The present invention relates to an apparatus and a method for identification of swirling flow, and particularly, to an apparatus and a method for identification of swirling flow in fluid flow.
A swirling flow is known as a fluid flow.
There has been a demand for a technique capable of adequately identifying the swirling flow by using a velocity vector at each node point (coordinate point). There has been a demand for a technique capable of, even under the presence of another flow, adequately identifying the swirling flow. There has been a demand for a technique capable of, even under the presence of another flow and a plurality of swirling flows, adequately identifying these swirling flows.
As a related art, D. Sujudi and R. Haimes disclosed a method for identification of swirling flow in “Identification of swirling flow in 3-D vector fields” (12th AIAA Comput Fluid Dyn conf 1995 Part2, (1995), p. 792-799). With this method, at first, an eigenvalue of a velocity gradient tensor are calculated. Next, if the eigenvalue is a complex number, a coordinate point on a swirling plane, where the velocity is 0 around the coordinate point, is searched for. The coordinate point where the velocity is 0 is defined as the position of a swirling axis. However, with this method, it is difficult to obtain the swirling axis under the presence of a uniform flow.
Moreover, R. C. Strawn, D. N. Kenwright, and J. Ahmad disclosed another method for identification of swirling flow in “Computer visualization of Vortex Wake System”, (AIAA (1999), vol. 7 (No. 4), p. 511-512). With this method, a vorticity ω is calculated. Then, a coordinate point indicating a local maximum of the vorticity ω is defined as the position of a swirling axis. Note that the vorticity ω represents (the twice of) an angular velocity in arbitrary pattern of flow which is not limited to a swirling flow. Thus, a flow having the vorticity ω not necessarily is a swirling flow. That is, having the vorticity ω is not a sufficient condition for being a swirling flow.
Furthermore, S. Kida and H. Miura disclosed still another method for identification of swirling flow in “Identification and analysis of vortical structure”, (E. J. Mech. B/Fluids, (1998), vol. 17 (No. 4), p 471-488). With this method, a swirling axis is obtained based on the Hessian of pressure, a vorticity and a velocity gradient tensor. However, not only velocity data but also pressure data is required, and the calculation is complicated. It is difficult to acquire pressure data at the necessary and sufficient number of coordinate points required for the analysis to obtain the swirling axis based on experimental data.
Accordingly, it is an object of the present invention to provide an apparatus and a method for identification of swirling flow capable of adequately identifying a swirling flow by using a velocity vector at each node point (coordinate point).
It is another object of the present invention to provide an apparatus and a method for identification of swirling flow capable of adequately identifying a swirling flow even under presence of another flow or a plurality of swirling flows.
It is further another object of the present invention to provide an apparatus and a method for identification of swirling flow capable of adequately deciding the presence or absence of swirling flow.
It is still further another object of the present invention to provide an apparatus and a method for identification of swirling flow capable of discriminating between a swirling flow having a swirling axis (vortex axis) and a swirling flow not having a swirling axis.
According to one aspect of the present invention, a swirling flow identification apparatus of the present invention includes an eigenequation calculation section and a swirling axis calculation section. The eigenequation calculation section, based on velocity data V of a fluid at a coordinate point X, calculates an eigenvalue λ through an eigenequation concerning the coordinate point X and the velocity data V. The swirling axis calculation section, if the eigenvalue λ is a complex number λR±iφ, defines an imaginary part φ of the complex number λR±iφ as a swirl function φ, calculates a coordinate point X0 providing a local maximum value in the swirl function φ, and defines the coordinate point X0 providing the local maximum value φ0 as the position of a swirling axis P of a swirling flow in the fluid.
Here, based on the velocity data V at the coordinate point X, a Taylor expansion of the velocity is performed in a moving coordinate system which moves at the velocity of the coordinate point X which is the object of analysis, and then second and higher order terms are ignored to thereby obtain a velocity gradient tensor, and the eigenequation thereof is used.
The swirling flow identification apparatus described above has the swirling axis calculation section 4 which calculates the local maximum value φ0 in the swirl function φ and defines the local maximum value φ0 as an angular velocity at the swirling axis P.
The swirling flow identification apparatus described above further includes: a swirling line calculation section which, based on an eigenvector ξ and the swirl function φ calculated by the eigenequation, calculates a swirling line S indicating the swirling flow; and a display section which displays the swirling line S.
The swirling flow identification apparatus described above has the swirling axis calculation section which further decides that the fluid has no swirling flow if the eigenvalue λ is not a complex number λR±iφ.
