The present disclosure relates generally to apparatuses and methods for performing an assay, and more specifically to apparatuses and methods for causing a point-of-care polymerase chain reaction and analyzing the polymerase chain reaction at the point-of-care.
Point-of-care (POC) in vitro diagnostics tests (IVDT) have traditionally had two major categories, nucleic acid amplification tests (NAAT) or immunoassay-based tests. The former directly detects the pathogen's DNA or RNA, while the latter detects antibodies or antigens generated by the immune system response to the pathogen.
Current POC diagnostic immunoassays lack the high sensitivity and specificity of nucleic acid amplification methods. This becomes more pronounced during the initial stages of infection, often within 168 hours. Taking the case of Dengue virus in whole blood, immunoglobulin M (IgM) and immunoglobulin G (IgG) remain undetectable in the majority of patients until 5 and 10 days post-infection, respectively, whereas nucleic acid can be found as early as 0 to 7 days. Moreover, many immunoassay tests are unable to detect infectious agents until 3 months after the initial onset of the infection. This delay is due to the time it takes for the body's immune system to respond to an infection.
POC diagnostic assays developed utilizing NAATs have very high sensitivities and specificities, matching those of currently accepted laboratory tests. The primary mechanism of NAAT based systems is to directly detect an infectious agent's nucleic acid, lending to the test's ability to detect diseases within the first few days of the onset of infection. In addition, by careful primer design, NAATs also have the ability to have very high specificity and sensitivity compared to immunoassay based testing. The largest drawback of NAATs compared to immunoassay-based tests is the complicated equipment and/or processes required to prepare a sample for testing.
Described herein are methods and apparatus for causing a point-of-care polymerase chain reaction and analyzing the polymerase chain reaction at the point-of-care, particularly when unwanted bubbles are present during the polymerase chain reaction. In a general embodiment, a device for analyzing a polymerase chain reaction in a fluid sample includes a current source configured to cause the polymerase chain reaction by heating the fluid sample within a target zone, a camera imaging device configured to record a plurality of images of the fluid sample in the target zone while the current source causes the polymerase chain reaction, and a controller configured to (i) distinguish wanted objects in the plurality of images from an unwanted object in the plurality of images, and (ii) determine whether the fluid sample tests positive or negative for a bacteria or virus based on the wanted objects.
In an example embodiment, the wanted objects are nucleic acid molecules and the unwanted object is an air bubble.
In an example embodiment, the controller is configured to analyze the plurality of images by dividing the target zone into a plurality of bins.
In an example embodiment, the plurality of bins are arranged in a grid with a plurality of rows and columns.
In an example embodiment, the controller is configured to determine whether the fluid sample has tested positive or negative for the bacteria or virus by selecting at least two of the plurality of bins that overlap a cluster of wanted objects and calculating a mean fluorescence value of the at least two of the plurality of bins.
In an example embodiment, the controller is configured to exclude at least one of the plurality of bins from the mean fluorescence value calculation if the at least one of the plurality of bins overlaps the unwanted object.
In an example embodiment, the controller is configured to assign a weight to at least one of the plurality of bins used in the mean fluorescence value calculation based on the proximity of the at least one of the plurality of bins to the unwanted object.
In an example embodiment, the controller is configured to exclude at least one of the plurality of bins if the at least one of the plurality of bins does not meet a minimum threshold value for brightness.
In an example embodiment, the controller is configured to report an inconclusive test if the controller identifies an unwanted image in the plurality of images.
In an example embodiment, the device includes a user interface, the controller includes a plurality of preprogrammed analyses that can be performed on the fluid sample, and the user interface is configured to allow a user to select at least one analysis from the plurality of preprogrammed analyses.
In an example embodiment, the plurality of images includes at least one of: (i) a plurality of still images of the polymerase chain reaction recorded by the camera imaging device over a period of time; or (ii) a video image of the polymerase chain reaction recorded by the camera imaging device over the period of time.
In an example embodiment, the controller is configured to distinguish the wanted objects in the plurality of images from the unwanted object in the plurality of images by comparing a size or shape of objects in the plurality of images to an average size or shape of blood cells.
In a general embodiment, a device for analyzing a polymerase chain reaction in a fluid sample includes a current source configured to cause the polymerase chain reaction by heating the fluid sample within a target zone, a camera imaging device configured to record a plurality of images of the fluid sample in the target zone while the current source causes the polymerase chain reaction, and a controller configured to analyze the plurality of images by (i) dividing the target zone shown in the plurality of images into a plurality of bins, (ii) selecting at least two of the plurality of bins, and (iii) calculating a fluorescence value of the selected at least two of the plurality of bins.
In an example embodiment, the controller is configured to select the at least two of the plurality of bins based on a threshold value for brightness.
In an example embodiment, the controller is configured to exclude at least one of the plurality of bins from the fluorescence value calculation if the at least one of the plurality of bins overlaps an unwanted object.
In an example embodiment, the controller is configured to assign weights to the selected at least two of the plurality of bins for the calculation based on the proximity of the selected at least two of the plurality of bins to an unwanted object.
