Field of the Invention
The present invention relates to a technology for reducing noise generated in an image, and in particular, to a technology for reducing noise generated in each row of an image.
Description of the Related Art
A known radiographic apparatus uses a flat panel detector made of amorphous silicon or polysilicon deposited or formed on a glass substrate. Original image data acquired by the flat panel detector includes noise components generated in the individual rows of an image, in addition to a pure signal component converted from incident X-rays. The flat panel detector reads the image data as an image signal by turning on and off semiconductor switches present in the same pixel row. In this case, temporal changes in gate signals for the turning on/off are considered to be one of the causes of noise generated in the individual rows of an image.
A method for reducing linear noise generated in the individual rows of an image (referred to as “horizontal noise” in Japanese Patent Laid-Open No. 2003-204955 (herein after referred to as JP-A-2003-204955)) is disclosed in JP-A-2003-204955 (FIG. 3 and so on).
The noise reducing technology described in JP-A-2003-204955 extracts noise components generated in the individual rows of an image by executing high-pass filtering in the column direction of an image and low-pass filtering in the row direction and subtracts the extracted noise components from the original image data.
However, the method described in JP-A-2003-204955 includes not only “horizontal noise” but also signal components that constitute an object. In particular, a region on the image of the object region where the values of pixels sharply changes contains the signal component of the object. Therefore, the “horizontal noise” disclosed in JP-A-2003-204955 is influenced by the acquired object image. This may cause the S/N ratio of the image signals to decrease which may be undesired.
To increase the reading speed, in general, a method for dividing a flat panel detector into multiple regions and reading image signals with different amplifiers for the individual divided regions is adopted. However, this may result in undesired noise quantity differences from one amplifier to another because of the differences in characteristic among the amplifiers.
According to an aspect of the present invention, an image processing apparatus includes a flat panel detector including a reading circuit configured to convert X-rays to original image data, a filtering device configured to execute high-pass filtering in a column direction on pixel values of the original image data to obtain first image data, and a processing unit configured to subtract a value obtained by converting the pixel values of the first image data in accordance with an absolute value of a statistic calculated from the pixel values in the same pixel row of the first image data from the values of corresponding pixels of the original image data to obtain processed image data.
Further features of the present invention will become apparent from the following description of exemplary embodiments with reference to the attached drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Exemplary embodiments of an apparatus and method for processing images according to the present invention will now be described in detail in accordance with the accompanying drawings. The scope of the invention is not limited to the examples shown in the drawings.
An X-ray generating unit 2 exposes an object 4 to X-rays in timing at which an exposure switch 3 is pushed. The X-rays that have passed through the object 4 are acquired as original image data by a flat panel detector 5.
The flat panel detector 5 includes a plurality of pixels arrayed in a matrix form. The pixels each have a capacitor that stores an electric charge that is proportional to the amount of incident X-rays and a semiconductor switch for reading the electric charge from the capacitor.
The flat panel detector 5 includes a reading circuit. The reading circuit turns on and off the semiconductor switches in sequence for the individual rows of the matrix pixels. Electric charge taken out by turning on the semiconductor switches are read for the individual rows of the matrix pixels and converted from analog to digital, and are thus taken as digitized image signals. The values of the image signals are acquired as original image data associated with the positions of the individual pixels. That is, the original image data includes pixel values corresponding to the matrix pixels.
Since the original image data is data in which the positions of individual pixels and pixel values are associated with each other, it allows pixel values corresponding to the positions of pixels to be selected therefrom.
The image processing system 1 includes a display 6 for displaying an image based on original image data acquired by the flat panel detector 5 and a control unit 7 for controlling the whole of the image processing system 1. The control unit 7 includes a CPU and a main memory (not shown).
The CPU controls the operation of the components of the image processing system 1. The main memory stores control programs that the CPU executes and provides working regions during execution of the programs by the CPU. A magnetic disk 10 stores an operating system (OS), device drives for peripherals, various application software including programs for executing image processing etc., as described below.
A filter circuit 12 serving as a filtering device executes filtering of original image data f(x, y) acquired by the flat panel detector 5 to obtain filtered image data Pf(x, y).
A row direction (also referred to as “the direction of the same pixel row) in the following description indicates the direction of a pixel row in which pixels that are selected by the read circuit to read pixel signals from the pixels lie in a row. A column direction is a direction perpendicular to the pixel rows. For example, as shown in
A statistics calculation circuit 13 serving as a statistics calculating unit calculates a statistic Dv(x, y) related to noise, to be described later, from the filtered image data Pf(x, y). A processing circuit 14 serving as a processing unit calculates N1(x, y) indicating the amount of noise, calculated from the first image data Pf(x, y) on the basis of the statistic Dv(x, y), as will be described later, and subtracts the value N1(x, y) indicating the amount of noise from the original image data f(x, y) to obtain processed image data P(x, y).
Next, referring to the flowchart in
In step S301, the CPU reads the original image data f(x, y) from the flat panel detector 5. Alternatively, the CPU reads original image data from a storage unit, for example, a storage medium, such as a FDD, a CD-RW drive, an MO drive, or a ZIP drive, connected to the image processing system 1.
