The present disclosure relates generally to the field of nucleic acid sequencing. More particularly, the present disclosure relates to apparatus and method for nucleic acid sequencing.
Nucleic acid sequencing includes determination of the order of nucleotides, the chemical building blocks that make up nucleic acid. In a typical arrangement, DNA or RNA samples are fragmented, enriched, sequenced and analyzed to obtain the sequence information, which could be utilized in a broad range of biological and pharmaceutical applications including diagnostics of genetic diseases, drug trials and pharmacogenomics, as well as other applications such as evolutionary biology and forensics. Especially since the completion of the Human Genome Project in 2001, a rapid expansion of knowledge about human DNA and genetic variation has been initiated, which further boosts the development of nucleic acid sequencing technologies.
A number of sequencing techniques have been developed and some of them are commercialized. One of them is based upon a fluorescent imaging platform. Each type of deoxynucleoside triphosphate (e.g., dATP, dCTP, dTTP and dGTP) is labeled with fluorescently labeled reversible terminators. During the sequencing process, each sequencing cycle only allows a single dNTP added to the growing oligonucleotide strand. Concurrently with the single dNTP incorporation, the fluorescently labeled reversible terminator is imaged to identify a corresponding base in the template strand, and the terminator is subsequently cleaved to allow the incorporation of next dNTP. This method requires a delicate fluorescent imaging platform as well as at least four dNTPs labeled with different fluorescently labeled reversible terminators as building blocks, which cause high instrument cost and more importantly, significant reagent cost leading to high expense per run, especially for sequencing with a large genome size.
Alternatively, ion semiconductor sequencing is another sequencing technique based on detection of hydrogen ions released from incorporation of dNTPs into a growing nucleotide strand. Hydrogen ions are natural byproducts of polymerase-catalyzed nucleotide extension reactions. When a single dNTP is incorporated into the growing nucleotide strand, it releases one hydrogen ion which can be detected by an ion-sensitive field-effect transistor to generate an electronic signal. If homopolymer repeats are present, multiple hydrogen ions are released, corresponding to proportional increase in the electronic signals. Prior to sequencing process in the ion semiconductor sequencing method, DNA templates are attached onto micrometer-sized beads which are compartmentalized into water-oil emulsion droplets containing PCR reaction mixture. In the aqueous water-oil emulsion, each of the droplets containing the micrometer-sized bead functions as a PCR microreactor that amplifies the attached DNA template fragments. However, emulsion PCR is a time-consuming process requiring multiple steps (forming and breaking emulsion, PCR amplification, enrichment, etc.). Further, the emulsion breaking and bead washing are usually carried out by centrifugation, during which the beads may aggregate causing sample loss. It is also relatively inefficient since only around two thirds of the emulsion microreactors actually contain one bead while other emulsion droplets are empty. Therefore, an extra step may be required to separate empty emulsion droplets leading to more potential inaccuracies.
The disclosed apparatus and method for nucleic acid sequencing are directed to solve one or more problems set forth above and other problems.
The present disclosure provides a method for nucleic acid sequencing. The method for nucleic acid sequencing may include immobilizing at least two capturing oligonucleotides with different sequences in a plurality of reaction wells; and immobilizing a plurality of single-stranded nucleic acid templates in the plurality of reaction wells via annealing between the plurality of single-stranded nucleic acid templates and the at least two capturing oligonucleotides, where each of the single-stranded nucleic acid templates includes two regions complementary to the different sequences of the at least two capturing oligonucleotides, respectively. The method for nucleic acid sequencing may further include amplifying the immobilized plurality of single-stranded nucleic acid templates and producing a population of single-stranded nucleic acid template clones on the surface of the plurality of reaction wells, where the population of the single-stranded nucleic acid template clones is annealed with a plurality of sequencing primers, sequentially disposing different types of nucleotide trisphosphates into the plurality of reaction wells where the different types of nucleotide trisphosphates are known, and detecting, by one or more ion-sensitive field-effect transistors (ISFETs), ion concentration change in the plurality of reaction wells in response to incorporation of one of the different types of nucleotide trisphosphates at 3′ end of the sequencing primer, when the one of the different types of nucleotide trisphosphates is complementary to a corresponding nucleotide in the population of single-stranded nucleic acid template clones, and sequencing the population of single-stranded nucleic acid template clones by repeating the sequentially disposing of the different types of nucleotide trisphosphates and the detecting, by the one or more ISFETs, of the ion concentration change in the plurality of reaction wells.
