This application claims the benefit of Korean Patent Application No. 10-2006-0125066, filed on Dec. 8, 2006, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to an apparatus and method for generating an optical return-to-zero (RZ) signal, and more particularly, to an optical RZ signal generator serving as a transmitter of a large-capacity wavelength division multiplexing (WDM) system and an optical RZ signal generating method. This work was supported by the IT R&D program of MIC/IITA. [2006-S-060-01, OTH-based 40G Multi-service Transmission Technology]
2. Description of the Related Art
As people increasingly use the Internet, communication channel capacity remarkably increases and a demand for large-capacity optical communications also increases. Accordingly, methods for raising an optical signal rate have been developed in order to increase channel capacity of optical communication. However, the optical signal rate is increased to 10 Gbps or 40 Gbps and reaches the limit. To overcome the limit of the optical signal rate, a wavelength division multiplexing (WDM) transmission technique that simultaneously transmits signals with various wavelengths through a single optical fiber has been developed.
However, the transmission of signals using a large-capacity WDM transmission system operating at higher than 10 Gbps or 40 Gbps per channel is limited by chromatic dispersion and non-linear phenomenon of optical fibers.
The non-linear phenomenon is difficult to compensate while a linear phenomenon such as chromatic dispersion is easily compensated by using a dispersion compensation fiber (DCF). Accordingly, the non-linear phenomenon in optical fibers is overcome by modulating optical signals into return-to-zero (RZ) signals robust to non-linear characteristic and transmitting the RZ signals.
The present invention provides an apparatus and method of generating an optical RZ signal for reducing signal distortion caused by non-linear characteristics of optical fibers.
The present invention reduces the size of an optical transmission system by integrating components of the optical transmission system into a single electronic circuit chip.
According to an aspect of the present invention, there is provided an apparatus for generating an optical RZ signal, which comprises an electronic integrated circuit generating an electric return-to-zero (RZ) signal based on an input data signal and a clock signal, a driving amplifier amplifying the electric RZ signal, a light source outputting a carrier having a predetermined wavelength, and a modulator modulating the carrier according to the amplified RZ signal.
According to another aspect of the present invention, there is provided a method for generating an optical RZ signal, comprising generating an electric return-to-zero (RZ) signal based on an input data signal and a clock signal, amplifying the electric RZ signal, outputting a carrier having a predetermined wavelength, and modulating the carrier according to the amplified RZ signal.
The above and other features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. Throughout the drawings, like reference numerals refer to like elements.
The electronic integrated circuit 230 includes a signal mixer 200 for electrically mixing an input non-return-to-zero (NRZ) data signal with a clock signal, a signal controller 210 that is located between the signal mixer 200 and a full-wave rectifier 220 having a full-wave rectifying transfer function and amplifies the output signal of the signal mixer 200 to a sufficient amplitude or matches the number of outputs of the signal mixer 200 with the number of inputs of the full-wave rectifier 220, and a full-wave rectifier 220 having a full-wave rectifying transfer function to shift the phase of the output signal. The electronic integrated circuit 230 generates an electric RZ signal. Specifically, the signal controller 210 matches the number of outputs of the signal mixer 200 with the number of inputs of the full-wave rectifier 220 through a single signal line or two signal lines (differential signal lines) electrically connecting the signal mixer 200 to the signal controller 210 and electrically connecting the signal controller 210 to the full-wave rectifier 220. When the signal mixer 200 is connected to the signal controller 210 through two signal lines (differential signal lines) and the signal controller 210 is connected to the full-wave rectifier 220 through a single signal line or the signal mixer 200 is connected to the signal controller 210 through a single signal line and the signal controller 210 is connected to the full-wave rectifier 220 through differential signal lines, the signal controller 210 converts the signal output from the signal mixer 200 through the differential signal lines into a signal corresponding to a single signal line or converts the signal output from the signal mixer 200 through a single signal line into a signal corresponding to differential signal lines to match the number of outputs of the signal mixer 200 with the number of inputs of the full-wave rectifier 220.
The driving amplifier 240 amplifies a signal input thereto to a sufficient amplitude and drives the Mach zhender optical modulator 260. The light source 250 outputs a carrier. The Mach zhender optical modulator 260 modulates the carrier output from the light source 250 according to the electric RZ signal generated by the electronic integrated circuit 230.
The operation principle and operating method of the optical RZ signal generator using the electric integrated circuit that generates an electric RZ signal according to an embodiment of the present invention will now be explained in more detail.
Referring to
The signal controller 210 amplifies the output signal of the signal mixer 200 to a sufficient amplitude. The signal controller 210 is located between the signal mixer 200 and the full-wave rectifier 220 having a full-wave rectifying transfer function and matches the number of outputs of the signal mixer 200 with the number of inputs of the full-wave rectifier 220.
The signal controller 210 matches the number of outputs of the signal mixer 200 with the number of inputs of the full-wave rectifier 220 by electrically converting a single signal line to a single signal line, a single signal line to a differential signal line, a differential signal line to a differential signal line, or a differential signal line to a single signal line.
The full-wave rectifier 220 inverts the section of the output signal of the signal controller 210, which has a negative voltage, according to the transfer characteristic illustrated in
The driving amplifier 240 sufficiently amplifies the electric RZ signal generated by the electronic integrated circuit 230 such that the amplified RZ signal meets the input condition of the Mach zhender optical modulator 260 and drives the Mach zhender optical modulator 260.
The light source 250 outputs a carrier having a specific wavelength. The light source 250 may be configured in the form of a laser diode. The Mach zhender optical modulator 260 modulates the carrier output from the light source 250 into an optical RZ signal according to the electric RZ signal amplified by the driving amplifier 240.
While
As described above, the present invention can easily generate an optical RZ signal using the electronic integrated circuit generating an electric RZ signal and a single Mach zhender optical modulator. Furthermore, the present invention can reduce the size of an optical transmission system by integrating the components of the optical transmission systems into a single integrated circuit.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
It will be understood by those skilled in the art that the present invention is embodied as software or hardware using a general programming technique.
The invention can be also be embodied as computer readable codes on a computer readable recording medium. The computer readable recording medium is any data storage device that can store data which can be thereafter read by a computer system. Examples of the computer readable recording medium include read-only memory (ROM), random-access memory (RAM), CD_ROMs, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission through the Internet). The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0125066 | Dec 2006 | KR | national |