In a general embodiment, a method of analyzing a polymerase chain reaction in a fluid sample includes heating the fluid sample in a target zone to cause the polymerase chain reaction, recording a plurality of images of the fluid sample in the target zone during the polymerase chain reaction, dividing the target zone into a plurality of bins, calculating a fluorescence value of at least two of the plurality of bins, and determining whether the fluid sample tests positive or negative for a bacteria or virus based on the calculated fluorescence value.
In an example embodiment, calculating the fluorescence value includes weighting the at least two of the plurality of bins based on proximity to an unwanted object.
In an example embodiment, calculating the fluorescence value includes excluding at least one of the plurality of bins from the fluorescence value calculation if the at least one of the plurality of bins overlaps an unwanted object.
In an example embodiment, calculating the fluorescence value includes excluding at least one of the plurality of bins based on a threshold value for brightness.
In a general example embodiment, a device for analyzing a fluid sample includes a camera imaging device configured to record a plurality of images of the fluid sample while located within a target zone of a fluid microchannel, and a controller configured to (i) distinguish wanted objects in the plurality of images from an unwanted object in the plurality of images, and (ii) determine whether the fluid sample tests positive or negative for a bacteria or virus based on the wanted objects.
In an example embodiment, the controller is configured to determine whether the fluid sample tests positive or negative for the bacteria or virus by dividing the target zone shown in the plurality of images into a plurality of bins, selecting at least two of the plurality of bins, and calculating a fluorescence value of the selected at least two of the plurality of bins.
Embodiments of the present disclosure will now be explained in further detail by way of example only with reference to the accompanying figures, in which:
Before describing in detail the illustrative system and method of the present disclosure, it should be understood and appreciated herein that the present disclosure relates to a rapid, high sensitivity and high specificity, low complexity, diagnostic system 1 using nucleic acid amplification and capable of operating in low resource settings with minimal user training. The system described herein is configured, for example, to cause and analyze polymerase chain reactions (PCR), particularly in the early stages of infection, using a low-cost microfluidic platform employing PCR with a modified DNA polymerase.
Device 10 is described in more detail in U.S. application Ser. No. 15/185,640, entitled “Device for Analyzing a Fluid Sample and Use of Test Card with Same”, filed concurrently herewith, the entire disclosure of which, and specifically the device and test card structure disclosure, is incorporated herein by reference and relied upon. Those of ordinary skill in the art will recognize other configurations of device 10 that can be used according to the present disclosure.
Test card 100 is described in more detail in U.S. application Ser. No. 15/185,661, now U.S. Pat. No. 10,214,772, entitled “Test Card for Assay and Method of Manufacturing Same”, filed concurrently herewith, the entire disclosure of which, and specifically the test card structure disclosure, is incorporated herein by reference and relied upon. Those of ordinary skill in the art will recognize other configurations of test card 100 that can be used according to the present disclosure.
As illustrated in
As explained in more detail in U.S. application Ser. No. 15/185,640, once pneumatic tube 40 is sealed against outlet port 130, a negative pneumatic force can be applied to outlet port 130 from fluid actuation source 24. When the negative pneumatic force is applied, the fluid sample injected into inlet port 124 is pulled through fluid microchannel 134 towards outlet port 130. The fluid sample however is not pulled into pneumatic tube 40 due to the presence of capture port 128 between inlet port 124 and outlet port 130. Capture port 128 allows fluid to build up before it can reach outlet port 130 and/or pneumatic tube 40, which keeps device 10 sterile and protects the integrity of diagnostic system 1.
Test card 100 is dimensioned so that electrical contacts 122 of test card 100 are placed into electrical contact with electrical contacts 42 of electrical contact device 26 when test card 100 is fully inserted into slot 14. With the electrical contacts 42 and 122 aligned, controller 28 can perform several functions. Before beginning an assay, controller 28 can ensure that the fluid sample has been properly pulled through microchannel 134 and into a target zone of microchannel 134 by measuring the capacitance of the fluid sample upstream and/or downstream of the target zone. Once it is determined that fluid is located within the target zone of microchannel 134, controller 28 can control power source 30 to apply a current to electrical contacts aligned with the target zone to heat the fluid sample located within target zone and cause a reaction such as a PCR to occur.
The alignment of camera imaging device 20 over analysis port 132 on the upper surface 104 of test card 100 allows controller 28 to analyze one or more reaction within fluid microchannel 134 while controlling the reaction. Camera imaging device 20 is configured to record a plurality of images of the fluid sample within the target zone so that the images can be analyzed in real time. The plurality of images can include, for example, a plurality of still images and/or a video image. Camera imaging device 20 is therefore configured to record the reaction of the fluid sample by taking a series of still images of the fluid sample within the target zone during a reaction or by taking a video of the fluid sample within the target zone during a reaction. As explained in more detail below, the plurality of images can be used, for example, to analyze the physical and/or chemical characteristics of cells within the fluid sample.
The target zone can be anywhere along fluid microchannel 134 or can be branched off of fluid microchannel 134. Example embodiments of target zones are described in more detail in U.S. application Ser. No. 15/185,661, now U.S. Pat. No. 10,214,772, entitled “Test Card for Assay and Method of Manufacturing Same”, filed concurrently herewith. In an embodiment, the target zone can be located at a central portion of fluid microchannel 134 and fluid microchannel 134 can include, for example, a capacitance sensor upstream and/or downstream of the target zone to determine whether fluid has been pulled through fluid microchannel 134 and into the target zone. In an embodiment, microchannel 134 can include a plurality of target zones to perform a plurality of assays at the same or different times, for example, to improve the reliability of the assays. In an embodiment, controller 28 can be programmed to analyze a specific section of microchannel 134 as the target zone, or controller 28 can determine the target zone based on the plurality of images taken by camera imaging device 20.
