The present invention generally relates to the separation of components in a multi-phase flow stream. More specifically, it relates to a valve that can be used to alter the cut of fluids passing therethrough.
A multi-component flow stream include a mixture of different fluids which may have different phases, such as air and water, steam and water, or oil and natural gas, or the same phase, such as liquid water and oil. It is often desirable to separate or otherwise manage these flow streams. In the prior art, such separation is commonly accomplished utilizing a phase separator utilizing a weir plate or foil disposed within a flow stream to divert a portion of the flow. It would be desirable to provide an improved system to manage the flow of multi-component and or multi-phase streams, such as for example, separating two liquid components of a flow stream.
The invention relates to a valve having an adjustable element with at least two flow passages or channels defined in the adjustable element. In one aspect of the invention, the valve is used to separate components of a stratified flow stream. In such case, the channels intersect one another to form a leading edged adjacent an inlet flow port through which the steam is flowing. Movement of the adjustable element alters the positions of the flow passages relative to a flow port, permitting the leading edge to be positioned in the flow steam at the stratification boundary between the components of the flow stream, such that one component passes through a first channel and the second component passes through a second channel. In one embodiment, the adjustable element may be a cylinder or block that can be linearly translated in order to alter the position of the flow passages relative to the flow port. In another embodiment, the adjustable element may be angularly rotatable to alter the relative positions. In one embodiment, the adjustable element may be a rotatable cylinder having two flow passages therethrough. Rotation of the cylinder adjust the positions of the flow passages relative to a liquid-liquid flow stream, exposing more or less of a particular passage to the flow steam.
The invention therefore allows a multi-phase and/or multi-component fluid to be effectively separated with the valve of the disclosure.
The valve may also be utilized to mix two fluids together by adjusting the relative amounts of two fluid components that comprise a fluid flow stream. In such case, separate fluid components are introduced into the flow passages and are merged together into a single flow stream at the leading edge of the adjustable element. In such case, the adjacent flow port functions as a fluid outlet. The relative components of the flow stream in the fluid outlet can be controlled by movement of the adjustable element.
A more complete understanding of the present disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying figures, wherein:
a illustrates a cross-sectional side view of an embodiment of an adjustable valve used as a fluid-fluid phase splitter in which the moveable element is a block or cylinder that translates along a vertical axis.
b illustrates a three-dimensional view of a block than can translate in the valve housing of
c illustrates a three-dimensional view of a cylinder than can translate in the valve housing of
a illustrates a cross-sectional side view of an embodiment of an adjustable valve used as a fluid-fluid phase splitter in which the moveable element is a cylinder or disk that rotates about a horizontal axis.
b illustrates a three-dimensional view of a cylinder than can rotate in the valve housing of
c illustrates a three-dimensional view of a circular disk than can rotate in the valve housing of
a illustrates a cross-sectional top view of an embodiment of an adjustable valve used as a fluid-fluid mixer in which the moveable element is a block or cylinder that linearly translates.
b illustrates a three-dimensional view of a block than can linearly translate in the valve housing of
c illustrates a three-dimensional view of a cylinder than can linearly translate in the valve housing of
a illustrates a cross-sectional top view of an embodiment of an adjustable valve used as a fluid-fluid mixer in which the moveable element is a disk that axially rotates.
b illustrates a three-dimensional view of a circular disk than can rotate in the valve housing of
In the detailed description of the invention, like numerals are employed to designate like parts throughout. Various items of equipment, such as pipes, valves, pumps, fasteners, fittings, etc., may be omitted to simplify the description. However, those skilled in the art will realize that such conventional equipment can be employed as desired.
a-1c illustrate one embodiment of a valve 10 having an adjustable valve element 14 positioned where valve 10 can function as a fluid-fluid phase splitter as described below. Movable valve element 14 is mounted to translate in a valve bore 16 defined within a valve housing 18 to form a valve seat 17. Movable element 14 includes a first passageway 20 having a first passage port 22 and a second passage port 24, as well as a second passageway 21 having a third passage port 26 and a forth passage port 28. As will be explained below, for the embodiments illustrated in
b illustrates movable valve element 14 as a slidable block 14a, while
The invention is not limited to any particular shape of the ports or passageways described herein, nor the placement of the passageways within the valve element 14 other than to ensure the convergence and divergence as described herein. For example, for linearly translatable elements, the passageways may be defined along the axis of the moveable element so that a port is defined in each end of the element (see for example,
In particular, for use as a phase separator, it is desirable that the incoming fluid at first housing port 32 is horizontally stratified. Persons of ordinary skill in the art will appreciate that this stratification is desirably achieved by gravitational effects acting on the different density or weighted components of the incoming fluid stream. Thus, it is desirable that the first housing port 32 is in fluid communication with a substantially horizontal flow passage 39. In this way, valve 12 can be adjusted by vertically translating valve element 14 within bore 16 to alter the cut of a fluid steam passing there through. Specifically, edge 30 can be moved up or down so as to position it at the boundary between the stratified fluid stream. Although not limited to particular components of a fluid stream, the valve 10 is particularly useful for liquid-liquid flow streams. For example, valve 12 can be adjusted to alter the cut of liquid stream 40 such that a portion of the liquid 40a flows through first passageway 20 and a portion of the liquid 40b flows through the second passageway 21. As shown, liquid stream 40 is stratified to form a boundary 40c between liquid 40a and liquid 40c. Persons of ordinary skill in the art will understand that passageways 20, 21, and their respective ports 22, 26 may be sized so that valve 12 may also be adjusted to divert all of liquid 40 flowing though housing port 32 into either first or second passageway 20, 21, as desired.
