1. Field of the Invention
The present invention relates to techniques for performing formation evaluation of a subterranean formation by a downhole tool positioned in a wellbore penetrating the subterranean formation. More particularly, the present invention relates to techniques for reducing the contamination of formation fluids drawn into and/or evaluated by the downhole tool.
2. Background of the Related Art
Wellbores are drilled to locate and produce hydrocarbons. A downhole drilling tool with a bit at and end thereof is advanced into the ground to form a wellbore. As the drilling tool is advanced, a drilling mud is pumped through the drilling tool and out the drill bit to cool the drilling tool and carry away cuttings. The fluid exits the drill bit and flows back up to the surface for recirculation through the tool. The drilling mud is also used to form a mudcake to line the wellbore.
During the drilling operation, it is desirable to perform various evaluations of the formations penetrated by the wellbore. In some cases, the drilling tool may be provided with devices to test and/or sample the surrounding formation. In some cases, the drilling tool may be removed and a wireline tool may be deployed into the wellbore to test and/or sample the formation. In other cases, the drilling tool may be used to perform the testing or sampling. These samples or tests may be used, for example, to locate valuable hydrocarbons.
Formation evaluation often requires that fluid from the formation be drawn into the downhole tool for testing and/or sampling. Various devices, such as probes, are extended from the downhole tool to establish fluid communication with the formation surrounding the wellbore and to draw fluid into the downhole tool. A typical probe is a circular element extended from the downhole tool and positioned against the sidewall of the wellbore. A rubber packer at the end of the probe is used to create a seal with the wellbore sidewall. Another device used to form a seal with the wellbore sidewall is referred to as a dual packer. With a dual packer, two elastomeric rings expand raidally about the tool to isolate a portion of the wellbore therebetween. The rings form a seal with the wellbore wall and permit fluid to be drawn into the isolated portion of the wellbore and into an inlet in the downhole tool.
The mudcake lining the wellbore is often useful in assisting the probe and/or dual packers in making the seal with the wellbore wall. Once the seal is made, fluid from the formation is drawn into the downhole tool through an inlet by lowering the pressure in the downhole tool. Examples of probes and/or packers used in downhole tools are described in U.S. Pat. Nos. 6,301,959; 4,860,581; 4,936,139; 6,585,045; 6,609,568 and 6,719,049 and US Patent Application No. 2004/0000433.
Formation evaluation is typically performed on fluids drawn into the downhole tool. Techniques currently exist for performing various measurements, pretests and/or sample collection of fluids that enter the downhole tool. However, it has been discovered that when the formation fluid passes into the downhole tool, various contaminants, such as wellbore fluids and/or drilling mud, may enter the tool with the formation fluids. These contaminates may affect the quality of measurements and/or samples of the formation fluids. Moreover, contamination may cause costly delays in the wellbore operations by requiring additional time for more testing and/or sampling. Additionally, such problems may yield false results that are erroneous and/or unusable.
It is, therefore, desirable that the formation fluid entering into the downhole tool be sufficiently ‘clean’ or ‘virgin’ for valid testing. In other words, the formation fluid should have little or no contamination. Attempts have been made to eliminate contaminates from entering the downhole tool with the formation fluid. For example, as depicted in U.S. Pat. No. 4,951,749, filters have been positioned in probes to block contaminates from entering the downhole tool with the formation fluid. Additionally, as shown in U.S. Pat. No. 6,301,959 to Hrametz, a probe is provided with a guard ring to divert contaminated fluids away from clean fluid as it enters the probe.
Despite the existence of techniques for performing formation evaluation and for attempting to deal with contamination, there remains a need to manipulate the flow of fluids through the downhole tool to reduce contamination as it enters and/or passed through the downhole tool. It is desirable that such techniques are capable of diverting contaminants away from clean fluid. It is further desirable that such techniques be capable of one of more of the following, among others: analyzing the fluid passing through the flowlines, selectively manipulating the flow of fluid through the downhole tool, responding to detected contamination, removing contamination and/or providing flexibility in handling fluids in the downhole tool.