From the number of colonies shown in
In an embodiment, camera imaging device 20 includes a high sensitivity and dynamic range complementary metal-oxide semiconductor (CMOS) camera sensor which allows for general imaging of a reaction within target zone 166 of fluid microchannel 134 of test card 100. In an embodiment, the CMOS camera sensor enables camera imaging device 20 to image the entire analysis port 132 of test card 100. Although in the illustrated embodiment only a single target zone 166 within a single microchannel 134 is shown, camera imaging device 20 is configured to image a plurality of target zones and/or a plurality of microchannels should the user insert such a test card 100 into device 10. Examples of alternative embodiments of test cards 100 are disclosed in U.S. application Ser. No. 15/185,661, now U.S. Patent No. 10,214,772, entitled “Test Card for Assay and Method of Manufacturing Same”, filed concurrently herewith.
In the illustrated embodiment, light source 22 is configured to project a fluorescent excitation light on target zone 166 of fluid microchannel 134 during a PCR, while camera imaging device 20 is recording still and/or video images of the PCR. In an embodiment, the fluid sample has been mixed with a fluorescence reagent in mixing port 126, before the fluid sample is pulled into target zone 166. By illuminating target zone 166 with a fluorescence excitation light, controller 28 can record fluorescence measurements from the images taken by camera imaging device 20. The fluorescence images can be analyzed to determine the incremental increases in fluorescence during each PCR cycle. This allows the determination of the PCR amplification curve. Additionally, the images can be used during melt analysis to determine the incremental decrease in fluorescence as temperature is increased. Incremental change in fluorescence can be determined by taking the difference in pixel intensity between successive images.
For general fluorescence measurements, for example, a statistical formulation of the PCR can be achieved by subdividing the target zone 166 and measuring florescence at various locations in the target zone 166. This yields highly-accurate and consistent crossover threshold values for the real-time PCR based on titer values. Once the PCR is complete, a melting curve analysis allows for error checking, ensuring that the correct amplicon has been amplified during the PCR, to reduce the likelihood of a false-positive test.
Camera imaging device 20 also enables controller 28 to record a variety of other measurements in addition to fluorescence measurements. For example, controller 28 can determine turbidity and object detection using the images taken by camera imaging device 20. The turbidity can be determined by using the device LEDs to apply incident light to a test card microchannel and/or target zone. The amount of scattered light can be measured by the camera allowing a numerical value of relative turbidity to be measured. The turbidity can be used to determine the outcome of various different reactions, such as measuring the reactiveness of proteins during an ELISA test (colorimetry measurement) or measurement of water quality. The object detection can be used, for example, to determine whether air bubbles formed in target zone 166 during the PCR and potentially destroyed the integrity of the PCR analysis. By imaging the entire analysis port 132 of test card 100, camera imaging device 20 is able to greatly improve accuracy by allowing for various advanced image-processing algorithms to be applied.
With respect to object detection, camera imaging device 20 can be used to detect both wanted and unwanted objects within microchannel 134. In an embodiment, the wanted objects are cells such as red and white blood cells in the fluid sample to be analyzed during the reaction. Controller 28 can count the wanted objects by matching the cell size and cell shape of objects in the images from camera imaging device 20 to the average size and shape of specific blood cells, allowing controller 28 to count, for example, the number of red and white blood cells in the fluid sample at target zone 166. Controller 28 can also distinguish the red and white blood cells from other unwanted objects that do not match the average size and shape of specific blood cells.
If controller 28 detects an unwanted object, controller 28 can determine that the PCR has failed or is indeterminate, and can instruct a user that an additional PCR should be run on the same or a different test card. If the PCR is run on the same test card, target zone 166 should be cleared of fluid, and then new fluid should be pulled from mixing chamber 126 into target zone 166.
In an embodiment, the unwanted image is an air bubble. In an embodiment, controller 28 can detect air bubbles because air bubbles will expand in the target zone 166 while the PCR reaction occurs. Red and white blood cells, on the other hand, multiply but do not increase in size. Controller 28 can therefore determine the presence of an air bubble in target zone 166 by noting a change in size of an object across a plurality of subsequent images from the plurality of images. In another embodiment, controller 28 can determine the presence of an air bubble by noting that an unwanted object does not match the average size and shape of blood cells. In another embodiment, controller 28 can determine the presence of an air bubble due to there being no fluorescence inside of the bubble by looking for a change in the gradient of fluorescence.
In some cases, a bubble formed within microchannel 134 will remain small and will not affect any fluid flow or reaction occurring within microchannel 134. When heat is applied to target zone 166, however, the heat can cause the bubble to expand due to the large thermal expansion coefficient of the bubble.
Based on the above analysis, controller 28 can average the fluorescence values of the selected bins 200. If controller 28 does not detect any bubbles in the images taken by camera imaging device 20, then controller 28 calculates the fluorescence using the following equation:
wherein n is the number of bins 200 used in the calculation, and xi is the individual bins in the grid utilized by the algorithm.