In step S302, the CPU executes the process of inputting the original image data f(x, y) to the filter circuit 12. The CPU then controls the filter circuit 12 to execute high-pass filtering on the original image data f(x, y) in the column direction to obtain the first image data Pf(x, y).
Noise generated in the direction of pixel rows can be extracted by executing vertical high-pass filtering because the value changes from one pixel row to another.
In step S303, the CPU executes the process of inputting the first image data Pf(x, y) to the statistics calculation circuit 13, and the CPU controls the statistics calculation circuit 13 so as to obtain the statistics Dv (x, y) of the individual coordinates (x, y).
In step S304, the CPU controls the processing circuit 14 serving as a processing unit to calculate N1(x, y), calculated from the first image data Pf(x,y) and subtracts the value N1(x,y) to obtain the processed image data P(x, y).
Referring to
The noise component N1(x, y) of any coordinates (x, y) is calculated by the following expression [1], for example:
where a is a coefficient and Dm is an amount of noise of the flat panel detector 5, which is measured and stored in advance. The amount Dm that is measured and stored in advance will be described later. The value a is generally about 1. Decreasing a decreases the value N1(x, y) that indicates a noise component. If a=1 and there is no Dv(x, y), that is, no edge component, Pf(x, y) is subtracted from the original image data. Since Pf(x, y) is a value that is statistically close to Dm, a linear noise component is subtracted.
The noise component N1(x, y) can be calculated not only by Expression [1] but also by any calculation by which the absolute value of the noise component N1(x, y) decreases when the absolute value of the statistic value Dv(x, ym) increases and the absolute value of the noise component N1(x, y) increases when the absolute value of the statistic value Dv(x, ym) decreases.
Calculating the decrease in the absolute value of the noise component N1(x, y) in a region in which changes in pixel value in the same pixel row are large (for example, corresponding to the edge of the region of an acquired object) may result in for, example, not breaking the edge component of the object region even if the value N1(x, y) of the noise component is subtracted from the original image data f(x, y). In contrast, the absolute value of the value N1(x, y) of the noise component increases in a region in which changes in pixel value in the same pixel row are small.
The first image data Pf(x, y) may be acquired by controlling the filter circuit 12 to execute high-pass filtering in the vertical direction and low-pass filtering in the horizontal direction on the original image data f(x, y). This can decrease the value of the noise component in the same pixel row. That is, the levels of noise in the individual columns are not equal even in the same pixel row.
As described above,
Processed image data P(x, y) is acquired by subtracting the value N1(x, y) of the noise component from the original image data f(x, y).
Next, the value Dm that is measured and stored in advance will be described. The value Dm that is measured and stored in advance is a statistic calculated from original image data that is read from the flat panel detector 5 without exposure to X-rays. The statistic is a value obtained by calculating the mean values of the original image data read from the flat panel detector 5 without exposure to X-rays for the individual horizontal rows, calculating the variance of all the mean values, and multiplying it by a coefficient.
Accordingly, the mean value Av(y) of a given yth row can be calculated by the following expression [2];
where pd(x, y) is the pixel value of an image read from the flat panel detector 5 without exposure to X-rays.
The statistic Dm that is measured and stored in advance can be calculated by the following expression [3]:
where c is a coefficient, and
One of the features is that the value Dm is stored in advance and is used for determination of a noise component, as shown in Expression [1]. The value Dm is read as an image signal by the flat panel detector 5 by turning on/off semiconductor switches present in the same pixel row. In this case, temporal changes of gate signal for turning on/off are considered to be one of the causes of noise generated in the individual rows of an image.
Accordingly, when the value Dm is calculated in advance from linear noise, with no object present, a pure component caused by the temporal changes of the gate signals for turning on/off can be extracted. This allows effectively extracting only a linear noise component. It is more effective to determine the above-described value a by obtaining the amount of X-rays during exposure from the control unit 7 or the X-ray generating unit 2.
Acquisition of the value N2(x, y) of a second noise component by changing the value N1(x, y) of the first noise component will now be described. The value N2(x, y) of the second noise component is obtained by thresholding the value N1(x, y) of the first noise component and is written as the following expressions [4]:
if N1(x,y)<b·Dm, then N2(x,y)=b·Dm,
elseif −b·Dm≤Ni(x,y)≤b·Dm, then N2(x,y)=N1(x,y), and
else, then N2(x,y)=b·Dm [4]
where b is a coefficient.
The value b is generally about 1. Decreasing b decreases the value N2(x, y) of the second noise component.
if N1(x,y)<b·Dm, then N2(x,y)=0,
elseif −b·Dm≤Ni(x,y)≤b·Dm, then N2(x,y)=N1(x,y), and
else, then N2(x,y)=0. [5]
In this case, the value of the second noise component is a constant.