In at least one aspect, the present invention relates to a reduced contamination formation evaluation system for a downhole tool positionable in a wellbore penetrating a subterranean formation having a virgin fluid and a contaminated fluid therein. The system is provided with
at least two inlets for receiving the fluids from the formation, at least one evaluation flowline fluidly connected to at least one of the at least two inlets for passage of the virgin fluid into the downhole tool, at least one cleanup flowline fluidly connected to at least one of the inlets for passage of the contaminated fluid into the downhole tool, at least one fluid circuit fluidly connected to the evaluation and/or cleanup flowlines for selectively drawing fluid therein, at least one fluid connector for selectively establishing a fluid connection between the evaluation and/or cleanup flowlines and at least one sensor for measuring downhole parameters in the evaluation and/or cleanup flowlines.
In another aspect, the invention relates to a reduced contamination formation evaluation tool positionable in a wellbore penetrating a subterranean formation having a virgin fluid and a contaminated fluid therein. The tool is provided with a fluid communication device extendable from the housing for sealing engagement with a wall of the wellbore and having at least two inlets for receiving the fluids from the formation, at least one evaluation flowline positioned in the housing and fluidly connected to at least one of the inlets for passage of the virgin fluid into the downhole tool, at least one cleanup flowline fluidly connected to the inlets for passage of the contaminated fluid into the downhole tool, at least one fluid circuit fluidly connected to the evaluation and/or cleanup flowline for selectively drawing fluid therein, at least one fluid connector for selectively establishing a fluid connection between the evaluation and/or cleanup flowline and at least one sensor for measuring downhole parameters in the evaluation and/or cleanup flowlines.
In yet another aspect, the invention relates to a method of evaluating a subterranean formation having a virgin fluid and a contaminated fluid therein. The method involves a downhole tool having at least two inlets adapted to draw the fluids into at least one evaluation flowline and at least one cleanup flowline in the downhole tool. The tool is positioned in a wellbore penetrating the formation, fluid is selectively drawn into the evaluation and/or cleanup flowlines, a fluid connection is selectively established between the evaluation and the cleanup flowlines and downhole parameters of the fluids in the evaluation and/or cleanup flowlines are measured.
Finally, in another aspect, the invention relates to a method of drawing fluid into a downhole tool positionable in a wellbore penetrating a formation having a virgin fluid and a contaminated fluid therein. The method involves positioning a fluid communication device of the downhole tool in sealing engagement with a wall of the wellbore, establishing fluid communication between at least one evaluation flowline of the fluid communication device and the formation, establishing fluid communication between at least one cleanup flowline of the fluid communication device and the formation, pumping fluid into the cleanup flowline at a cleanup pump rate, pumping fluid into the evaluation flowline at an evaluation pump rate, selectively altering the cleanup pump and/or evaluation pump rate for a discrete time interval and performing formation evaluation of the fluid in the evaluation and/or cleanup flowline after the time interval.
So that the above recited features and advantages of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof that are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Presently preferred embodiments of the invention are shown in the above—identified figures and described in detail below. In describing the preferred embodiments, like or identical reference numerals are used to identify common or similar elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
The probe 18 is preferably provided with at least two flowlines, an evaluation flowline 28 and a cleanup flowline 30. It will be appreciated that in cases where dual packers are used, inlets may be provided therebetween to draw fluid into the evaluation and cleanup flowlines in the downhole tool. Examples of fluid communication devices, such as probes and dual packers, used for drawing fluid into separate flowlines are depicted in U.S. Pat. application Ser. No. 6,719,049 and US Published Application No. 20040000433, assigned to the assignee of the present invention, and U.S. Pat. No. 6,301,959 assigned to Halliburton.
The evaluation flowline extends into the downhole tool and is used to pass clean formation fluid into the downhole tool for testing and/or sampling. The evaluation flowline extends to a sample chamber 35 for collecting samples of formation fluid. The cleanup flowline 30 extends into the downhole tool and is used to draw contaminated fluid away from the clean fluid flowing into the evaluation flowline. Contaminated fluid may be dumped into the wellbore through an exit port 37. One or more pumps 36 may be used to draw fluid through the flowlines. A divider or barrier is preferably positioned between the evaluation and cleanup flowlines to separate the fluid flowing therein.
Referring now to
The evaluation and cleanup flowlines 28, 30 extend from the probe 18 and through the fluid flow system 34 of the downhole tool. The evaluation and cleanup flowlines are in selective fluid communication with flowlines extending through the fluid flow system as described further herein. The fluid flow system of
Evaluation flowline 28 extends from probe 18 and fluidly connects to flowlines extending through the downhole tool. Evaluation flowline 28 is preferably provided with a pretest piston 40a and sensors, such as pressure gauge 38a and a fluid analyzer 46a. Cleanup flowline 30 extends from probe 18 and fluidly connects to flowlines extending through the downhole tool. Cleanup flowline 30 is preferably provided with a pretest piston 40b and sensors, such as a pressure gauge 38b and a fluid analyzer 46b. Sensors, such as pressure gauge 38c, may be connected to evaluation and cleanup flowlines 28 and 30 to measure parameters therebetween, such as differential pressure. Such sensors may be located in other positions along any of the flowlines of the fluid flow system as desired.