If one or more bubble is detected in target zone 166, then controller 28 calculates the fluorescence using the following equation:
where ai is the bin's weight, which is determined by the bin's proximity to the bubble. In an embodiment, ai should be greater than zero and less than or equal to one (0<ai≤1).
In an embodiment, the ai's may all have an equal weight of 1 when there are no bubbles present. In an embodiment, the ai's value can decrease proportionally as the bubble gets closer to the bin.
In an embodiment, the amplification curve and melt curve are created by measuring the absolute value of the fluorescence of each pixel in successive images taken either during each cycle (for the amplification curve) or as temperature is slowly increased over time (for the melt curve). In the case of an amplification curve, which shows the incremental change in fluorescence during the amplification stage of a PCR, a PCR crossover threshold value can be determined, and controller 28 can look for when the fluorescence value has increased past a certain threshold value and when the first derivative of fluorescence with respect to cycle number is at a maximum. In the case of a melt curve, the incremental change in fluorescence can give controller 28 the melting temperature of the amplified DNA. Mathematically, controller 28 looks for when the first derivative of the fluorescence with respect to temperature is at a minimum, and the second derivative of the fluorescence with respect to temperature is equal to zero.
The above detection and analysis is useful for a fluorescence based PCR or cytometry analysis, but those of ordinary skill in the art will recognize that controller 28 can be used for other purposes. In an embodiment, controller 28 can use camera imaging device 20 to perform a colormetric analysis, which analyzes the concentration of a chemical element or chemical compound in a solution with the aid of a color reagent. Controller 28 can quantify the amount of protein present in the fluid sample by measuring the absorption spectra and comparing it with protein solutions of known concentration. In an embodiment, controller 28 can analyze and interpret the results of colormetric protein assays, for example, a Bradford protein assay, a bichinchoninin acid assay (BCA assay), and/or a Ponceau S dye assay.
The process begins by loading a test card 100 and/or a fluid sample into device 10. The fluid sample can be mixed with a reagent before injection into test card 100 and/or device 10, or can be mixed with a reagent within mixing chamber 126 of test card 100. In an embodiment, the reagent includes a PCR inhibitor-resistant polymerase along with a specific mixture of reverse transcriptase (in the case of RNA targets) and surfactants/dispersants to allow for rapid sample dispersion and lysing. In an embodiment, the reagent mix can include, for example, olignucleotide primers, dNTP's DNA polymerase and other chemicals to assist the PCR. It is important to have a correct ratio of fluid sample to final PCR volume, because if the correct ratio is not maintained, the PCR will take too long or fail.
Using user interface 60, a user can then choose a positive/negative test to run on the fluid sample. In an embodiment, the user can cycle through a plurality of tests on display 62 using buttons 64 and choose one or more test to run. The plurality of tests can include, for example, a PCR analysis, a cytometry analysis and/or an enzyme-linked immunosorbent assay (ELISA) analysis. In an alternative embodiment, a plurality of different types of test cards 100 can be inserted into device 10, with each test card 100 corresponding to one or more specific test to be run on a fluid sample, and controller 28 can determine which test(s) to run by detecting the type of test card 100 inserted into device 10 without further instruction by the user. In another alternative embodiment, fluid microchannel 134 can be incorporated into device 10 rather than test card 100, and a user can choose a test to run on the fluid sample after the fluid sample is injected directly into device 10.
Input module 254 is configured to receive the user inputs inputted into user interface 60 and communicate the user inputs to control module 256. Input module 254 can also receive additional information via user interface 60 and/or by the preprogramming of controller 28, for example, (i) real-time PCR crossover threshold value information; (ii) maximum fluorescence information; and (iii) melting curve inflection temperature information. Other control parameters for the PCR reaction can also be given. This includes the PCR denaturing, elongation and annealing temperatures and dwell times.
Once a test card 100 and/or fluid sample has been loaded into device 10, control module 256 of controller 28 begins the control method at step 200 by causing fluid actuation source 26 to pull fluid through microchannel 134. In the illustrated embodiment, fluid actuation source applies a negative pneumatic force to outlet port 130 via pneumatic tube 40 to pull fluid through microchannel 134. In an alternative embodiment, fluid actuation source can include one or more other type of pump in fluid communication with microchannel 134.
After fluid actuation source 26 has been activated, but before the reaction begins, control module 256 at step 202 can verify that fluid is located within target zone 166 by monitoring the capacitance of microchannel 134 at one or more locations upstream and/or downstream of target zone 166. If fluid is detected in microchannel 134 upstream and/or downstream of target zone 166, control module 256 can verify that fluid is located within target zone 166, activate light source 22 at step 204, and begin the reaction at step 206. Controller 28 can choose a portion of microchannel 134 to designate as target zone 166, or target zone 166 can be predetermined.
In the illustrated embodiment, control module 256 begins the reaction at step 206 by instructing power source 30 to send a current to electrodes located adjacent to target zone 166 via electrical contact device 26 to cause the fluid within target zone 166 to be heated. As the fluid sample is heated, the nucleic acid molecules multiply by diffusion as explained above.