In one embodiment of the present disclosure, a number of the plurality of single-stranded nucleic acid templates immobilized on a surface of each of the reaction wells via the annealing may be less than or equal to a pre-determined value, where the pre-determined value may be one. In another embodiment, a total number of the plurality of single-stranded nucleic acid templates disposed into the plurality of reaction wells may be less than or equal to a total number of the plurality of reaction wells, for example, the total number of the plurality of single-stranded nucleic acid templates disposed into the plurality of reaction wells may be less than or equal to 70% of the total number of the plurality of reaction wells.
In another embodiment of the present disclosure, the amplifying the immobilized plurality of single-stranded nucleic acid templates and producing the population of single-stranded nucleic acid template clones on the surfaces of the plurality of reaction wells may further include amplifying the immobilized plurality of single-stranded nucleic acid templates, thereby generating a plurality of double-stranded nucleic acid template clones, denaturing the plurality of double-stranded nucleic acid template clones, and producing a population of single-stranded nucleic acid template clones on the surface of the plurality of reaction wells.
The method for nucleic acid sequencing may further include the step of determining a loading rate of the plurality of reaction wells, where the load rate may include a ratio between a number of the reaction wells containing the immobilized nucleic acid templates and a total number of the plurality of reaction wells. To improve the loading rate and sequencing efficiency, in another embodiment, the method for nucleic acid sequencing may further include repeating the step of disposing the plurality of single-stranded nucleic acid templates into the plurality of reaction wells and the step of amplifying the immobilized plurality of single-stranded nucleic acid templates, and the loading rate may be determined after each loading cycle including the step of disposing the plurality of single-stranded nucleic acid templates into the plurality of reaction wells and the step of amplifying the immobilized plurality of single-stranded nucleic acid templates.
In another embodiment, the method for nucleic acid sequencing may further include the step of disposing a plurality of microbeads into the plurality of reaction wells, where a surface of the plurality of microbeads may be attached with single-stranded oligonucleotides or polymers, and the step of disposing the plurality of microbeads into the plurality of reaction wells may be concurrently with, or before the step of detecting, by the one or more ISFETs, ion concentration change in the plurality of reaction wells.
The present disclosure also provides an apparatus for nucleic acid sequencing, including a sensor array, including a plurality of ion-sensitive field-effect transistors (ISFETs) configured to provide at least one output signal corresponding to a concentration or presence of one or more ions proximate thereto, and a flow cell including an input, an output and a flow chamber, where the flow chamber may be in fluidic connection with an opening of each reaction well of an array of reaction wells, where at least two capturing oligonucleotides with different sequences may be immobilized on a surface of each of the reaction wells, and the different sequences of the at least two capturing oligonucleotides are complementary to two regions of a to-be-sequenced nucleic acid template. The apparatus for nucleic acid sequencing may further include a fluidics delivering unit, configured to be in fluidic connection with the input of the flow cell, and configured to deliver at least one of the to-be-sequenced nucleic acid template and different types of known nucleotide trisphosphates, in a direction from the input to the output, to the reaction chamber. In one embodiment of the present disclosure, each of the reaction wells may be associated with one of the plurality of ISFETs in the sensor array, and the one of the plurality of ISFETs may be configured to provide the at least one output signal in response to ion concentration change in each of the reaction wells, the ion concentration change may correspond to incorporation of one of the different types of nucleotide trisphosphates at 3′ end of a sequencing primer annealed to the to-be-sequenced nucleic acid template, when the one of the different types of nucleotide trisphosphates is complementary to a corresponding nucleotide in the to-be-sequenced nucleic acid template.
In one embodiment of the present disclosure, the fluidics delivering unit may further be configured to deliver a plurality of microbeads into the reaction chamber, such that the plurality of microbeads may control the diffusion of ionic byproducts generated from the incorporation of one of the different types of nucleotide trisphosphates at the 3′ end of the sequencing primer. In another embodiment, the sensor array and the array of reaction wells may be integrated on a same semiconductor chip.