One or more pretest piston may be provided to draw fluid into the tool and perform a pretest operation. Pretests are typically performed to generate a pressure trace of the drawdown and buildup pressure in the flowline as fluid is drawn into the downhole tool through the probe. When used in combination with a probe having an evaluation and cleanup flowline, the pretest piston may be positioned along each flowline to generate curves of the formation. These curves may be compared and analyzed. Additionally, the pretest pistons may be used to draw fluid into the tool to break up the mudcake along the wellbore wall. The pistons may be cycled synchronously, or at disparate rates to align and/or create pressure differentials across the respective flowlines.
The pretest pistons may also be used to diagnose and/or detect problems during operation. Where the pistons are cycled at different rates, the integrity of isolation between the lines may be determined. Where the change in pressure across one flowline is reflected in a second flowline, there may be an indication that insufficient isolation exists between the flowlines. A lack of isolation between the flowlines may indicate that an insufficient seal exists between the flowlines. The pressure readings across the flowlines during the cycling of the pistons may be used to assist in diagnosis of any problems, or verification of sufficient operability.
The fluid flow system may be provided with fluid connectors, such as crossover 48 and/or junction 51, for passing fluid between the evaluation and cleanup flowlines (and/or flowlines fluidly connected thereto). These devices may be positioned at various locations along the fluid flow system to divert the flow of fluid from one or more flowlines to desired components or portions of the downhole tool. As shown in
Junction 51 is depicted in
Valves 44a and 44b may also be used as isolation valves to isolate fluid in flowline 29, 32 from the remainder of the fluid flow system located downstream of valves 44a, b. The isolation valves are closed to isolate a fixed volume of fluid within the downhole tool (i.e. in the flowlines between the formation and the valves 44a, b). The fixed volume located upstream of valve 44a and/or 44b is used for performing downhole measurements, such as pressure and mobility.
In some cases, it is desirable to maintain separation between the evaluation and cleanup flowlines, for example during sampling. This may be accomplished, for example, by closing valves 44c and/or 44d to prevent fluid from passing between flowlines 29 and 32, or 31 and 35. In other cases, fluid communication between the flowlines may be desirable for performing downhole measurements, such as formation pressure and/or mobility estimations. This may be accomplished for example by closing valves 44a, b, opening valves 44c and/or 44d to allow fluid to flow across flowlines 29 and 32 or 31 and 35, respectively. As fluid flows into the flowlines, the pressure gauges positioned along the flowlines can be used to measure pressure and determine the change in volume and flow area at the interface between the probe and formation wall. This information may be used to generate the formation mobility.
Valves 44c, d may also be used to permit fluid to pass between the flowlines inside the downhole tool to prevent a pressure differential between the flowlines. Absent such a valve, pressure differentials between the flowlines may cause fluid to flow from one flowline, through the formation and back into another flowline in the downhole tool, which may alter measurements, such as mobility and pressure.
Junction 51 may also be used to isolate portions of the fluid flow system downstream thereof from a portion of the fluid flow system upstream thereof. For example, junction 51 (i.e. by closing valves 44a, b) may be used to pass fluid from a position upstream of the junction to other portions of the downhole tool, for example through valve 44j and flowline 25 thereby avoiding the fluid flow circuits. In another example, by closing valves 44a, b and opening valve d, this configuration may be used to permit fluid to pass between the fluid circuits 50 and/or to other parts of the downhole tool through valve 44k and flowline 39. This configuration may also be used to permit fluid to pass between other components and the fluid flow circuits without being in fluid communication with the probe. This may be useful in cases, for example, where there are additional components, such as additional probes and/or fluid circuit modules, downstream of the junction.
Junction 51 may also be operated such that valve 44a and 44d are closed and 44b and 44d are open. In this configuration, fluid from both flowlines may be passed from a position upstream of junction 51 to flowline 35. Alternatively, valves 44b and 44d may be closed and 44a and 44c are open so that fluid from both flowlines may be passed from a position upstream of junction 51 to flowline 31.