At the same time that the fluid sample is being heated within target zone 166 so that the nucleic acid molecules multiply by diffusion, control module 256 at step 208 can cause camera imaging device 20 to record a plurality of images of the reaction within target zone 166. The plurality of images can then be sent to analysis module 208 for analysis at step 210. In an embodiment, test card 100 includes a transparent material that allows images to be taken of target zone 166 of fluid microchannel 134 even though a layer of polymer material is located between camera imaging device 20 and fluid microchannel 134.
At step 210, analysis module 258 analyzes the images taken by camera imaging device 20 to determine whether the fluid sample tests positive or negative for a bacteria or virus. The type of analysis performed by analysis module at step 210 will depend on the type of test being run on the fluid sample.
If the assay being run on the fluid sample is a PCR analysis, then analysis module 258 can analyze the images as discussed above by measuring fluorescence based on detected wanted and unwanted objects.
If the assay being run on the fluid sample is a cytometry analysis, then analysis module 258 can also analyze the images as discussed above by measuring fluorescence based on detected wanted and unwanted objects. The cytometry analysis can differ from the PCR analysis, for example, because the fluid in target zone 166 does not need to be heated to multiply molecules by diffusion, so step 206 can be skipped. With a cytometry analysis, analysis module 258 can analyze the fluid sample within target zone 166, for example, by analyzing cell size, cell count, cell morphology (shape and structure), cell cycle phase, DNA content, and the existence or absence of specific proteins on cell surfaces. In an embodiment, controller 28 can use various different fluorophores for flow cytometry. In an embodiment, to detect specific proteins on cell surfaces, specifically designed fluorophores which bind to those proteins are mixed into the sample to cause the proteins of interest to fluoresce.
If the assay being run on the fluid sample is an ELISA analysis, then again the fluid in target zone 166 does not need to be heated to multiply molecules by diffusion, so step 206 can be skipped. With an ELISA analysis, analysis module 258 can analyze the fluid sample within target zone 166, for example, by measuring the concentration of an analyte in the fluid sample using a colormetric analysis. In an embodiment, controller 28 can measure the amount of incident light scattered on the ELISA target zone to determine the concentration of an analyte. The method of measurement is the same as the turbidity measurement.
In an embodiment, controller 28 can perform genotyping tests as an extension a PCR.
At step 212, analysis module 258 determines based on the analysis whether the fluid sample has tested positive or negative for a bacteria or virus. The results of the analysis are then displayed on user interface 60 by output module 260. In an embodiment, a simple “POSITIVE” or “NEGATIVE” indication can be displayed on user interface 60 to inform whether the fluid sample has tested positive or negative for a bacteria or virus. In another embodiment, user interface 60 can display the results for more than one bacteria or virus, or can display specifics such as cell size, cell count, cell morphology (shape and structure), cell cycle phase, DNA content, and the existence or absence of specific proteins on cell surfaces. In an embodiment, controller 28 can display viral titer in the case of a PCR reaction, or can display protein concertation and DNA concentration.
In an embodiment, the result of the analysis can be saved in a memory module of memory 252, so that the results can be reviewed at a later time. If the result is saved, the result should be encoded to protect the anonymity of the patient. In another embodiment, one or more encoded results can be wirelessly transmitted for review at a location remote from diagnostic system 1.
In an embodiment, device 10 can include a global positioning system (GPS) sensor, and can record the result of the test along with a GPS sensor reading at the time of the test. Controller 28 can then aggregate a plurality of tests to determine viruses or bacteria that are more prevalent in one area as opposed to another. In this embodiment, controller 28 does not need to save any patient information, and only needs the GPS location and the number of positive and negative test results at the location to determine the prevalence of the virus or bacteria at the location. The results can be used by a health organization to treat an area with appropriate medication for a prevalent virus or bacteria.
In another embodiment, the user can program the location into device 10 before, during or after running a plurality of tests, and controller 28 can aggregate the plurality of tests to determine viruses or bacteria that are more or less prevalent in the programmed area.
In an embodiment, controller 28 can determine whether one or more of yersina pestis, brucella, alphavirus, dengue virus and/or variola virus is present in the fluid sample.
The diagnostic system 1 disclosed herein can detect, for example, lentiviruses (ssRNA) and adenoviruses (dsDNA) in whole blood, as well as other infectious agents. Exemplary infectious agents which can be detected by the system 1 disclosed herein include, but are not limited to, bacterial pathogens, viral pathogens, fungal pathogens, and/or parasitic pathogens.