The swirling flow identification apparatus described above has the swirling axis calculation section which further decides that a clear swirling axis P does not exists if there is no local maximum value φ0 satisfying a predetermined condition. The absence of the clear swirling axis means that the swirling flow has no axis at the center thereof but swirls around a finite region.
Moreover, according to another aspect, a fluid simulation apparatus includes: an analysis apparatus which, based on input of data related to the fluid, calculates velocity data at each of a plurality of coordinate points indicating the position in the fluid; and one of the swirling flow identification apparatuses described above.
Moreover, according to further another aspect, a swirling flow identification method of the present invention is executed by a swirling flow identification apparatus including an eigenequation calculation section and a swirling axis calculation section. There are included the steps: (a) in which the eigenequation calculation section, based on velocity data V of a fluid at a coordinate point X outputted from a communication line or a storage unit, calculates an eigenvalue λ through an eigenequation concerning the coordinate point X and the velocity data V; and (b) in which the swirling axis calculation section, if the eigenvalue λ is a complex number λR±iφ, defines an imaginary part φ of the complex number λR±iφ as a swirl function φ, calculates a coordinate point X0 providing a local maximum value φ0 in the swirl function φ, and defines the coordinate point X0 providing the local maximum value φ0 as the position of a swirling axis S of a swirling flow in the fluid.
In the swirling flow identification method described above, there is further included step (c) in which the swirling axis calculation section calculates the local maximum value φ0 in the swirl function φ, and defines the local maximum value φ0 as an angular velocity at the swirling axis P.
The swirling flow identification method described above, further includes steps: (d) in which, based on an eigenvector ξ and the swirl function φ calculated through the eigenequation, a swirling line S indicating the swirling flow is calculated; and (e) in which the swirling line S is displayed.
Moreover, according to still further another aspect, a computer program of the present invention is executed by a swirling flow identification apparatus including an eigenequation calculation section and a swirling axis calculation section. There are included steps: (a) in which the eigenequation calculation section, based on velocity data V of a fluid at a coordinate point X outputted from a communication line or a storage unit, calculates a eigenvalue λ through a eigenequation concerning the coordinate point X and the velocity data V; and (b) in which the swirling axis calculation section, if the eigenvalue λ is a complex number λR±iφ, defines an imaginary part φ of the complex number λR±iφ as a swirl function φ, calculates a coordinate point X0 providing a local maximum value φ0 in the swirl function φ, and defines the coordinate point X0 providing the local maximum value φ0 as the position of a swirling axis P of a swirling flow in the fluid.
In the computer program described above, a plurality of coordinate points Xs may be used. The step (a) includes step (a1) in which the eigenequation calculation section, based on the coordinate point X and the velocity data V, calculates an eigenvalue λ through an eigenequation concerning the coordinate point X and the velocity data V for each of the plurality of coordinate points Xs. The step (b) includes: step (b1) in which the swirling axis calculation section, for each of the plurality of coordinate points Xs, if the eigenvalue λ is a complex number λR±iφ, defines an imaginary part φ of the complex number λR±iφ as a swirl function φ, calculates a coordinate point X0 providing a local maximum value φ0 in the swirl function φ; and step (b2) in which, if there are a plurality of coordinate points X0s each of which provides a local maximum value φ0, each of the plurality of coordinate points X0s providing the local maximum value φ0 is defined as the position of a swirling axis P of a swirling flow in the fluid.
In the computer program described above, there is further included step (c) in which the swirling axis calculation section 4 calculates the local maximum value φ0 in the swirl function φ, and defines the local maximum value φ0 as an angular velocity at the swirling axis (p).
In the computer program described above, there are further included: step (d) in which, based on an eigenvector ξ and the swirl function φ calculated through the eigenequation, a swirling line S indicating the swirling flow is calculated; and step (e) in which the swirling line S is displayed.
In the computer program described above, the step (b) includes step (b3) in which, if the eigenvalue λ is not a complex number λR±iφ, the swirling axis calculation section decide that the fluid has no swirling flow.
In the computer program described above, the step (b) includes step (b4) in which, if there is no local maximum value φ0 satisfying a predetermined condition, the swirling axis calculation section 4 decides that the fluid has no clear swirling axis P.
To solve the problem described above, the computer program of the present invention is a computer program to be executed by a simulation apparatus including an analysis apparatus and the swirling flow identification apparatus. The simulation apparatus is caused to execute a fluid simulation method including: step (f) in which the analysis apparatus, based on input of data related to a fluid, calculates the velocity data V at the coordinate point X indicating the position in the fluid, and step (g) in which the swirling flow identification apparatus 1 executes the computer program described in any one of the sections provided above.