The flow circuits 50a and 50b (sometimes referred to as sampling or fluid circuits) preferably contain pumps 36, sample chamber 42, valves 44 and associated flowlines for selectively drawing fluid through the downhole tool. One or more flow circuits may be used. For descriptive purposes, two different flow circuits are depicted, but identical or other variations of flow circuits may be employed.
Flowline 31 extends from junction 51 to flow circuit 50a. Valve 44e is provided to selectively permit fluid to flow into the flow circuit 50a. Fluid may be diverted from flowline 31, past valve 44e to flowline 33a1 and to the borehole through exit port 56a. Alternatively, fluid may be diverted from flowline 31, past valve 44e through flowline 33a2 to valve 44f. Pumps 36a1 and 36a2 may be provided in flowlines 33a1 and 33a2, respectively.
Fluid passing through flowline 33a2 may be diverted via valve 44f to the borehole via flowline 33b1, or to valve 44g via flowline 33b2. A pump 36b may be positioned in flowline 33b2.
Fluid passing through flowline 33b2 may be passed via valve 44g to flowline 33c1 or flowline 33c2. When diverted to flowline 33c1, fluid may be passed via valve 44h to the borehole through flowline 33d1, or back through flowline 33d2. When diverted through flowline 33c2, fluid is collected in sample chamber 42a. Buffer flowline 33d3 extends to the borehole and/or fluidly connects to flowline 33d2. Pump 36c is positioned in flowline 33d3 to draw fluid therethrough.
Flow circuit 50b is depicted as having a valve 44e′ for selectively permitting fluid to flow from flowline 35 into flow circuit 50b. Fluid may flow through valve 44e′ into flowline 33c1′, or into flowline 33c2′ to sample chamber 42b. Fluid passing through flowline 33c1′ may be passed via valve 44g′ to flowline 33d1′ and out to the borehole, or to flowline 33d2′. Buffer flowline 33d3′ extends from sample chamber 42b to the borehole and/or fluidly connects to flowline 33d2′. Pump 36d is positioned in flowline 33d3′ to draw fluid therethrough.
A variety of flow configurations may be used for the flow control circuit. For example, additional sample chambers may be included. One or more pumps may be positioned in one or more flowlines throughout the circuit. A variety of valving and related flowlines may be provided to permit pumping and diverting of fluid into sample chambers and/or the wellbore.
The flow circuits may be positioned adjacently as depicted in
An equalization valve 44i and associated flowline 49 are depicted as being connected to flowline 29. One or more such equalization valves may be positioned along the evaluation and/or cleanup flowlines to equalize the pressure between the flowline and the borehole. This equalization allows the pressure differential between the interior of the tool and the borehole to be equalized, so that the tool will not stick against the formation. Additionally, an equalization flowline assists in assuring that the interior of the flowlines is drained of pressurized fluids and gases when it rises to the surface. This valve may exist in various positions along one or more flowlines. Multiple equalization valves may be put inserted, particularly where pressure is anticipated to be trapped in multiple locations. Alternatively, other valves 44 in the tool may be configured to automatically open to allow multiple locations to equalize pressure.
A variety of valves may be used to direct and/or control the flow of fluid through the flowlines. Such valves may include check valves, crossover valves, flow restrictors, equalization, isolation or bypass valves and/or other devices capable of controlling fluid flow. Valves 44a–k may be on-off valves that selectively permit the flow of fluid through the flowline. However, they may also be valves capable of permitting a limited amount of flow therethrough. Crossover 48 is an example of a valve that may be used to transfer flow from the evaluation flowline 28 to the first sampling circuit and to transfer flow from the cleanup flowline to the second sampling circuit, and then switch the sampling flowing to the second sampling circuit and the cleanup flowline to the first sampling circuit.
One or more pumps may be positioned across the flowlines to manipulate the flow of fluid therethrough. The position of the pump may be used to assist in drawing fluid through certain portions of the downhole tool. The pumps may also be used to selectively flow fluid through one or more of the flowlines at a desired rate and/or pressure. Manipulation of the pumps may be used to assist in determining downhole formation parameters, such as formation fluid pressure, formation fluid mobility, etc. The pumps are typically positioned such that the flowline and valving may be used to manipulate the flow of fluid through the system. For example, one or more pumps may be upstream and/or downstream of certain valves, sample chambers, sensors, gauges or other devices.