The present disclosure also provides a method for producing single-stranded nucleic acid template clones on a reaction well array, the method including the steps of providing the reaction well array including a plurality of reaction wells, where at least two capturing oligonucleotides with different sequences may be immobilized on a surface of each of the reaction wells, disposing a solution including a plurality of single-stranded nucleic acid templates into the plurality of reaction wells, and amplifying the immobilized plurality of single-stranded nucleic acid templates, thereby generating a plurality of double-stranded nucleic acid template clones, denaturing the plurality of double-stranded nucleic acid template clones and producing a population of single-stranded nucleic acid template clones on the surface of the plurality of reaction wells. In one embodiment, each of the single-stranded nucleic acid templates may include two regions complementary to the different sequences of the at least two primers, and the plurality of single-stranded nucleic acid templates may be immobilized on the surface of the plurality of reaction wells via annealing between the single-stranded nucleic acid templates and the at least two capturing oligonucleotides. In another embodiment, a number of the single-stranded nucleic acid templates immobilized on a surface of each the plurality of reaction wells via the annealing may be less than or equal to a pre-determined value, for example, the pre-determined value may be one. In another embodiment, a total number of the plurality of single-stranded nucleic acid templates in the solution may be less than or equal to a total number of the plurality of reaction wells, for example, the total number of the plurality of single-stranded nucleic acid templates in the solution may be less than or equal to 70% of the total number of the plurality of reaction wells.
The method for producing single-stranded nucleic acid template clones on the reaction well array may further include the step of determining a loading rate of the plurality of reaction wells, where the load rate may include a ratio between a number of the reaction wells containing the immobilized single-stranded nucleic acid templates and a total number of the plurality of reaction wells. The loading rate may be determined by measuring, by one or more ion-sensitive field-effect transistors (ISFETs) configured to provide at least one output signal in response to a concentration or presence of one or more ions proximate thereto, ion concentration change corresponding to the amplification of the immobilized plurality of single-stranded nucleic acid templates in the reaction wells, where the plurality of reaction wells is associated with the one or more ISFETs.
The method for producing single-stranded nucleic acid template clones on the reaction well array may further include repeating the step of disposing the plurality of single-stranded nucleic acid templates into the plurality of reaction wells and the step of amplifying the immobilized plurality of single-stranded nucleic acid templates. Accordingly, the loading rate may be determined after each loading cycle including the step of disposing the plurality of single-stranded nucleic acid templates into the plurality of reaction wells and the step of amplifying the immobilized plurality of single-stranded nucleic acid templates.
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
To describe the technical solutions in the embodiments of the present disclosure more clearly, the following briefly introduces the accompanying drawings used for describing the embodiments. Apparently, the accompanying drawings in the following description show merely some embodiments of the present disclosure, and a person skilled in the art may still derive other drawings from these accompanying drawings without creative efforts.
The following describes the technical solutions in the embodiments of the present disclosure with reference to the accompanying drawings. Apparently, the described embodiments are merely some but not all the embodiments of the present disclosure. Other embodiments obtained by a person skilled in the art based on the embodiments of the present disclosure without creative efforts shall fall within the protection scope of the present disclosure.
The present disclosure provides an apparatus for nucleic acid sequencing, configured to determine the sequence information of the nucleic acid (e.g., DNA or RNA) in a sample. The nucleic acid sequencing apparatus may be used to determine the sequences of individual genes, larger genetic regions (e.g., clusters of genes), full chromosomes, or whole genome of an organism. Further, the nucleic acid sequencing apparatus may also be used in RNA sequencing and methylation sequencing by identifying methylation patterns in the genome. The nucleic acid sequencing apparatus according to the present disclosure may function in a variety of manners depending upon different applications, including sequencing-by-synthesizing as well as other sequencing methods such as sequencing by ligation or pyrosequencing, which will not be limited in the present disclosure. In a typical arrangement which will be described in greater detail below according to the present disclosure, based on genome size of the nucleic acid in a sample and the amount of the sample available to be sequenced, the nucleic acid may be firstly fragmented, followed by 5′ and 3′ adaptor ligation and denaturing process to create a sample library containing single-stranded nucleic acid templates. Further, the sample library may be disposed into a reaction chamber of the nucleic acid sequencing apparatus, in which these single-stranded nucleic acid templates may further be amplified to create a population of single-stranded nucleic acid template clones, the sequences of which may be determined by the subsequent sequencing process.