Exemplary non-limiting bacterial pathogens include Bacillus (e.g., Bacillus anthracis, Bacillus cereus), Bartonella (e.g., Bartonella henselae, Bartonella quintana), Bordatella (e.g., Bordatella pertussis), Borrelia (e.g., Borrelia burgdorferi, Borrelia garinii, Borrelia afzelii, Borrelia recurrentis), Brucella (e.g., Brucella abortus, Brucella canis, Brucella melitensis, Brucella suis), Campylobacter (e.g., Campylobacter jejuni), Chlamydia (e.g., Chlamydia pneumoniae, Chlamydia trachomatis), Chlamydophila (e.g., Chlamydophila psittaci), Clostridium (e.g., Clostridium botulinum, Clostridium difficile, Clostridium perfringens, Clostridium tetani), Corynebacterium (e.g., Corynebacterium diphtheriae), Enterococcus (e.g., Enterococcus faecalis, Enterococcus faecium), Escherichia (e.g, Escherichia coli), Francisella (e.g., Francisella tularensis), Haemophilus (e.g., Haemophilus influenzae), Helicobacter (e.g., Helicobacter pylori), Legionella (e.g., Legionella pneumophila), Leptospira (e.g., Leptospira interrogans, Leptospira santarosai, Leptospira weilii, Leptospira noguchii), Listeria (e.g., Listeria monocytogenes), Mycobacterium (e.g., Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium ulcerans), Mycoplasma (e.g., Mycoplasma pneumoniae), Neisseria (e.g., Neisseria gonorrhoeae, Neisseria meningitidis), Pseudomonas (e.g., Pseudomonas aeruginosa), Rickettsia (e.g., Rickettsia rickettsii), Salmonella (e.g., Salmonella typhi, Salmonella typhimurium), Shigella (e.g., Shigella sonnei), Staphylococcus (e.g., Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus), Streptococcus (e.g., Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes), Treponema (e.g., Treponema pallidum), Ureaplasma (e.g., Ureaplasma urealyticum), Vibrio (e.g., Vibrio cholerae), and Yersinia (e.g., Yersinia pestis, Yersinia enterocolitica, Yersinia pseudotuberculosis).
Exemplary non-limiting viral pathogens include Adenoviridae (e.g., adenovirus), Herpesviridae (e.g., herpes simplex virus type 1 and type 2, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus type 8), Papillomaviridae (e.g., human papillomavirus), Polyomaviridae (e.g., BK virus, JC virus), Poxviridae (e.g., smallpox), Hepadnaviridae (e.g., hepatitis B virus), Parvoviridae (e.g., human bocavirus, parvovirus B19), Astroviridae (e.g., human astrovirus), Caliciviridae, (e.g., Norwalk virus), Picornaviridae (e.g., Coxsackievirus, hepatitis A virus, poliovirus, rhinovirus); Coronaviridae (e.g., severe acute respiratory syndrome virus, Middle East respiratory syndrome virus), Flaviviridae (e.g., hepatitis C virus, yellow fever virus, dengue virus, West Nile virus), Togaviridae (e.g., rubella virus), Hepeviridae (e.g., hepatitis E virus), Retroviridae (e.g., lentiviruses, human immunodeficiency virus); Orthomyxoviridae (e.g., influenza virus), Arenaviridae (e.g., Guanarito virus, Junin virus, Lassa virus, Machupo virus, Sabiá virus), Bunyaviridae (e.g., Crimean-Congo hemorrhagic fever virus), Filoviridae (e.g., Ebola virus, Marburg virus), Paramyxoviridae (e.g., measles virus, mumps virus, parainfluenza virus, respiratory syncytial virus, human metapneumonia virus, Hendra virus, Nipah virus), Phabdoviridae (e.g., rabies virus), Reoviridae (e.g., rotavirus, orbivirus, coltivirus, Banna virus), and unassigned viruses (e.g., Hepatitis D virus).
Exemplary non-limiting fungal pathogens include Candida (e.g., Candida albicans), Aspergillus (e.g., Aspergillus fumigatus, Aspergillus flavus), Crytopcoccus (e.g., Cryptococcus neoformans, Cryptococcus laurentii, Cryptococcus gattii), Histoplasma (e.g., Histoplasma capsulatum), Pneumocystis (e.g., Pneumocystis jirovecii, Pneumocystis carinii), Stachybotrys (e.g., Stachybotrys chartarum).
Exemplary non-limiting parasitic pathogens include acanthamoeba, anisakis, Ascaris lumbricoides, botfly, Balantidium coli, bedbugs, Cestoda (tapeworm), chiggers, Cochliomyia hominivorax, Entamoeba histolytica, Fasciola hepatica, Giardia lamblia, hookworms, Leishmania, Linguatula serrata, liver flukes, Loa loa, Paragonimus—lung fluke, pinworm, Plasmodium falciparum, Schistosoma, Strongyloides stercoralis, mites, tapeworms, Toxoplasma gondii, Trypanosoma, whipworms, and Wuchereria bancrofti.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a” and “an” and “the” and similar referents used in the context of the disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided herein is intended merely to better illuminate the disclosure and does not pose a limitation on the scope of the disclosure otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the disclosure.
The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.”
Groupings of alternative elements or embodiments of the disclosure disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Preferred embodiments of the disclosure are described herein, including the best mode known to the inventors for carrying out the disclosure. Of course, variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects those of ordinary skill in the art to employ such variations as appropriate, and the inventors intend for the disclosure to be practiced otherwise than specifically described herein. Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein or otherwise clearly contradicted by context.
Specific embodiments disclosed herein may be further limited in the claims using consisting of or consisting essentially of language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the disclosure so claimed are inherently or expressly described and enabled herein.
Further, it is to be understood that the embodiments of the disclosure disclosed herein are illustrative of the principles of the present disclosure. Other modifications that may be employed are within the scope of the disclosure. Thus, by way of example, but not of limitation, alternative configurations of the present disclosure may be utilized in accordance with the teachings herein. Accordingly, the present disclosure is not limited to that precisely as shown and described.