The pumps may be selectively activated and/or coordinated to draw fluid into each flowline as desired. For example, the pumping rate of a pump connected to the cleanup flowline may be increased and/or the pumping rate of a pump connected to the evaluation flowline may be decreased, such that the amount of clean fluid drawn into the evaluation flowline is optimized. One or more such pumps may also be positioned along a flowline to selectively increase the pumping rate of the fluid flowing through the flowline.
One or more sensors, such as the fluid analyzers 46a, b (i.e. the fluid analyzers described in U.S. Pat. No. 4,994,671 and assigned to the assignee of the present invention) and pressure gauges 38a, b, c, may be provided. A variety of sensors may be used to determine downhole parameters, such as content, contamination levels, chemical (e.g., percentage of a certain chemical/substance), hydro mechanical (viscosity, density, percentage of certain phases, etc.), electromagnetic (e.g., electrical resistivity), thermal (e.g., temperature), dynamic (e.g., volume or mass flow meter), optical (absorption or emission), radiological, pressure, temperature, Salinity, Ph, Radioactivity (Gamma and Neutron, and spectral energy), Carbon Content, Clay Composition and Content, Oxygen Content, and/or other data about the fluid and/or associated downhole conditions, among others. Sensor data may be collected, transmitted to the surface and/or processed downhole.
Preferably, one or more of the sensors are pressure gauges 38 positioned in the evaluation flowline (38a), the cleanup flowline (38b) or across both for differential pressure therebetween (38c). Additional gauges may be positioned at various locations along the flowlines. The pressure gauges maybe used to compare pressure levels in the respective flowlines, for fault detection, or for other analytical and/or diagnostic purposes. Measurement data may be collected, transmitted to the surface and/or processed downhole. This data, alone or in combination with the sensor data may be used to determine downhole conditions and/or make decisions.
One or more sample chambers may be positioned at various positions along the flowline. A single sample chamber with a piston therein is schematically depicted for simplicity. However, it will be appreciated that a variety of one or more sample chambers may be used. The sample chambers may be interconnected with flowlines that extend to other sample chambers, other portions of the downhole tool, the borehole and/or other charging chambers. Examples of sample chambers and related configures may be seen in U.S. Patent/Application No. 2003042021, U.S. Pat. Nos. 6,467,544 and 6,659,177, assigned to the assignee of the present invention. Preferably, the sample chambers are positioned to collect clean fluid. Moreover, it is desirable to position the sample chambers for efficient and high quality receipt of clean formation fluid. Fluid from one or more of the flowlines may be collected in one or more sample chambers and/or dumped into the borehole. There is no requirement that a sample chamber be included, particularly for the cleanup flowline that may contain contaminated fluid.
In some cases, the sample chambers and/or certain sensors, such as a fluid analyzer, may be positioned near the probe and/or upstream of the pump. It is often beneficial to sense fluid parameters from a point closer to the formation, or the source of the fluid. It may also be beneficial to test and/or sample upstream of the pump. The pump typically agitates the fluid passing through the pump. This agitation can spread the contamination to fluid passing through the pump and/or increase the amount of time before a clean sample may be obtained. By testing and sampling upstream of the pump, such agitation and spread of contamination may be avoided.
Computer or other processing equipment is preferably provided to selectively activate various devices in the system. The processing equipment may be used to collect, analyze, assemble, communicate, respond to and/or otherwise process downhole data. The downhole tool may be adapted to perform commands in response to the processor. These commands may be used to perform downhole operations.
In operation, the downhole tool 10 (
FIGS. 4A–8B5 depict the flow of fluid into a probe having multiple flowlines, such as in the fluid flow system of
Referring to FIGS. 4A–4B4, pumps 60, 62 are depicted as operating in an unsynchronized mode.