The controller 108 of the exemplary nucleic acid apparatus may be connected with the fluidics delivering unit 102 and the detecting unit 103. The controller 108 may include a general purpose or application-specific computer system configured to control the delivery of fluidics, acquire signals outputted from the detecting unit, process and output the output signals, as well as other functions as desired. For example, the controller may configure the order of the reagents being delivered to the detecting unit and preset the parameters of the fluidics delivery, including flow rate, flow duration, etc. The controller may also be configured to acquire and process signal outputted from the detecting unit 106 into formats recognizable by a data output/analysis unit 110, and a user interface 112.
In one embodiment, oligonucleotides (e.g. oligos) may be immobilized on the bottom portions of the reaction wells. These oligonucleotides may function as probes for capturing single-stranded nucleic acid templates in the sample solution flowing over the reaction wells, where each of the single-stranded nucleic acid templates may contain complementary sequences (e.g., adaptor sequences at 3′ and 5′ ends of the single-stranded nucleic acid templates) to the oligonucleotide probes. In one embodiment, at least two capturing oligonucleotides with different sequences may be immobilized on the bottom portion of the reaction wells, and the sequences of the capturing oligonucleotides may be complementary to different regions of the nucleic acid templates. With reference to
In one embodiment, only one single-stranded nucleic acid template may be captured by the capturing oligos and immobilized in each reaction well. Subsequently, the single-stranded nucleic acid template may be amplified to generate a dense amount of nucleic acid template clones on the bottom portions of the reaction wells. In one embodiment, the immobilized capturing oligos may function as primers during the amplification process, therefore, the density of the capturing oligos may affect the density of the generated template clones. With reference to
With further reference to
In accordance with the aforementioned embodiments, the ISFET sensor in the exemplary sequencing apparatus may further include a reference electrode in fluidic connection with the reaction wells, providing a same voltage to all of the reaction wells. In one embodiment, the reference electrode may be one or more micro electrodes integrated on the sensor array. The sensor array may be fabricated on a circuit-connected substrate where the circuit is connected to the controller 104. As such, the signal change detected by each sensor may be collected and processed by the controller 104. In one embodiment, the sensor array and the reaction well array may be integrated on a same semiconductor chip.
In one embodiment, the sensor in the exemplary nucleic acid apparatus may be a pH-sensitive ISFET detecting concentration change of the hydrogen ions. For example, the pH-sensitive ISFET may detect the generation of hydrogen ions from a polymerase-catalyzed oligonucleotide extension reaction within the reaction wells. In particular, with each dNTP incorporating into a growing nucleotide strand, a hydrogen ion, as a natural byproduct of the dNTP incorporation, will be generated and diffused in proximity to the ion-sensitive layer of the ISFET and detected by the ISFET. Accordingly, the concentration of the released hydrogen ions may be proportional to the concentration of the incorporated dNTP. In another embodiment, four types of dNTPs may be sequentially delivered to the reaction wells in a pre-determined order, one type of dNTP at a time. In the presence of a primer annealed to the nucleic acid template to form a primer-template duplex in the reaction wells as well as a DNA polymerase, only a dNTP complementary to a next base in the template strand will be incorporated at 3′ end of the primer strand and release a hydrogen ion which may be detected by the ISFET and generate a positive signal output. The other three types of dNTPs which are not complementary to the based may be flushed out of the reaction well without generating a positive signal. Based on the positive signal generated with the incorporation of the complementary dNTP, the base on the template strand may be identified. When this reaction cycle is repeated, the sequence of the entire nucleic acid template may be identified in such sequencing-by-synthesizing manner.
With regard to the fluidics delivering unit 104, it may include one or more of solution containers, valves, pumps and tubing, for storing and transferring solutions to the detecting unit 106 in a configurable manner. As shown in
Under the control of the controller 108, and the delivered solutions may vary depending upon the working stages of the nucleic acid sequencing apparatus. For example, during a sequencing-by-synthesis stage as described in the aforementioned embodiment, the delivered solution may sequentially deliver reagents (e.g., reagents A, B, C and D), followed by a washing solution. That is, the four types of dNTPs, one at a time, may be sequentially delivered to the reaction chamber of the detecting unit in the pre-determined order, e.g., dATP, dGTP, dTTP, dCTP, dATP, dGTP, dTTP, dCTP and so forth. After each delivery of single type of dNTP, the reaction chamber may be exposed with wash solutions to remove excessive dNTP. Optionally, a dNTP-destroying solution (e.g., apyrase), after the washing, may be delivered to eliminate any residual dNTP remaining in the reaction chamber and reaction wells. It should be noted that the aforementioned order of the dNTP addition is for exemplary purposes only, for which the present disclosure will not intend to be limiting. Optionally during the sequencing-by-synthesizing stage, the fluidics delivering unit 104 may further deliver a plurality of microbeads into the reaction chamber, such that the plurality of microbeads control diffusion of ionic byproducts generated from the incorporation of dNTPs at 3′ end of the sequencing primer, thereby enhancing the sensitivity of the ion detection when using an ISFET sensor.