According to the present invention, even under the presence of another flow or a plurality of swirling flows, a swirling flow can be adequately identified by using the velocity vector at each of node points (coordinate points). The presence or absence of the swirling flow, the presence or absence of the swirling flow having a swirling axis (vortex axis) can be decided adequately.
Hereinafter, an embodiment of a swirling flow identification apparatus and a swirling flow identification method of the present invention will be described in detail, referring to the accompanying drawings.
The velocity data acquisition section 2, based on input of data related to a fluid, performs numerical analysis through Computational fluid Dynamics. Then, the velocity data acquisition section 2 calculates three-dimensional velocity vector data V (V1, V2, V3) of the fluid at each of a plurality of three-dimensional coordinate points Xs (X1, X2, X3) indicating the position in the fluid. The calculated data is stored into the velocity database 8, but it may be directly outputted to the eigenequation calculation section 3.
The velocity data V (V1, V2, V3) of this fluid at each of the plurality of coordinate points Xs (X1, X2, X3) may be acquired from a storage unit (not shown) connected to the swirling flow identification apparatus 1 via a communication line (not shown) or from another apparatus (not shown) on the network. Either of the storage unit (not shown) and the another apparatus (not shown) are other than the swirling flow identification apparatus 1. In this case, the another apparatus (not shown) may have the function of the velocity data acquisition section 2 or may be a simulation apparatus concerned with fluid flow (for example, a simulation apparatus for ship, wind power generator, turbine, fluid machinery, aircraft, chemical plant or atomic power plant).
The velocity database 8 stores, in correspondence with the coordinate point X, the velocity data V calculated by the velocity data acquisition section 2. The velocity database 8 may store, in correspondence with the coordinate point X, the velocity data V acquired from the storage unit (not shown) or the another apparatus (not shown) on the network.
The eigenequation calculation section 3 acquires the velocity data V in correspondence with the coordinate point X from the velocity data acquisition section 2 or the velocity database 8. The eigenequation calculation section 3, based on the velocity data V of the fluid at the coordinate points Xs, calculates eigenvalue λ and eigenvector ξ (ξ1, ξ2, ξ3) through eigenequation concerning the coordinate point X and the velocity data V. The coordinate point X and the velocity data V are three-dimensional data; thus, for the eigenvalue λ, three values (λ1, λ2, λ3) are calculated. The calculation results are outputted to the swirling axis calculation section 4.
The swirling axis calculation section 4, if the eigenvalue λ is a complex number expressed by λR±iφ (where is the imaginary number), defines the imaginary part φ of the complex number λR±iφ as a swirl function φ. The swirling axis calculation section 4 calculates a coordinate point X0 where the swirl function φ (X1, X2, X3) takes a local maximum value φ0. This coordinate point X0 is defined as the position of a swirling axis P of a swirling flow in the fluid.
The swirling axis calculation section 4 further calculates the local maximum value φ0 in the swirl function φ, and defines the local maximum value φ0 as an angular velocity at the swirling axis P. These eigenvalue λ, eigenvector ξ, swirl function φ, local maximum value φ0=angular velocity, and position X0 of the swirling axis P are stored into the result database 9.
The result database 9 stores, in correspondence with the coordinate point X and the velocity data, the eigenvalue λ and eigenvector ξ calculated by the eigenequation calculation section 3, the swirl function φ and the position X0 of the swirling axis P calculated by the swirling axis calculation section 4, and the local maximum value φ0=angular velocity calculated by the angular velocity calculation section 5.
The swirling line calculation section 6, based on the eigenvector ξ and the swirl function φ, calculates a swirling line S indicating the swirling flow. The calculation results are outputted to the display section 7. The display section 7, based on the calculation results, displays the swirling line S on a display.
The velocity data acquisition section 2, the eigenequation calculation section 3, the swirling axis calculation section 4, the swirling line calculation section 6, the display section 7, the velocity database 8, and the result database 9 described above are stored in the second memory 13 exemplified by a hard disk (HDD). Of these sections, the velocity data acquisition section 2, the eigenequation calculation section 3, the swirling axis calculation section 4, the swirling line calculation section 6, and the display section 7 are, upon operation of the swirling flow identification apparatus 1, loaded to the first memory 12 exemplified by a random access memory (RAM) and executed by the CPU 11. The CPU 11 reads the data properly from the velocity database 8 and the result database 9 and also writes the data properly thereinto. When necessary, inputting (including inputting from the external device via the communication line) from the input and output device 14 exemplified by a communication port or a keyboard is performed.
