The invention will be explained in more detail below on the basis of a preferred example of embodiment and with reference to the accompanying diagrammatic drawings, in which:
The ophthalmic lens generating apparatus 10 of the preferred embodiment is illustrated in its functional entirety in
The ophthalmic lens generating apparatus 10 of the preferred embodiment has a massive machine base 12 with a horizontal part 14 and a vertical part 16. The vertical part 16 of the machine base 12 indirectly supports—in a manner that will be explained later—a chuck 17 having a longitudinal axis L, for chucking, in a manner known in the art, an ophthalmic lens as workpiece W to be processed. The horizontal part 14 of the machine base 12 carries a support structure assigned to a tool spindle arrangement 18 for rotating about an axis of tool rotation C a fly cutting tool 20.
In the preferred embodiment the support structure of the tool spindle arrangement 18 has three degrees of freedom. It has a rotary table 22 carrying the tool spindle arrangement 18 so that the latter can be swiveled about a swivel axis A which runs perpendicular to the axis of tool rotation C. It also has a first linear moving device 24 for causing a relative motion between the tool spindle arrangement 18 and the chuck 17 toward and away from each other in a linear X-axis, and a second linear moving device 26 for causing a lateral relative motion between the tool spindle arrangement 18 and the chuck 17 in a linear Y-axis which runs perpendicular to the X-axis. Thus, the support structure of the tool spindle arrangement 18 is capable of moving laterally generally transverse to the longitudinal axis L of the chuck 17.
To be more precise, the second linear moving device 26 and the first linear moving device 24 are stacked to form a cross slide moving system, with an X-slide 28 guided along assigned guideways 30 on the horizontal part 14 of the machine base 12 and displaceable horizontally in both directions of the X-axis by assigned CNC drive and control elements (not shown), and a Y-slide 32 guided along assigned guideways 34 on the X-slide 28 and displaceable horizontally in both directions of the Y-axis by assigned CNC drive and control elements (not shown). Mounted to an upper surface of the Y-slide 32 is the rotary table 22 which can be driven to swivel about the swivel axis A in both *the clockwise direction and the counterclockwise direction, respectively, by assigned CNC drive and control elements (likewise not shown). Mounted to an upper surface of the rotary table 22 then is the tool spindle arrangement 18 substantially comprising: a spindle shaft 36 to which the fly cutting tool 20 is attached in a manner known in the art, a spindle headstock 38 for rotatably supporting the spindle shaft 36, an electric spindle motor 40 for rotating the spindle shaft 36 about the axis of tool rotation C, with at least the spindle speed being controlled, and finally a rotary encoder 42 for detecting an angle of rotation γ of the fly cutting tool 20 about the axis of tool rotation C.
As can further be seen in
On the left hand side of the machining area 44 in
Since the angle of rotation γ of the fly cutting tool 20 about the axis of tool rotation C can be detected via the rotary encoder 42, the angular position of the (respective) tool tip 48 relative to the chuck 17 and thus the workpiece W held by the chuck 17 is known. In addition, the complete positional information of the tool spindle arrangement 18 relative to the chuck 17/workpiece W in the x-, y- and z-coordinates and in the A-axis is known. The general machine 10 and tool 20 geometry is also known, together with the angle of rotation γ one can establish the complete spatial position of the tool tip 48 relative to the workpiece W at discrete points along the entire (best fit) cut path. This positional information is used in controlling the FWS 50. To be more precise, the FWS 50 is controlled in dependence on the given spatial position (including the given angle of rotation γ about the axis of tool rotation C) of the fly cutting tool 20 in such a way that by means of the FWS 50 the workpiece W is advanced toward and retracted from the fly cutting tool 20 along the F-axis in a defined manner, i.e. in accordance with the surface geometry to be generated while the workpiece W is being cut by the (respective) tool tip 48, as will be explained in more detail below with the aid of
In the Figures the (inner) structure of the FWS 50 is not shown in detail. Basically, it may correspond to that of a so-called “fast tool” device as disclosed in, e.g., document WO-A-02/06005 by the same inventor (see for example,
Further, the actuator may be a “voice coil” type actuator, including a magnet assembly attached to the housing 54 of the FWS 50 and defining a ring gap, and an electrical coil secured to the shuttle 52 and plunging into the ring gap. Coil wires provide electrical input to the coil to cause relative movement between the coil and the magnet assembly, as is the case with loudspeakers. The shuttle 52 itself is mounted to the housing 54 of the FWS 50 for linear movement, wherein various mounting arrangements may be utilized. A preferred mounting arrangement is to use aerostatic or hydrostatic bearing pads between the housing 54 of the FWS 50 and the shuttle 52 to allow for smooth, accurate linear motion. There are however alternative mounting methods using, e.g., flexures or rolling element bearings. Of course, appropriate CNC-control elements need to be provided for—e.g., a diffraction scale as position encoder on the shuttle 52 readable by an assigned reading head secured to the housing 54 of the FWS 50—so that the axial position of the shuttle 52 relative to the housing 54 of the FWS 50 can be sensed and a related input to the coil can be generated to vary the position of the shuttle 52 in accordance with a pre-determined position.