In another embodiment, during a sample loading stage, the single-stranded nucleic acid templates may be delivered to the reaction chamber such that the template may be captured onto the surface of the reaction well for subsequent amplification. A number of the plurality of single-stranded nucleic acid templates immobilized on the surface of each of the reaction wells via the annealing may be less than or equal to a pre-determined value. In one embodiment, the pre-determined value may be one, that is, a single nucleic acid template may be immobilized on the surface of each reaction well. To realize the single nucleic acid template immobilization, in one embodiment, the fluidics delivering unit 104 may deliver a sample solution containing a low concentration of nucleic acid template in a per-determined flow rate for pre-determined duration, such that a single nucleic acid template may diffuse into each of the reaction wells and immobilized. Additionally, during other working stages, the fluidics delivering unit 104 may deliver cleavage solution for cleaving the linkers on the capturing oligos, and denaturing solution (e.g., containing NaOH) for removing one strand of the double-stranded amplified nucleic acid templates to form a population of single-stranded nucleic template clones on the surface of the reaction wells.
The present disclosure also provides a method for nucleic acid sequencing. The method may include the following steps: providing a plurality of reaction wells associated with one or more ISFETs configured to provide at least one output signal in response to ions disposed in the plurality of reaction wells, where at least two capturing oligonucleotides with different sequences may be immobilized on a surface of the plurality of reaction wells; disposing a plurality of single-stranded nucleic acid templates into the plurality of reaction wells, where each of the single-stranded nucleic acid templates may include two regions complementary to the different sequences of the at least two capturing oligonucleotides, and the plurality of single-stranded nucleic acid templates may be immobilized on the surface of the plurality of reaction wells via annealing between the plurality of single-stranded nucleic acid templates and the at least two capturing oligonucleotides; amplifying the immobilized plurality of single-stranded nucleic acid templates and producing a population of single-stranded nucleic acid template clones on the surface of the plurality of reaction wells, where the population of the single-stranded nucleic acid template clones may be annealed with a plurality of sequencing primers; sequentially disposing different types of nucleotide trisphosphates into the plurality of reaction wells, where the different types of nucleotide trisphosphates may be known; and detecting, by the one or more ISFETs, ion concentration change in the plurality of reaction wells in response to incorporation of one of the different types of nucleotide trisphosphates at 3′ end of the sequencing primer, when the one of the different types of nucleotide trisphosphates is complementary to a corresponding nucleotide in the population of single-stranded nucleic acid template clones; and sequencing the population of single-stranded nucleic acid template clones by repeating the step of sequentially disposing of the different types of nucleotide trisphosphates and the step of detecting, by the one or more ISFETs, the ion concentration change. The work flow of the exemplary method for nucleic acid sequencing will be described in greater detail below. It should also be noted that the exemplary sequencing method according to the present disclosure may be carried out by the exemplary apparatus for nucleic acid sequencing. Alternatively, the exemplary sequencing method according to the present disclosure may be carried out by other apparatus, for which the present disclosure will not intend to be limiting.
In one embodiment, the single-stranded nucleic acid template may firstly be pre-treated before disposing into the reaction wells. In particular, nucleic acid (e.g. genomic DNA) may be extracted and fragmented to generate a collection of double-stranded nucleic acid fragments of which the sequences may be of interest to obtain sequence information. After or concurrently with the fragmentation process, both 3′ and 5′ ends of the double-stranded nucleic acid fragments may be ligated with two adaptors, respectively, followed by a denaturing process to form a plurality of single-stranded nucleic acid templates, where each template may include two adaptors ligated at 3′ end and 5′ end, respectively. It should be noted that other sample preparation methods may also be used for which the present disclosure will not intend to limit. In one embodiment, the nucleic acid extraction and sample preparation may approximately take 90-120 minutes.
