of the UBCs on a feeding conveyor is preferably with the longitudinal axis of the UBCs substantially parallel with the direction of movement and substantially parallel with the longitudinal axis of the feeding conveyor. By the invention, there is provided a simple and efficient feeding system for use in a deposit/return system for UBCs, such as bottles or cans. The apparatus according to the invention allows for a gentle handling for the UBCs, which makes the feeding system according to the invention suitable for both glass, plastic or metal packages and any mixture thereof. Besides the versatility of the feeding apparatus according to the invention, it is found that the apparatus can be designed to provide high throughput capacity. The actual capacity can be optimized by selecting a proper combination of diameter and speed of rotating disk(s), and/or speed of conveyors connecting the rotary disks.
Another advantage by an apparatus according to the invention is that a feeding system which is compact in size may be provided. For instance, the apparatus according to the invention does not necessarily have to be aligned with the conveying direction of the recording and sorting units. Thus, a more flexible solution is provided with the apparatus according to the invention which has a smaller footprint on the floor. By choosing an appropriate diameter of the delivery disk relative to the size of the UBCs to be processed thereon and the amount, an efficient and reliable feeding system is provided.
In a preferred embodiment, the receiving table comprises two or more rotating disks. The disks provided with tangential feeding conveyors may then be termed delivery rotating disks (or just delivery disk), because objects will only be guided (i.e. delivered) onto a feeding conveyor from the delivery disks. Conveyor means are preferably arranged to transport objects from one disk to the other, said conveyor means preferably comprising a forward conveyor band forwarding the objects towards a delivery rotating disk and a return conveyor band returning objects not delivered to a feeding conveyor to the second rotating disk. Hereby, a large capacity of the apparatus may be provided. To further increase the capacity of the invention, additional rotating disks may be provided.
Thus, further embodiments of the invention comprise more than two rotating disks, such as at least three, four, five or at least six rotating disks, preferably comprising conveyor bands forwarding the objects between the disks. Feeding conveyors may be located tangentially to one or more of the rotating disks.
In the preferred embodiment, the feeding conveyor(s) is inclined relative to the substantially horizontal receiving table. Preferably, the barrier circumscribing the receiving table leaves the periphery open where a tangential feeding conveyor is arranged. Hereby, the UBCs are lifted upward as they are taken over by a feeding conveyor and forwarded thereon. This means that should a container be transferred to the conveyor in an unfavorable orientation, this container will most likely fall off the feeding conveyor and return to the receiving table and reprocessed.
In the preferred embodiment means for adjusting the conveying speed of the feeding conveyor(s) and/or the rotation of the disk(s) is comprised. Furthermore, the cross section of the feeding conveyor(s) is preferably substantially V-shaped, thereby helping to maintain the objects in the predetermined orientation.
UBCs in the receiving table will substantially be lying down due to the rotational forces of the rotating disk(s) and/or by the forces exerted by forward and return conveyor bands, i.e., the longitudinal axis of the UBCs will typically be substantially parallel with the horizontal plane of the receiving table. This is true for most UBCs; however, some beverage containers may be designed or changed in a way that the state of equilibrium/point of balance is not with a horizontal longitudinal axis, i.e., the UBCs may be tilted with respect to horizontal. This may be the case if the bottleneck of a bottle is heavy compared to the rest of the bottle. A tilted UBCs may be at least partially overlapping another UBC on the feeding conveyor.
Overlapping UBCs in a scanning unit may result in faulty registration, because overlapping UBCs may be registered as one UBC. Thus, a further object of the invention is to ensure that UBCs are fed one by one. This is achieved by a further embodiment of the invention comprising means for detecting objects that are not lying horizontal. Tilted bottles are inclined compared to horizontal and they may also be inclined compared to the longitudinal axis of a feeding conveyor. Thus, a further embodiment of the invention comprises means for detecting objects inclined compared to the longitudinal axis of a feeding conveyor(s). This is preferably provided by means of at least one photocell arrangement located at a feeding conveyor, said photocell arrangement detecting objects inclined compared to the feeding conveyor. Preferably the photocell arrangement is located below the line of motion of objects at the feeding conveyor.
