The invention described herein relates to an apparatus and a method for automatically delivering material, for example powder, into containers.
In the pharmaceutical industry, material such as powder is often transported in containers for a variety of reasons, including for example to patients in clinical trials or to formulators for development. Accurate and rapid filling of powders into containers would, therefore, provide improvements such as in clinical trial management and formulation development, by increasing efficiency and reducing costs.
Under current practice, both manual and automated methods exist for delivering material, for example powder, into containers, although such methods suffer from drawbacks. For example, the accuracy of the method can be influenced by such factors as the nature of the material, including the flow and density of powder, environmental conditions under which the operation takes place (e.g. humidity and temperature), and other factors.
In addition, manual methods can be laborious, time consuming, potentially inaccurate due to human error, etc., and therefore are useful only for very low-throughput applications. In such methods, for example, individual doses of powder may be weighed out by an individual using a balance and then transferred into a container. Alternatively, the powder may not be weighed directly but rather may be transferred into a container situated on a balance, at which time the weighing step occurs. These methods are neither time- nor cost-effective, particularly when a higher-throughput operation is needed.
Low-throughput automated methods for filling containers with powders, which may avoid some of the problems associated with manual methods described above, typically employ one of two mechanisms: those with gravity feed mechanisms like the Symyx Autodose POWDERNIUM®, or those with auger mechanisms like the Bohdan FLEXIWEIGH®. Although such systems are generally accurate and flexible for both powder amount and type, they are still relatively slow, often requiring two to five minutes of delivery time per dose. Thus, those methods are practical primarily for low-throughput applications, such as laboratory work or formulation work including, for example, when 10-30 containers filled per hour is sufficient.
There are high-speed automated machines for high-throughput delivery of powders into, for example, capsules and other containers. One such method can fill many thousands of capsules or containers per hour and employs a dosator-type method. The dosator-type method involves plunging a cylinder of specific volume into a powder supply, or use of a vacuum to pick up powder in a cylinder of specific volume. The powder is then densified to form a cohesive plug. The powder plug is then ejected or released into a container or capsule. A disadvantage associated with this method may include, for example, the limitatibon on the type of powders which can be used, such as, for example, those which have the ability to form plugs by this method. Another disadvantage of the dosator-type method may include the potential loss of a large amount of powder due to either the necessary height of the powder supply, which must be higher than the height of the cylinder, or the loss of powder in vacuum systems where static charges may lead to inconsistent weight fills.
As another example of an automated high-throughput powder dispensing method, a method currently used for filling capsules uses a tamping-type mechanism which involves filling chambers in a dosating disk with powder which is then compressed with tamping pins to form plugs, then releasing the plugs into the capsules through an ejection hole in the dosating disk.
There are advantages of the tamping-type method relative to the dosator-type method. The tamping-type method accommodates a greater variety of powder types than the dosator-type method, and results in less powder loss during processing. The tamping-type mechanism is also often simpler, with fewer moving parts and no vacuum or gas required to hold or release the powder doses.
There is thus a need for improved methods and apparatuses for delivering powders into containers. A need exists for a method and apparatus which can be used to accommodate a variety of powder types and deliver the powder into the container in a fast and efficient manner.
Although the present invention may obviate one or more of the above-mentioned disadvantages, it should be understood that some aspects of the invention might not necessarily obviate one or more of those disadvantages.
In the following description, various aspects and embodiments will become evident. In its broadest sense, the invention could be practiced without having one or more features of these aspects and embodiments. Further, these aspects and embodiments are exemplary. Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practicing of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
In accordance with exemplary embodiments of the invention, the inventors have devised an apparatus and method for filling containers with material in a manner which is more time and cost efficient than those currently known. Exemplary embodiments of the present invention provide a container-filling apparatus directed to high-speed controlled movement of a succession of containers in a rotating turret which is configured to move the containers through the container-filling apparatus to a dosing portion where they are then are filled with material such as, for example, powder, as well as methods for filling containers with material.
In one exemplary embodiment according to the invention, a dosing portion of the container-filling apparatus comprises a means for holding and dispensing powder, such as a powder hopper, and a tamping mechanism which defines (i) a dosating disk comprising chambers and (ii) tamping pins which may produce a compressed powder in the form of a plug. Once the plug is formed, an ejection pin may then engage the compressed plug and eject it into a container positioned in a rotating turret which is configured to move containers sequentally through the container-filling apparatus beneath or adjacent to the dosating disk. Once the powder has been delivered into the container, the turret may be advanced to the next position for powder delivery into the next sequential container.
A container-conveying means may be used in conjunction with the turret to supply a continual flow of containers for uninterrupted delivery of powder into empty containers and removal of filled containers in each batch. In an exemplary embodiment, the rotating turret may be adjacent to the container-conveying means. In another exemplary embodiment of the invention, the turret may be controlled by a computer and used to hold and/or store containers for powder delivery.