After the sample preparation process, the sample solution containing a plurality of single-stranded nucleic acid templates may be disposed into the fluidics delivering unit 104 through the sample/reagent input 102. The nucleic acid templates may flow in the reaction chamber and diffused into the opening portion of the plurality of reaction wells. In accordance with the aforementioned embodiments, capturing oligos with sequences complementary to the 3′ and 5′ end adaptors on the single-stranded template, respectively, may be immobilized on the bottom portion of the reaction wells. Through the annealing between the adaptor at 3′ or 5′ end of the template and the capturing oligo, the single-stranded template may be immobilized on the bottom portion of the reaction wells.
In one embodiment, a number of the plurality of single-stranded nucleic acid templates immobilized on the surface of each of the reaction wells via the annealing is less than or equal to a pre-determined value. For example, the pre-determined value may be one. In other words, for each of the reaction wells, it may be immobilized with a single nucleic acid template, alternatively it may contain none of the templates, resulting in digital capture of the nucleic acid templates, that is, either 1 or 0 single-stranded nucleic acid template may be immobilized in each reaction well. As shown in
To realize the digital capturing of the nucleic acid template, in one embodiment, the concentration of the sample solution containing the templates may be properly adjusted to a pre-determined value. For example, the concentration of the template in the sample solution may be diluted so that a number of single-stranded nucleic acid templates per volume in the reaction chamber may be less than a total number of the reaction wells. In one embodiment, the number of the single-stranded nucleic acid templates per volume in the reaction chamber may be less than or equal to 90% of the total number of the reaction wells. Optionally, the number of the single-stranded nucleic acid templates per volume in the reaction chamber may be less than or equal to 80% of the total number of the reaction wells. Optionally, the number of the single-stranded nucleic acid templates per volume in the reaction chamber may be less than or equal to 70% of the total number of the reaction wells. In one embodiment, when the number of the nucleic acid templates per volume in the reaction chamber may be less than the total number of the reaction wells, the polyclonal capturing of the template into the reaction wells may be significantly reduced based upon Poisson distribution. That is, the ratio of the reaction wells immobilized with more than one single-stranded nucleic acid template to a total number of the reaction wells immobilized with nucleic acid templates may be reduced. For example, the polyclonal capturing of the nucleic acid template may be reduced to below 20%, when the number of the nucleic acid templates per volume in the reaction chamber may be ≤90%, ≤80% or ≤70% of the total number of the reaction wells. The low ratio of the polyclonal capturing of the template in the reaction wells may be removed during data analysis, such that it may not cause interference in the subsequent sequencing process.
Furthermore, to realize the digital capturing of the nucleic acid templates, the parameters of the fluidics delivering unit 104, e.g., the flow rate and duration of the sample solution containing the templates may also be adjusted to pre-determined settings. After the sample solution flows from the input of the flow path and filled the reaction chamber, it may be settled in the reaction chamber for a pre-determined duration, such that the template may diffuse in proximity to the capturing oligos immobilized in the reaction wells.
In another embodiment, the sample solution containing the single-stranded nucleic acid templates may be partitioned to generate a plurality of small droplets, each of the droplets including 1 or 0 of the templates. For example, a 20 microliter of sample solution may be partitioned into 20,000 nanoliter-sized droplets. Subsequently, these droplets may be injected into the fluidics delivering unit 104 through the sample/reagent input 102, flowing in the reaction chamber 210. With the concentration of the droplets in the reaction chamber as well as one or more of the flow parameters adjusted, a single droplet may be disposed into each of the reaction wells. The template within the single droplet may be released and hybridized with the capturing oligos in the reaction well to realize the digital capturing of the template.
The method for nucleic acid sequencing may further include the steps of amplifying the immobilized nucleic acid templates and producing a population of nucleic acid template clones on the surface of the plurality of reaction wells, where the population of the nucleic acid template clones is annealed with a plurality of sequencing primers; sequentially disposing different types of nucleotide trisphosphates into the plurality of reaction wells, where the different types of nucleotide trisphosphates are known; detecting, by the one or more ISFETs, ion concentration change in the plurality of reaction wells in response to incorporation of one of the different types of nucleotide trisphosphates at 3′ end of the sequencing primer, when the one of the different types of nucleotide trisphosphates is complementary to a corresponding nucleotide in the population of nucleic acid template clones; and sequencing the population of nucleic acid template clones by repeating the step of sequentially disposing of the different types of nucleotide trisphosphates and the step of detecting, by the one or more ISFETs, the ion concentration change. One or more embodiments in accordance with the aforementioned steps will be described as follows.