When an inclined object is detected, it means that there is a risk of two or more overlapping objects. The distance between objects being conveyed on a first conveyor can be increased by transferring the objects to a subsequent second conveyor with a higher conveying speed than the first conveyor. A feeding conveyor in this invention will typically be succeeded by another conveyor before entering a scanning and sorting unit, said another conveyor typically having similar or higher conveying speed compared to the feeding conveyor. If the conveying speed of a feeding conveyor is reduced, the distance between objects on a succeeding conveyor will be increased. Thus, in a further embodiment of the invention the speed of at least one feeding conveyor is reduced temporarily when an object inclined compared to the longitudinal axis of the feeding conveyor is detected. Furthermore, the rotation of at least one rotating disk may be reduced temporarily when an object inclined compared to the longitudinal axis of the feeding conveyor is detected. Temporarily may be a period of time. I.e. when an object, which is inclined compared to the longitudinal axis of a feeding conveyor, is detected, the conveying speed of the feeding conveyor is preferably immediately reduced for a predetermined period of time, such as approximately 1, 2, 3, 4, 5, 6, 7, 8 or 9 seconds or at least 5 or 10 seconds.
It may be found advantageous to provide supply means including a supply conveyor for supplying at least one batch of objects in storage containers and means for discharging a batch of objects from a container onto the receiving table. Hereby, a compact automatic supply of batches of UBCs may be provided.
The apparatus according to the invention may be used for feeding objects of any type, however preferably objects that are substantially rotary-symmetrical around at least one axis, such as rotary-symmetrical around a long axis. Thus, the apparatus according to the invention may be used in connection with recording and/or sorting of many types of objects, preferably used and/or recyclable objects.
The invention will in the following be described in greater detail with reference to the accompanying drawings.
a)-c) are schematic side, top and perspective views, respectively, of a second embodiment of the invention,
a)-c) are schematic side, top and perspective views, respectively, of a third embodiment of the invention,
a)-c) are schematic side, top and perspective views, respectively, of a fourth embodiment of the invention,
a)-c) are schematic side, top and perspective views, respectively, of a fifth embodiment of the invention,
a)-c) are schematic side, top and perspective views, respectively, of an eighth embodiment of the invention;
a)-c) are schematic side, top and perspective views, respectively, of a ninth embodiment of the invention; and
a)-d) are schematic illustrations of an example of an arrangement for detecting tilted bottles.
With reference to
The UBCs 1, such as glass or plastic bottles and/or metal cans, are supplied onto the receiving table 3 from a bag or the like which is emptied out onto the receiving table 3. The disks 4, 5 and the conveyor bands 7, 8 run in a direction as indicated by the arrows in
Hereby, the objects 1 are stirred and the outermost are moved towards the barrier 6 and in the direction towards the outlet where the feeding conveyor 2 is arranged at the delivery disk 4. The disks 4, 5 may be provided with a conic inner portion 4a, 5a for facilitating the movement of the objects towards the periphery of the disks 4, 5. At least a portion of the UBCs 1 are hereby pressed towards the barrier 6 which their longitudinal axis in a generally tangential direction relative to the disk 4. When the UBCs in this position are moved to the outlet, the feeding conveyor 2 takes over the movement and moves the UBCs along a linear path to further processing. The UBCs which are not transferred at this time are simply returned to “another round” on the receiving table 3. Accordingly, these UBCs are returned on the return conveyor band 7 to the second disk 5 and/or directly to the forward conveyor band 8 for a new alignment on the delivery disk 4.
The rotating frequency of a disk is preferably approximately 1 Hz, such as between 0.8 and 1.2 Hz, such as between 0.5 and 1.5 Hz, such as at least 0.1 Hz, such as at least 0.5 Hz, such as at least 1 Hz, such as at least 1.5 Hz, such as at least 2 Hz, such as at least 3 Hz, such as at least 5 Hz.
The capacity of the apparatus according to a preferred embodiment of the invention is at least 50 UBCs per minute, such as at least 100 UBCs per minute, such as at least 150 UBCs per minute, such as at least 200 UBCs per minute, such as at least 300 UBCs per minute, such as at least 400 UBCs per minute, such as at least 500 UBCs per minute, such as between 150 and 300 UBCs per minute. The footprint of the apparatus may be less than 1 m2, such as less than 1.5 m2, such as less than 2 m2, such as less than 2.5 m2, such as less than 3 m2, such as less than 4 m2, such as less than 5 m2.
By the invention, it is realized that other variants of a feeding apparatus may be provided without departing from the scope of the invention as set forth in the accompanying claims.
In
With reference to
According to a fourth embodiment of the invention as shown in
As a fifth example of a variant of the invention, the apparatus as shown in
The feeding conveyor 2 can deliver the UBCs to the periphery of this separate third rotating disk 5′. The separate rotating disk 5′ will have its own peripheral barrier 6″ along which the UBCs are guided. Depending on the actual length of the barrier 6″ as compared to the diameter of the separate rotating disk 5′, the UBCs may change direction of movement on a subsequent second feeding conveyor 2″ compared to the direction of movement of conveyor 2. This feature will, in combination with a recording and sorting unit, allow for an optimized footprint of the entire machine for processing of objects, such as UBCs.