This application claims priority to U.S. Provisional Patent Application No. 62/182,992, entitled “Point-Of-Care PCR Assay for Infectious Agents”, filed Jun. 22, 2015, and U.S. Provisional Patent Application No. 62/187,471, entitled “Point-Of-Care PCR Assay for Infectious Agents”, filed Jul. 1, 2015; the entire contents of each of which are hereby incorporated by reference and relied upon. This application is also related to U.S. application Ser. No. 15/185,640, entitled “Device for Analyzing a Fluid Sample and Use of Test Card with Same”, filed concurrently herewith, and U.S. application Ser. No. 15/185,661, now U.S. Pat. No. 10,214,772, entitled “Test Card for Assay and Method of Manufacturing Same”, filed concurrently herewith, the entire contents of each of which are hereby incorporated by reference and relied upon.
Number | Name | Date | Kind |
---|---|---|---|
5229297 | Schnipelsky et al. | Jul 1993 | A |
5976336 | Dubrow et al. | Nov 1999 | A |
6068752 | Dubrow et al. | May 2000 | A |
6071478 | Chow | Jun 2000 | A |
6153073 | Dubrow et al. | Nov 2000 | A |
6235175 | Dubrow et al. | May 2001 | B1 |
6303343 | Kopf-Sill | Oct 2001 | B1 |
6399025 | Chow | Jun 2002 | B1 |
6428987 | Franzen | Aug 2002 | B2 |
6437551 | Krulevitch et al. | Aug 2002 | B1 |
6576459 | Miles et al. | Jun 2003 | B2 |
7033474 | Dubrow et al. | Apr 2006 | B1 |
7309467 | Chen et al. | Dec 2007 | B2 |
7431888 | Frechet et al. | Oct 2008 | B2 |
7678336 | Chang et al. | Mar 2010 | B2 |
7811523 | Bjornson | Oct 2010 | B2 |
7867754 | Regnier et al. | Jan 2011 | B1 |
7883669 | Sun et al. | Feb 2011 | B2 |
7915030 | Inoue et al. | Mar 2011 | B2 |
7919062 | Yuen | Apr 2011 | B2 |
7981237 | Park et al. | Jul 2011 | B2 |
8053239 | Wheeler et al. | Nov 2011 | B2 |
8158926 | Feng et al. | Apr 2012 | B2 |
8202491 | Masters et al. | Jun 2012 | B2 |
8216827 | Pouteau et al. | Jul 2012 | B2 |
8247176 | Pourahmadi et al. | Aug 2012 | B2 |
8289519 | Zare et al. | Oct 2012 | B2 |
8343778 | Li et al. | Jan 2013 | B2 |
8349276 | Pamula et al. | Jan 2013 | B2 |
8367021 | Kennedy et al. | Feb 2013 | B2 |
8394341 | Reinhardt et al. | Mar 2013 | B2 |
8409848 | Zeng et al. | Apr 2013 | B2 |
8540946 | Padmanabhan et al. | Sep 2013 | B2 |
8557199 | Heath et al. | Oct 2013 | B2 |
8557518 | Jovanovich et al. | Oct 2013 | B2 |
8562918 | Jovanovich et al. | Oct 2013 | B2 |
8592157 | Pourahmadi et al. | Nov 2013 | B2 |
8597574 | Gumbrecht et al. | Dec 2013 | B2 |
8603414 | Omuro et al. | Dec 2013 | B2 |
8790595 | Polwart et al. | Jul 2014 | B2 |
8852527 | Thomas et al. | Oct 2014 | B2 |
8874273 | Sun et al. | Oct 2014 | B2 |
8894946 | Nielsen et al. | Nov 2014 | B2 |
8911636 | Gautham | Dec 2014 | B2 |
8911989 | Lee et al. | Dec 2014 | B2 |
8936762 | Ehrlich et al. | Jan 2015 | B2 |
8940147 | Bartsch et al. | Jan 2015 | B1 |
8962252 | Liang et al. | Feb 2015 | B2 |
9017946 | Hasson | Apr 2015 | B2 |
9114398 | Knight et al. | Aug 2015 | B2 |
9138744 | Tsao et al. | Sep 2015 | B2 |
9170138 | Giovangrandi et al. | Oct 2015 | B2 |
9328344 | Link et al. | May 2016 | B2 |
9335247 | Sharpe et al. | May 2016 | B2 |
9364833 | Bergstedt | Jun 2016 | B2 |
9540686 | Zeng et al. | Jan 2017 | B2 |
20030155344 | Cobb | Aug 2003 | A1 |
20040193202 | Allen | Sep 2004 | A1 |
20050196779 | Ho et al. | Sep 2005 | A1 |
20050233440 | Scurati et al. | Oct 2005 | A1 |
20060094028 | Danna et al. | May 2006 | A1 |
20070015179 | Klapperich | Jan 2007 | A1 |
20070154895 | Spaid et al. | Jul 2007 | A1 |
20070163175 | Kihara et al. | Jul 2007 | A1 |
20070190828 | Goldman et al. | Aug 2007 | A1 |
20080241910 | Jung et al. | Oct 2008 | A1 |
20080253633 | Xia et al. | Oct 2008 | A1 |
20090053726 | Owen et al. | Feb 2009 | A1 |
20090140170 | Nevill et al. | Jun 2009 | A1 |
20090143233 | Knight et al. | Jun 2009 | A1 |
20090186404 | Kim et al. | Jul 2009 | A1 |
20090215157 | Jung et al. | Aug 2009 | A1 |
20090215194 | Magni et al. | Aug 2009 | A1 |
20090311717 | De Sonneville et al. | Dec 2009 | A1 |
20100203521 | Klapperich et al. | Aug 2010 | A1 |
20100291584 | Tseng et al. | Nov 2010 | A1 |
20110039280 | Leary et al. | Feb 2011 | A1 |