Although the actuator of the FWS 50 has been described above as a “voice coil” type actuator, depending on in particular the dynamic and stroke requirements other actuators may be utilized, e.g. a piezoelectric actuator driving for instance a flexure-mounted shuttle (higher bandwidth, shorter stroke), or a linear motor (lower bandwidth, longer stroke), or any other suitable force (torque)/motion producing device.
Representative preferred characteristics for the tool spindle arrangement 18 and the FWS 50 with “voice coil” type actuator are as follows: Diameter of workpiece W: up to 100 mm. Diameter of fly cutting tool 20 (circular orbit of tool tip 48): 50 to 150 mm. Stroke of FWS 50: up to 5 mm. Acceleration of FWS 50: 20 to 100 g (1 g=9,81 m/s2). Maximum speed of FWS 50: approximately 1 m/s. RPM of tool spindle 18 (working range): 1000 to 6000 l/min.
Finally, the broken lines in
As to the operation of the ophthalmic lens generating apparatus 10 described so far, it is evident to the person skilled in the art that, by appropriately controlling the A-, X- and Y-axes of the apparatus 10, the fly cutting tool 20 rotating at relatively high speed about the axis of tool rotation C can be “swept” through the workpiece W which is held by the chuck 17 in a manner fixed against rotation, wherein the whole tool spindle arrangement 18 is in effect pivoted about a swivel axis I which is parallel to the swivel axis A of the rotary table 22 and perpendicular to the axis of tool rotation C. This motion is illustrated in
The above “sweeping” motion of the rotating fly cutting tool 20 can now be overlaid or superimposed by an “oscillating” motion of the chuck 17 in the F-axis, generated by the FWS 50 taking into account the angular position of the tool 20 relative to the chuck 17 and thus the workpiece W, to obtain any desired surface geometry, in particular freeform shapes, with the smoothness and consequent surface quality comparable to that obtained with the conventional SPDFC process, and without the undesired center features of the known SPDT process.
To this end a preferred method for generating an optical surface S on for example an ophthalmic lens as the workpiece W, and utilizing the ophthalmic lens generating apparatus 10 as described above may include the following steps:
entering surface data of a desired surface S of the workpiece W to be processed into the control unit CPU;
executing in the control unit CPU best fit analysis (which is known per se) of the surface data to determine best fit (toroidal) surface T to the desired surface S;
calculating in the control unit CPU deviations Af (as shown in
controlling by the control unit CPU the motions of the moving means 22, 24, 26 so that the fly cutting tool 20 which is rotated about the axis of tool rotation C, is moved through the workpiece W along a path corresponding to the determined best fit (toroidal) surface T (“normal” path of the tool tip 48 of the fly cutting tool 20 with “sweeping” motion as illustrated in
simultaneously controlling, by the control unit CPU, the FWS 50 taking into account the given angle of rotation γ of the fly cutting tool 20 about the axis of tool rotation C so that the workpiece W is advanced toward and retracted from the fly cutting tool 20 in real time corresponding to the calculated deviations Af of the determined best fit (toroidal) surface T from the desired surface S in order to generate by the tool tip 48 the final desired surface S (curve adjusted by the “oscillating” motion of the FWS 50, i.e. by moving closer or further away the workpiece W relative to the “normal” path of the tool tip 48 of the fly cutting tool 20).
Finally it should be mentioned that, although the ophthalmic lens generating apparatus 10 has been described above to possess several CNC-axes, it is evident to the person skilled in the art that the aforementioned (best fit) toroidal surface can be generated without any CNC-axis being necessary; for instance by means of a machine structure as disclosed in document U.S. Pat. No. 4,653,233 which is herein incorporated by reference used with a fly cutting tool instead of a cup wheel grinding tool. To summarize the basic concept of the present invention only necessitates the additional knowledge of the angular position in addition to the known spatial position of the fly cutting tool at all discrete points along the (best fit) cut path relative to the workpiece to be cut, and the capability to position, either pivotally or linearly, the workpiece over short distances with high velocities toward and away from the tool in dependence on the given spatial position of the tool relative to the workpiece in order to “compensate” for deviations between the geometry which would be cut by the tool without the workpiece being able to move toward and away from the tool, and the desired geometry. Therefore, although a particular embodiment of the invention has been disclosed in detail for illustrative purposes, it will be recognized that various variations or modifications of the disclosed apparatus and method lie within the scope of the present invention as defined in the appended claims.
An apparatus for generating a surface on a workpiece is proposed, which comprises a workpiece chuck having a longitudinal axis L, a spindle for rotating a fly cutting tool having a tool tip, and a moving means for moving, e.g., the spindle generally transverse to the axis L. The spindle further comprises a rotary encoder for detecting an angle of tool rotation, wherein the chuck is operatively connected with a fast workpiece servo capable of moving it over short distances at high velocities, the servo being controllable taking into account the given angle of tool rotation so that the workpiece can be advanced toward and retracted from the tool in a defined manner while being cut by the tool tip. The limited geometry of the tool can thus be modified by moving the workpiece relative to the tool tip.
Other variations and modifications are possible without departing from the scope and spirit of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
06 009 895.1 | May 2006 | EP | regional |