In one embodiment, bridge amplification method may be performed to amplify the single nucleic acid template on the bottom portion of each reaction well.
In another embodiment of the present disclosure in accordance with (g) of
As described above, the digital capture of the template in the reaction well may also result in empty reaction wells containing none of the template. Accordingly, the digital capturing of the nucleic acid template within the reaction well may need to be monitored, thereby determining a loading rate of the reaction wells. In particular, the load rate may be a ratio between a number of the reaction wells containing the immobilized nucleic acid templates and a number of all of the reaction wells. In one embodiment, when an ISFET sensor was associated with each of the reaction wells, the amplification of the nucleic acid template may also be monitored by output signals of the ISFET sensors in response to ion concentration change during the template amplification. The loading rate may further be determined by monitoring the output signals of the ISFET sensors during the amplification of the nucleic acid template. For example, the sample solution containing the single-stranded nucleic acid templates may be firstly flushed into the reaction chamber for digital capturing of the template in each of the reaction wells. When a single template is immobilized in one of the reaction wells, the ISFET sensor associated with the reaction well may be configured to monitor the amplification process of the single template by measuring the concentration change of the released hydrogen ions during the amplification, and outputting signals (e.g. a binary signal of one). For empty reaction wells without nucleic acid template, the associated ISFET sensors may only show background signal as a negative output signal (e.g. a binary output of zero). As such, the loading rate of the reaction wells may be determined by quantifying the number of reaction wells with a binary output of one.
In accordance with the aforementioned embodiments, the present disclosure also provides a method for producing single-stranded nucleic acid template clones on a reaction well array, including the steps of: providing the reaction well array including a plurality of reaction wells, where at least two capturing oligonucleotides with different sequences may be immobilized on a surface of each of the reaction wells; disposing a solution including a plurality of single-stranded nucleic acid templates into the plurality of reaction wells, where each of the single-stranded nucleic acid templates may include two regions complementary to the different sequences of the at least two capturing oligonucleotides, the plurality of single-stranded nucleic acid templates may be immobilized on the surface of the plurality of reaction wells via annealing between the single-stranded nucleic acid templates and the at least two capturing oligonucleotides, and a number of the single-stranded nucleic acid templates immobilized on the surface of each the plurality of reaction wells via the annealing may be less than or equal to a pre-determined value; and amplifying the immobilized plurality of single-stranded nucleic acid templates and producing a population of double-stranded nucleic acid template clones on the surface of the plurality of reaction wells. By denaturing the plurality of double-stranded nucleic acid template clones and a population of single-stranded nucleic acid template clones may be produced on the surface of the plurality of reaction wells. It should also be noted that the exemplary method for producing nucleic acid template clones on a reaction well array according to the present disclosure may be carried out by the exemplary apparatus for nucleic acid sequencing. Alternatively, the exemplary method may be carried out by other instruments or performed on other platforms, for which the present disclosure will not intend to be limiting.
In accordance with the aforementioned embodiments, the loading rate may be determined in different ways. For example, the ISFETs may be configured to provide at least one output signal in response to ions disposed in the plurality of reaction wells, where the ion concentration change may correspond to the amplification of the immobilized plurality of nucleic acid templates in the reaction wells associated with the ISFETs.
The loading cycle may be repeated until the loading rate exceeds the pre-determined threshold value to indicate completion of sample capture (see e.g., 513 of
In accordance with the aforementioned embodiments and
In accordance with the aforementioned embodiments, when each of the sensor well is connected with an ISFET sensor, the ion-sensitive layer of the ISFET sensor may detect and measure the concentration change of the hydrogen ions corresponding to the incorporation of the dNTPs at 3′ end of the sequencing primer (e.g., dTTP). In one embodiment, when a homopolymer region (e.g., poly(dA)) is present in the template, the incorporation of multiple dTTP molecules may result in a multi-fold signal change corresponding to the number of the repeatable bases in the template. For example, a homopolymer region including AA sequence repeats may cause a two-fold signal change compared to the signal generated by a single T in the template. The detection of hydrogen ions by the use of ISFET sensors may only require natural dNTPs, rather than dNTPs with different fluorescently labeled reversible terminators and complex fluorescent imaging platform, thereby significantly reducing the cost of the sequencing apparatus and reagent cost per run. Furthermore, the detection of hydrogen ions by the use of ISFET sensors may improve the sequencing efficiency. In one embodiment, the sequencing process may approximately take 60-90 minutes.