The present invention may be used to fill containers with material such as powder in amounts ranging from about 210 containers to about 3500 containers per hour, with a mass of the material ranging from about 25 mg to about 2 g per container. The material may, in exemplary embodiments, be a powder and comprise at least one drug substance.
In one exemplary embodiment, the present invention provides for an automatic method of filling containers with powder with minimal material loss and minimal starting material. Thus, these efficiencies may require less drug substance, for example, than current systems require.
The term “powder” as used herein includes any solid material made up of grains, granules, particles, or the like. It includes, for example, particulate material such as a pure compound. In the pharmaceutical industry, such a pure compound is often referred to interchangeably as a “drug substance” or “active pharmaceutical ingredient” (API). Powder can also include a blend of drug substance with excipients or other additives, a mixture of different granular or particulate materials (such as API), or both. The granular or particulate materials can include, for example, granulations, agglomerates, pellets, microtablets, and microspheres.
The term “container” as used herein includes any container known by those skilled in the art to be useful for receiving and transporting materials such as powders, including, for example, bottles, vials, or other receptacles, any of which can be made of a variety of materials such as glass, polymers, etc. The term is not, however, intended to include capsules.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention. In the drawings:
Reference will now be made in greater detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
As can be seen in
As can be seen in
The rotating turret 102 may be mounted on the container-filling apparatus 100 by means of, for example, a right drive unit 101 as seen in
In one exemplary embodiment, the dosating disk 105 may rotate underneath the powder hopper 104 and the powder may be progressively tamped at the five stations to form the plug. The tamping pins 107 may move up and down in an intermittent manner at the stations while the dosating disk 105 is indexed in a circular path past the stations to form a plug. Starting at station one, the powder may fill the chamber in the dosating disk 105 and may be tamped or compressed with the tamping pins 107 at that station. The dosating disk 105 may then be rotated to station two, while more powder enters the cavity left by tamping the powder at station one. At station two, the tamping pins 107 may again be lowered into the cavity to again compress the powder. Thereafter, the dosating disk 105 may be rotated through stations three, four, and five, with sequential compression of the powder being effected with the tamping pins 107 at those stations. The container-conveying means can engage the containers 103 and move the containers toward the rotating turret 102 which may then engage the containers 103 in the cavities 401 in succession. The rotating turret 102 can then rotate in a circular motion such that the containers 103 are sequentially moved into the dosing portion 200 and under an ejection hole in the dosating disk 105. An ejection pin 108 then engages the compressed plug in the chamber and ejects it into a container positioned in the turret 102 beneath the ejection chamber of the dosating disk 105. The turret 102 may then rotate to bring the next empty container 103 into position to receive the next compressed plug.
Other means known to those skilled in the art for providing the desired material, such as, for example, a pellet dosing system 300 (
The following example, which is not intended to be limiting, shows an exemplary illustration of the above-described apparatus and method.
An InCap tamping type capsule filling machine manufactured by Dott Bonapace & C, Milano, Italy was modified by removing the parts of the machine that bring in, separate, and move capsules into position to receive powder, and put capsules together. What remained were the powder hopper, dosating disk, and mechanism for tamping material in the disk and ejecting a plug of compressed powder. A turret was designed and constructed (
Bottles were fed to the bottle turret using a rotary moving table holding a supply of bottles. A channel in the table directed bottles into the rotating bottle turret, and after the turret advanced the empty bottles through the apparatus into the location under the ejection hole of the dosating disk, plugs of the powder which had been made by the tamping mechanism were ejected into the bottles. In this example, the filled bottles were removed manually.
The following comparative example shows how an exemplary embodiment of the present invention can improve both time and cost efficiency of filling containers with powders.
A campaign to fill 5000 bottles each with 2 grams of a placebo substance A was carried out by weighing by hand the material into bottles that were situated on a balance. It required six people working full time four weeks to complete the campaign. Using the exemplary container-filling apparatus according to an embodiment of the invention as shown in Example 1, a similar campaign was completed by six people working full time for two days.
Although the present invention herein has been described with reference to various exemplary embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. Those having skill in the art would recognize that a variety of modifications to the exemplary embodiments may be made, including modifications to the number and arrangement of various parts, materials, and methodologies, such as, for example, the type and number of containers which can be used in the rotating turret, the type of container-conveying means used, the type of tamping process used, the way the turret is attached to the apparatus, etc., without departing from the scope of the invention.
Moreover, it should be understood that various features and/or characteristics of differing embodiments herein may be combined with one another. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the scope of the invention.
Furthermore, other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a scope and spirit being indicated by the following claims.
This application claims priority to U.S. Provisional Patent Application No. 60/974,075, filed Sep. 20, 2007.
Number | Date | Country | |
---|---|---|---|
60974075 | Sep 2007 | US |