This swirling flow identification apparatus may be included in part of a simulation apparatus concerned with fluid flow. The swirling flow identification apparatus enables the more adequate recognition of the position and angular velocity of the swirling flow, and enables the improvement in the accuracy of simulation concerned with fluid flow. The simulation apparatus is exemplified by a ship, wind power generator, turbine, fluid machinery, aircraft, chemical plant or atomic power plant.
Next, operation of the swirling flow identification apparatus according to the embodiment of the present invention will be described.
(1) Step S01
The velocity data acquisition section 2 performs a numerical analysis on a predetermined fluid through computational fluid dynamics. The velocity data acquisition section 2 calculates, through the numerical analysis, three-dimensional velocity vector data V (V1, V2, V3) of the fluid at each of a plurality of three-dimensional coordinate points Xs (X1, X2, X3) indicating the position in the fluid. The calculated data is outputted to the eigenequation calculation section 3. The velocity data acquisition section 2 may receive the results of numerical analysis from the storage unit (not shown) and output them to the eigenequation calculation section 3.
(2) Step S02
The eigenequation calculation section 3 acquires the velocity data V of the fluid for each of the plurality of coordinate points Xs in the fluid. For each of the plurality of coordinate points Xs, the eigenequation calculation section 3 prepares the following eigenequation (1), and calculates it. Note that, upon the calculation, condition of continuity of the fluid expressed by equation (2) is added.
where
Vi: velocity component of velocity data V (i=1, 2, 3),
Xj: coordinate component of coordinate point X (j=1, 2, 3),
λ: eigenvalue, and
σij: Kronecker delta, which is 1 if i=j, and 0 otherwise.
The calculation provides the solution as follows:
where
X=(X1, X2, X3),
cjεR: constant (j=1, 2, 3),
λj: calculated eigenvalue λ (j=1, 2, 3), and
ξ(j)=(ξ(j)1, ξ(j)2, ξ(j)3): calculated eigenvector ξ (j=1, 2, 3).
(3) Step S03
In the equation (3), the three eigenvalues λ (λj (j=1, 2, 3)) apply to either of two possible cases: (i) where all of them are real numbers, and (ii) one of them is an real number while the other two are complex numbers.
For each of the plurality of coordinate points Xs in the fluid, it is decided in the case (i) that a swirling flow, in which the fluid near the coordinate point participates, is absent and it is decided in the case (ii) that the swirling flow is present.
Then, if all the plurality of coordinate points Xs apply to the case (i) (No in step S03), the processing proceeds to step S08. In the other case (Yes in step S03), the processing proceeds to step 04 for the coordinate point X that applies to (ii).
(4) Step S04
In the case (ii), the eigenvalue λ is expressed as follows:
λ1,λ2=λR±iφ (4), and
λ3=λaxis (5),
where
φ=φ (X1, X2, X3)
=φ (r, θ, z) (cylindrical coordinate system)>0, and
i: imaginary number.
The swirling axis calculation section 4 defines the imaginary part φ of the complex number λR±iφ as the swirl function φ. The swirling axis calculation section 4 calculates the coordinate point X0 (X10, X20, X30)=φ (r0, θ0, z0) where the swirl function φ (X1, X2, X3)=φ (r, θ, z) (cylindrical coordinate system) takes the local maximum value φ0. The method of calculating the coordinate point X0 is exemplified by a method of calculating it from a change in the derivative of the swirl function φ and a method of obtaining the maximum value of the swirl function φ. The swirling axis calculation section 4 defines the coordinate point X0 as the position of the swirling axis P of the swirling flow in the fluid.
Here, if there are a plurality of coordinate points where the swirl function takes local maximum value, the swirling axis calculation section 4 decides that a plurality of swirling flows are present. Then, the swirling axis calculation section 4 defines each of the plurality of coordinate points where the swirl function takes local maximum value as each of positions of a plurality of swirling axes P1, P2, and so on corresponding to the plurality of swirling flows.
(5) Step S05
If there is no clear local maximum value, the swirling axis calculation section 4 decides that there is a swirling flow (a forced swirling flow) which has no clear swirling axis (vortex axis). Here, the clear local maximum value is a local maximum value that satisfies predetermined criterion. The predetermined criterion is exemplified by, for example, that a difference between the local maximum value and the average value is equal to or larger than a predetermined value. If there is no clear local maximum value (No in step S05), the processing proceeds to step S08. In the other case (Yes in step S05), the processing proceeds to step 06 below.