A sensor 50 may be placed upstream of the valve 10 in order to estimate the cut of the components within the fluid stream, and hence the position of the stratification boundary, thereby permitting moveable element 14 to be adjusted as desired. Any type of sensor disposed for making such measurements may be used.
Persons of ordinary skill in the art will appreciate that any type of actuation mechanism 52 can be used to move element 14 within bore 16, such as an electric motor or hydraulic motor. In the illustrated embodiment, actuation mechanism 52 is a motor that drives a screw 54 to move element 14. In other embodiments, element 14 can be manually positioned. In the case of a motor 52, sensor 50 may be used to actuate the motor 52 as desired in a control loop.
With reference to
While the embodiments of valve 10 described above are particularly useful as phase separators, the embodiments may also be used to mix separate fluid components 40a and 40b into a single fluid stream 40. In such case, a first fluid component 40a may be introduced into first passageway 20 and a second fluid component 40b may be introduced into second passageway 21. The two fluid components are combined at edge 30 and flow through passage 49, such that port 32 is a fluid outlet port. The relative portions of the fluid components 40a, 40b within fluid stream 40 can be controlled by adjustment of movable element 14. In other words, valve 10 may be used to mix fluids.
Turning to
b illustrates movable valve element 114 as a slidable block 114a, while
Turning to
b illustrates movable valve element 214 as a rotatable disk 214a. Passageways 220, 221 are formed in element 214 so that ports 222, 226 are adjacent one another, while ports 224, 228 are spaced apart from one another. In one embodiment, passageways 220, 221 converge at ports 222, 226 so that a portion of valve element 214 defining passageways 220, 221 forms an edge 230. Valve housing 218 includes a first housing port 232, a second housing port 234 and a third housing port 236. In certain embodiments, first housing port 232 is a fluid outlet, while second housing port 234 and third housing port 236 are first and second fluid inlets. Valve element 214 is disposed in seat 217 so that the passage ports 222, 226 are adjacent housing port 232, second passage port 224 is in fluid communication with second housing port 234 and fourth passage port 228 is in fluid communication with third housing port 236. In a preferred embodiment, edge 230 is positioned adjacent first housing port 232. Actuation of element 214 thereby adjusts the position of edge 230 and hence the fluid stream flowing through the ports.
Fluid cut sensors and/or actuation motors as previously described may be utilized with any of the embodiments described herein. In this regard, any mechanism may be used to rotate, translate or otherwise adjust the moveable elements as described herein and the disclosure in not limited in this regard.
Persons of ordinary skill in the art will appreciate that the moveable element 14, whether angularly rotatable or linearly translatable, can be moved to alter the cross-sectional area of the particular passageway exposed to the housing port. As such, the fluids flowing through the ports and passages may be managed as desired. For example, the moveable element may be adjusted based on the cut of a flow stream 40 having first and second liquid components 40a, 40b so that the first and second liquid components can be separately ported. Alternatively, separate fluid components 40a, 40b can be mixed into a single stream 40 utilizing the valve to adjust the relative portions of each component within the stream.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
800125 | Beresford | Sep 1905 | A |
1343490 | Albertson | Jun 1920 | A |
1623248 | Joseph et al. | Apr 1927 | A |
1905733 | Moore | Apr 1933 | A |
2252141 | Seidel et al. | Aug 1941 | A |
2782739 | Freer | Feb 1957 | A |
3489178 | Kice | Jan 1970 | A |
3680468 | Schueler | Aug 1972 | A |
3743460 | Woolridge | Jul 1973 | A |
3802825 | Upmeier | Apr 1974 | A |
4046166 | Bender | Sep 1977 | A |
4190082 | Hernandez Crespo | Feb 1980 | A |
4566494 | Roche | Jan 1986 | A |
5097969 | Maxworthy | Mar 1992 | A |
5165450 | Marrelli | Nov 1992 | A |
5251662 | Rubel et al. | Oct 1993 | A |
5368072 | Cote | Nov 1994 | A |
5569252 | Justin et al. | Oct 1996 | A |
Number | Date | Country | |
---|---|---|---|
20140366971 A1 | Dec 2014 | US |