20110206545 | Junod et al. | Aug 2011 | A1 |
20110269131 | Chiu et al. | Nov 2011 | A1 |
20110301535 | Takayama et al. | Dec 2011 | A1 |
20110315559 | Holt et al. | Dec 2011 | A1 |
20120140055 | Narusawa et al. | Jun 2012 | A1 |
20120145253 | Zeng et al. | Jun 2012 | A1 |
20120195810 | Cohen et al. | Aug 2012 | A1 |
20120244043 | LeBlanc et al. | Sep 2012 | A1 |
20120244604 | Komilovich | Sep 2012 | A1 |
20120283108 | Sambas | Nov 2012 | A1 |
20120309010 | Shuber | Dec 2012 | A1 |
20130052725 | Yazdanfar | Feb 2013 | A1 |
20130149215 | Dekker et al. | Jun 2013 | A1 |
20130224781 | Jung et al. | Aug 2013 | A1 |
20130236907 | Petersen et al. | Sep 2013 | A1 |
20130244906 | Collins | Sep 2013 | A1 |
20130345096 | Wan | Dec 2013 | A1 |
20140038191 | Liang et al. | Feb 2014 | A1 |
20140141424 | Pourahmadi et al. | May 2014 | A1 |
20140161686 | Bort et al. | Jun 2014 | A1 |
20140199764 | Domansky et al. | Jul 2014 | A1 |
20140200154 | Sugarman et al. | Jul 2014 | A1 |
20140248621 | Collins | Sep 2014 | A1 |
20140295441 | Egan et al. | Oct 2014 | A1 |
20140307931 | Gierahn et al. | Oct 2014 | A1 |
20140309508 | Kim et al. | Oct 2014 | A1 |
20150024426 | De Oliveira Garcia Da Fonseca et al. | Jan 2015 | A1 |
20150125947 | Korczyk et al. | May 2015 | A1 |
20150238967 | Erickson et al. | Aug 2015 | A1 |
20150290644 | Prentice et al. | Oct 2015 | A1 |
20160033311 | Giovangrandi et al. | Feb 2016 | A1 |
20160069913 | Bakhru et al. | Mar 2016 | A1 |
20160144358 | Patel | May 2016 | A1 |
20160296933 | Chiou et al. | Oct 2016 | A1 |
20160334351 | Lu et al. | Nov 2016 | A1 |
20160340716 | Ortac et al. | Nov 2016 | A1 |
20170001196 | Zhang et al. | Jan 2017 | A1 |
20170008009 | Azpiroz et al. | Jan 2017 | A1 |
20170021354 | Kim et al. | Jan 2017 | A1 |
20170058324 | Balog et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
1993022054 | Nov 1993 | WO |
2014055963 | Apr 2014 | WO |
Entry |
---|
Cady, Nathaniel C., et al. “Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform.” Sensors and Actuators B: Chemical 107.1 (2005): 332-341. |
Jarvius, Jonas, et al. “Digital quantification using amplified single-molecule detection.” Nature methods 3.9 (2006): 725. |
Lui, Clarissa, Nathaniel Cady, and Carl Batt. “Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems.” Sensors 9.5 (2009): 3713-3744. |
Boehm, Douglas A., Philip A. Gottlieb, and Susan Z. Hua. “On-chip microfluidic biosensor for bacterial detection and identification.” Sensors and Actuators B: Chemical 126.2 (2007): 508-514. |
Liu, Hao-Bing, et al. “Micro air bubble formation and its control during polymerase chain reaction (PCR) in polydimethylsiloxane (PDMS) nnicroreactors.” Journal of Micromechanics and Microengineering 17.10 (2007): 2055. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2016/038152 dated Jun. 28, 2017. |
Miralles et al., “A Review of Heating Temperature Control in Microfluidic Systems: Techniques and Applications,” Diagnostics, 2013, No. 3, pp. 33-67. |
Wang et al., “A miniaturized quantitative polymerase chain reaction system for DNA amplification and detection.” Sensors and Actuators, No. B 141, 2009, pp. 329-337. |
Hsieh et al., “Enhancement of thermal uniformity for a microthermal cycler and its applicaiton for polymerase chain reaction,” Sensors and Actuators, B 130 (2008), pp. 848-856. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2016/038124 dated Jun. 26, 2017. |
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2016/038157 dated Jun. 19, 2017. |
International Search Report and Written Opinion issued in related International Patent Application No. PCT/US2016/038152 dated Sep. 14, 2016. 12 pages. |
International Search Report and Written Opinion issued in related International Patent Application No. PCT/US2016/038124 dated Sep. 8, 2016. 12 pages. |
International Search Report and Written Opinion issued in related International Patent Application No. PCT/US2016/038157 dated Oct. 28, 2016. 12 pages. |
Number | Date | Country | |
---|---|---|---|
20160369324 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62182992 | Jun 2015 | US | |
62187471 | Jul 2015 | US |