Alternatively,
As described in the aforementioned embodiments, when the sensor connected with each reaction well is an ISFET sensor, the ion-sensitive layer in the sensor may detect the concentration change of the hydrogen ion. In one embodiment, the release of the hydrogen ion may occur on the surface or in proximity to the ion-sensitive layer, ensuring the sensitivity and accuracy of the detection. On one side, nevertheless, the hydrogen ions may diffuse away from the surface of the ion-sensitive layer. On the other, the 3′ end of the primer strand may have certain distance from the ion-sensitive layer, considering the hybridized double strands may have less flexibility as compared to the single-stranded template. As a result, the sensitivity and accuracy of the detection of the hydrogen ions may be affected.
In one embodiment, with the completion of the template amplification in the reaction wells, a reagent solution containing a plurality of microbeads may be delivered into the reaction chamber by the fluidics delivering unit 104, such that the microbeads may diffuse into the reaction wells. In one embodiment, the microbeads may have a diameter in micrometer or nanometer scale, and may be made of hydrogel, polymers (e.g. polystyrene) or metal (e.g. gold). In one embodiment, each of the reaction wells may include a single microbead which may function as a porous cap to confine the hydrogen ions in proximity to the bottom of the reaction wells. That is, the microbeads may prevent the diffusion of the released hydrogen ions away from the bottom portion of the reaction well, or lateral diffusion into other reaction wells. Further, the microbeads may confine the elongated primer-template duplex in vicinity of the bottom of the reaction wells, such that with the further extension of the primer strand, the released hydrogen ions may be accurately detected by the ion-sensitive layer.
In another embodiment, the parameters of the reaction wells including volume and aspect ratio (e.g. the ratio between the diameter and depth of a reaction well) may be adjusted. For example, the depth of the reaction well may be increased such that the released hydrogen ions due to dNTP incorporation may be confined in the reaction well without lateral diffusion. In another embodiment, the determination of the parameters of the reaction wells may be in accordance with the microbeads disposed into the reaction wells. As such, each reaction well may include a single microbead, while the fluidic communication between the reaction chamber and the opening of the reaction well may not be influenced by the microbeads.
According to the aforementioned embodiments of the present disclosure, the exemplary apparatus and method for nucleic acid sequencing may provide a variety of advantages including high accuracy, efficiency, portability and affordability for users. For example, the digital capture of the nucleic acid templates in the reaction well may result in accurate and efficient amplification of the template to form a high density of nucleic acid template clones in each reaction well, which may further improve the accuracy of the following nucleic acid template sequencing. Furthermore, through the digital capture, the presence or absence of the template in each of the reaction wells may be easily determined through binary signal output. In addition, the time-consuming emulsion PCR may be avoided, such that the efficiency and accuracy of the genetic sequencing may further be improved.
In another embodiment, each of the reaction wells may be connected to an ISFET sensor which may detect the concentration change of the reactors or by-products corresponding to the nucleotide extension reactions. As such, natural reactors including dNTPs may be used in the nucleic acid sequencing apparatus and method, without the requirement of fluorescent-labeled reversible terminators or the use of complex fluorescent imaging platform. The size of the exemplary nucleic acid sequencing apparatus may be reduced, and because of the significant reduce in reagent cost, the sequencing expense per run may be more affordable to users. Furthermore, since the template is immobilized on the bottom portions of the reaction wells close to the ISFET sensor, it may be easier and more efficient for the released hydrogen ions in close vicinity of the ion-sensitive layer, as compared to the template attached to a microbead disposed in the reaction well after emulsion PCR. In one embodiment, the nucleic acid sequencing apparatus and method may achieve a complete process from sample extraction/preparation to completion of sequencing in approximately 190-280 minutes.
Although the principles and implementations of the present disclosure are described by using specific embodiments in the specification, the foregoing descriptions of the embodiments are only intended to help understand the method and core idea of the method of the present disclosure. Meanwhile, a person of ordinary skill in the art may make modifications to the specific implementations and application range according to the idea of the present disclosure. In conclusion, the content of the specification should not be construed as a limitation to the present disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/083381 | 4/19/2019 | WO | 00 |