At point A on
At point B in
At point C in
At point D in
Referring to FIGS. 5A–5B4, the pumps 60, 62 are depicted operating in a synchronized mode. These Figures are the same as FIGS. 4A–4B4, except that both pumps are turned off at points B and D. At points B and D of
Referring to FIGS. 6A–6B4, the pumps 60, 62 are depicted operating in a partially synchronized mode. These Figures are the same as FIGS. 4A–4B4, except that both pumps are turned off at point B. At point B of
Referring to FIGS. 7A–7B5, the pumps 60, 62 are depicted operating in an offset synchronized mode. FIGS. 7A–7B5 are the same as FIGS. 4A–4B4, except that at point B, the cleanup pump is on and the evaluation pump is off, at point C both pumps are off, and at point D the cleanup pump is on and the evaluation pump is off. Additionally, an additional point E is depicted with both pumps on. The resulting curves 64c, 66c in
Referring to FIGS. 8A–8B5, a pumping and sampling operation is depicted. In this case, the pumps 60, 62 are depicted operating in the offset synchronized mode of FIGS. 7A–7B5. However, the sampling operation may be performed with any of the modes described. These Figures are the same as FIGS. 7A–7B5, except that a sample chamber 42 is connected to the evaluation flowline in FIGS. 8B1–5. Valves 66 and 68 are depicted along flowline 28 to selectively divert fluid to the sample chamber.
The valves are preferably activated and/or fluid is delivered into the sample chamber at a point when clean fluid is present in the evaluation flowline. In the mode described in FIGS. 8A–8B5, sampling is performed after the pumps have been cycled to assure the flow of clean fluid into the evaluation flowline 28. As shown in FIGS. 8B1–3, the valve 66 is closed and valve 68 is open at points A–C of the pumping operation. As shown in FIG. 8B4, at point D, valve 66 is opened and valve 68 is closed to permit fluid to start to flow into sample chamber 42. As shown at point E and in FIG. 8B5, fluid begins flowing into the sample chamber.
FIGS. 8A–8B5 depict a given sampling operation used in combination with a pumping mode. The sampling operation may also be used in combination with other pumping modes, such as those depicted in
Pressure in the flowlines may also be manipulated using other device to increase and/or lower pressure in one or more flowlines. For example, pistons in the sample chambers and pretest may be retracted to draw fluid therein. Charging, valving, hydrostatic pressure and other techniques may also be used to manipulate pressure in the flowlines.
It will be understood from the foregoing description that various modifications and changes may be made in the preferred and alternative embodiments of the present invention without departing from its true spirit. The devices included herein may be manually and/or automatically activated to perform the desired operation. The activation as desired and/or based on data generated, conditions detected and/or analysis of results from downhole operations.
This description is intended for purposes of illustration only and should not be construed in a limiting sense. The scope of this invention should be determined only by the language of the claims that follow. The term “comprising” within the claims is intended to mean “including at least” such that the recited listing of elements in a claim are an open group. “A,” “an” and other singular terms are intended to include the plural forms thereof unless specifically excluded.
Number | Name | Date | Kind |
---|---|---|---|
3782191 | Whitten | Jan 1974 | A |
3813936 | Urbanosky et al. | Jun 1974 | A |
3859851 | Urbanosky | Jan 1975 | A |
3864970 | Bell | Feb 1975 | A |
3924463 | Urbanosky | Dec 1975 | A |
3952588 | Whitten | Apr 1976 | A |
4860581 | Zimmerman et al. | Aug 1989 | A |
4936139 | Zimmerman et al. | Jun 1990 | A |
4951749 | Carroll | Aug 1990 | A |
4994671 | Safinya et al. | Feb 1991 | A |
5303775 | Michaels et al. | Apr 1994 | A |
5377755 | Michaels et al. | Jan 1995 | A |
5803186 | Berger et al. | Sep 1998 | A |
6301959 | Hrametz et al. | Oct 2001 | B1 |
6435279 | Howe et al. | Aug 2002 | B1 |
6467544 | Brown et al. | Oct 2002 | B1 |
6585045 | Lee et al. | Jul 2003 | B2 |
6609568 | Krueger et al. | Aug 2003 | B2 |
6658930 | Abbas | Dec 2003 | B2 |
6659177 | Bolze et al. | Dec 2003 | B2 |
6719049 | Sherwood et al. | Apr 2004 | B2 |
6745835 | Fields | Jun 2004 | B2 |
7090012 | Hill et al. | Aug 2006 | B2 |
20020189339 | Montalvo et al. | Dec 2002 | A1 |
20030042021 | Bolze et al. | Mar 2003 | A1 |
20030145652 | Arian | Aug 2003 | A1 |
20040000433 | Hill et al. | Jan 2004 | A1 |
20040099443 | Meister et al. | May 2004 | A1 |
20060076132 | Nold et al. | Apr 2006 | A1 |
20060117842 | Ramakrishnan | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
WO 03098639 | Nov 2003 | WO |
WO 04020982 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060042793 A1 | Mar 2006 | US |