With reference to
In
In
In
a)-d) schematically illustrate an example of a means for detecting inclined objects which is tilted bottles Y in this case.
However, the bottleneck of the inclined bottle Y will interfere with the photocell arrangement 16, 16′. Thereby an example of a how to detect an inclined object is provided.
Common to most of the different embodiments, the disks 4, 5 and the conveyor bands 7, 8 run in a direction as indicated by the arrows in the figures. Hereby, the objects 1 are stirred and the outermost are moved towards the barrier 6 and in the direction towards the outlet where the feeding conveyor 2 is arranged at the delivery disk 4. The disks 4, 5 may be provided with a conic inner portion 4a, 5a for facilitating the movement of the objects towards the periphery of the disks 4, 5. At least a portion of the UBCs 1 are hereby pressed towards the barrier 6 which their longitudinal axis in a generally tangential direction relative to the disk 4. When the UBCs in this position are moved to the outlet, the feeding conveyor 2 takes over the movement and moves the UBCs along a substantial linear path to further processing. The UBCs which are not transferred at this time are simply returned to “another round” on the receiving table 3. Accordingly, in some embodiments these UBCs may be returned on the return conveyor band 7 to the second disk 5 and/or directly to the forward conveyor band 8 for a new alignment on the delivery disk 4. Thus, apart from the seventh embodiment which may require manual interaction the apparatus according to the invention is self-depleting, i.e., all objects will eventually be guided onto a feeding conveyor, preferably for subsequent further processing.
With reference to
By the expression that the objects are rotated on a delivery disk used above, it is meant that an angular displacement in a direction substantially perpendicular to the longitudinal axis of the object is produced so that the object is positioned along the barrier circumscribing at least a portion of the delivery disk so that the objects are delivered in alignment with the tangential feeding conveyor and forwarded on the feeding conveyor.
The invention is described above with reference to some currently preferred embodiments. However, it noted that variations of the invention may be provided without departing from the scope of the invention as it is defined in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 00528 | Apr 2008 | DK | national |
2008 00975 | Jul 2008 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2009/050084 | 4/14/2009 | WO | 00 | 11/18/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/124556 | 10/15/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2858008 | Dilts | Oct 1958 | A |
4225031 | Frisbie et al. | Sep 1980 | A |
4489820 | Schneider | Dec 1984 | A |
4723661 | Hoppmann et al. | Feb 1988 | A |
4768639 | Gamberini et al. | Sep 1988 | A |
4828100 | Hoppmann et al. | May 1989 | A |
4928808 | Marti | May 1990 | A |
5853077 | Schmitt | Dec 1998 | A |
5927468 | Corniani et al. | Jul 1999 | A |
5954184 | Schmitt | Sep 1999 | A |
5954185 | Eshelman et al. | Sep 1999 | A |
6065587 | Schindel | May 2000 | A |
6112937 | Takahashi et al. | Sep 2000 | A |
6216845 | Polese | Apr 2001 | B1 |
6612417 | Garvey | Sep 2003 | B2 |
6691855 | Takahashi et al. | Feb 2004 | B1 |
7258222 | Marti Sala et al. | Aug 2007 | B2 |
7383937 | Perreault et al. | Jun 2008 | B2 |
7669707 | Kenneway | Mar 2010 | B2 |
7757837 | Jones | Jul 2010 | B2 |
8096403 | Marti Sala et al. | Jan 2012 | B2 |
8123024 | Yagyu et al. | Feb 2012 | B2 |
8360270 | McClosky et al. | Jan 2013 | B1 |
20080277323 | Stovring | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
292970 | Aug 1953 | CH |
44 37 162 | Apr 1996 | DE |
199 25 989 | Dec 2000 | DE |
0 091 856 | Oct 1983 | EP |
0 629 571 | Dec 1994 | EP |
0 849 197 | Jun 1998 | EP |
1 650 143 | Apr 2006 | EP |
2 310 164 | Dec 1976 | FR |
907 997 | Oct 1962 | GB |
03086666 | Oct 2003 | WO |
2006079561 | Aug 2006 | WO |
2006125436 | Nov 2006 | WO |
Entry |
---|
International Search Report for International Application No. PCT/DK2009/050084 Dated Jun. 22, 2009. |
Number | Date | Country | |
---|---|---|---|
20110048897 A1 | Mar 2011 | US |