(6) Step S06
The swirling axis calculation section 4 further calculates the local maximum value φ0 in the swirl function φ. For example, if the coordinate point X0 is obtained from the change in the derivative of the swirl function φ, the local maximum value φ0 can be calculated by substituting the components of the coordinate point X0 to the swirl function φ. If the coordinate point X0 is obtained from the maximum value of the swirl function φ, the maximum value serves as the local maximum value φ0. The swirling axis calculation section 4 defines the local maximum value φ0 as the angular velocity at the swirling axis P. If there are the plurality of swirling axes P1, P2, and so on, the swirling axis calculation section 4 calculates the local maximum values and defines the angular velocities in the same manner for these swirling axes.
These eigenvalue λ, eigenvector ξ, swirl function φ, local maximum value φ0=angular velocity, and position X0 of the swirling axis P are stored into the result database 9.
(7) Step S07
The swirling line calculation section 6, based on the eigenvector ξ and the swirl function φ, calculates the swirling line S indicating the swirling flow.
If the eigenvalues λ1 and λ2 are complex numbers (equation (4)), the eigenvectors ξ(1) and ξ(2) corresponding to the eigenvalues λ1 and λ2 are also complex numbers. The eigenvector ξ is expressed as follows:
ξ(1),ξ(2)=ξplane±iηplane (6), and
ξ(3)=ξaxis (7),
where
i: imaginary number.
Substituting the eigenvalue λ expressed by the equations (4) and (5) and the eigenvector ξ expressed by the equations (6) and (7) into the equation (3) yields the swirling line S (locus of the coordinate point X) expressed as follows. If there are the plurality of swirling axes P1, P2, and so on, their swirling lines S1, S2, and so on are calculated in the same manner.
x=2e2
where
cj=1 (j=1, 2, 3)
(8) Step S08
The display section 7, based on results of the calculation in step S07, displays the swirling line S (S1, S2, and so on) on the display 15. Or, if all the plurality of coordinate points Xs apply to the case (i) in step S03, the display section 7 displays that no swirling flow exists. Or, if in the case of the swirling flow not having a clear swirling axis (vortex axis) in step S05, the display section 7 displays that no swirling axis exists.
The operation of the swirling flow identification apparatus according to the embodiment of the present invention is performed as described above.
In this case, the φ takes the local maximum value φ0 at the position where r=r0. That is, the position where r=r0 is the position of the swirling axis P, and φ=φ0 is the angular velocity at the swirling axis P. That is, in the present invention, the position of the swirling flow P is defined as r0, and the angular velocity thereof is defined as φ0. It was confirmed that these position and angular velocity agree with values of Burgers vortex obtained as mathematically exact solutions.
It was also confirmed that the same results are observed at all the plurality of coordinate points Xs where the swirl function φ exists.
For the Burgers vortex that is well known as a vortex model in the field of fluid dynamics, the usability of the present invention has been proved as described above. That is, it has been theoretically proved that the eigenvalue is a complex number not only at the swirling axis but also around the swirling axis, and the imaginary part of the complex number of the eigenvalue takes a local maximum value at the swirling axis. The imaginary part is defined as the swirl function, and indicated as a physical quantity of angular velocity.
The present invention is applicable not only to another Burgers vortexes but also to other typical flows, one example of which is shown in
As described above, the swirling flow identification apparatus of the present invention, even under the presence of a uniform flow besides a swirling flow (even under the condition that the velocity is not equal to 0 at the swirling axis P), is capable of properly identifying the position of the swirling axis P0 and calculating the swirling line S of the swirling flow by the method of deciding the swirling axis P based on the local maximum value of the swirl function φ, and is further capable of visually demonstrating this presence.
The present invention permits discrimination between a swirling flow having a clear swirling axis (vortex axis) and a swirling flow not having it (a forced swirling flow). If the swirling flow has a clear swirling axis, the swirl function exhibits convex distribution which is mountain-shaped with the swirling axis lying at the center, while the forced swirling flow does not have a local maximum of the swirl function at the swirling axis.
The present invention permits adequate calculation of the swirling flow through a relatively easy calculation method by using a velocity vector at each of node points (coordinate points) even under the presence of the another flow or the plurality of swirling flows.
The swirling flow identification apparatus and swirling flow identification method of the present invention can be used by being integrated into simulation of fluid flow concerned with ship, wind power generator, turbine, fluid machinery, aircraft, plant or the like. In this case, the position of the swirling flow and the angular velocity can be more adequately recognized, thus permitting improvement in the accuracy of simulation.
Number | Date | Country | Kind |
---|---|---|---|
2004-128952 | Apr 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/007778 | 4/25/2005 | WO | 00 | 4/11/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/103995 | 11/3/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5877777 | Colwell | Mar 1999 | A |
Number | Date | Country | |
---|---|---|---|
20070294066 A1 | Dec 2007 | US |