Next, the effects of the processing will be described together with the flow thereof with reference to
An image shown in
An image shown in
In general, when the pixel value of displayed image data is 10 bits, the value of a linear noise component is within ±10, but the edge component of the object in filtered image data is sometimes ±110 or greater. Accordingly, when a filtered image (2) is subtracted from an original image (1), the outline of the object is influenced and is degraded in image quality.
An image shown in
An image shown in
An image shown in
To perform noise reduction processing for the individual amplifiers, the value N2(x, y) of the second noise component should be obtained for the individual amplifiers in the flowchart in
Referring to
This is written as the following expression [6]:
if −c·Dm≤N1(x,y)<c·Dm, then Nb2(x,y)=Avr(N1(x,y)) [6]
where Avr(N1(x, y) indicates the mean value of N1(x, y), and Dm is the value that is obtained from the flat panel detector 5 and is measured and stored in advance, as described in the first embodiment.
The same calculation is performed on the regions 42 and 43 and values Nb2(x, y) calculated for the individual regions are subtracted from the original image to reduce the noise.
Although the present embodiment is described where the flat panel detector 5 is divided into three regions, the flat panel detector 5 can be divided into any number of regions.
The value Dm that is measured and stored in advance may be measured and stored for the individual amplifiers.
Thus, according to the present embodiment, since changes in the values of noise components caused by differences in the characteristics of amplifiers are calculated and corrected for each amplifier, noise can be reduced without degrading an X-ray image.
While the present invention has been described in detail based on the above-described embodiments, the present invention can also be embodied as, for example, a system, an apparatus, a method, a program, and a storage medium. Specifically, the present invention may be applied to a system configured by a plurality of units or an apparatus having one unit.
The present invention includes a case in which the functions of the above-described embodiments are implemented by providing a software program to a system or an apparatus directly or from a remote location and reading and executing the provided program codes by the computer of the system or the apparatus. In this case, the provided program is a computer program corresponding to the flowchart shown in
Accordingly, the program codes installed in the computer to implement the functions of the present invention also achieve the present invention. In other words, the present invention includes a computer program for implementing the functions of the present invention.
In this case, the present invention may be in the form of an object code, a program implemented by an interpreter, or script data provided to an OS that has the functions of the program.
Examples of computer-readable storage media for providing the computer program are floppy disks, hard disks, optical disks, magneto-optical disks, MOs, CD-ROMs, CD-Rs, CD-RWs, magnetic tape, non-volatile memory cards, ROMs, and DVDs (DVD-ROMs and DVD-Rs).
Another method for providing the program is connecting to a website on the Internet using a browser of a client computer and downloading the computer program of the present invention from the website to a recording medium such as a hard disk. In this case, the program downloaded may be a compressed file having an automatic install function. The program codes that constitute the program of the present invention can be implemented by dividing it into more than one files and downloading the individual files from different websites. In other words, the present invention further includes a WWW server through which program files for implementing the functions of the present invention are downloaded by more than one user.
The present invention may have the form of coding the program of the present invention, storing it in a storage medium, such as a CD-ROM, and distributing it to users. In this case, the present invention may be configured to allow a user who satisfies predetermined conditions to download key information for decoding the code from a website via the Internet, to implement the coded program using the key information, and to allow a computer to install the program.
The computer executes the read program, so that the functions of the foregoing embodiments can be implemented; furthermore, the functions of the embodiments may be implemented according to an instruction of the program in cooperation with an OS or the like that is operating on the computer. In this case, the OS or the like performs part or all of the actual processing, so that the functions of the foregoing embodiments can be implemented by this processing.
Furthermore, after the program read from the storage medium is written to a function expansion board inserted into the computer or to a memory provided in a function expansion unit connected to the computer, a CPU or the like mounted on the function expansion board or function expansion unit performs all or a part of the actual processing so that the functions of the foregoing embodiments can be implemented by this processing.
The present invention can prevent noise generated in the individual rows of an image to reduce degradation of an image signal.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications and equivalent structures and functions.
Number | Date | Country | Kind |
---|---|---|---|
2008-064253 | Mar 2008 | JP | national |
This application is a continuation of application Ser. No. 13/487,004, filed on Jun. 1, 2012, now U.S. Pat. No. 9,214,012 B2 issued on Dec. 15, 2015, which is a continuation of application Ser. No. 12/403,267, filed on Mar. 12, 2009, now U.S. Pat. No. 8,213,701 B2 issued on Jul. 3, 2012, which claims priority from Japanese Patent Application No. 2008-064253 filed on Mar. 13, 2008, which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5003618 | Meno | Mar 1991 | A |
5237524 | Heinemann | Aug 1993 | A |
5319696 | Abdel-Malek | Jun 1994 | A |
5467380 | De Jonge | Nov 1995 | A |
5495514 | Horbaschek | Feb 1996 | A |
5717791 | Labaere | Feb 1998 | A |
5745542 | Gordon | Apr 1998 | A |
5841828 | Gordon | Nov 1998 | A |
5949483 | Fossum | Sep 1999 | A |
5970115 | Colbeth | Oct 1999 | A |
6058220 | Hillen | May 2000 | A |
6163386 | Kobayashi | Dec 2000 | A |
6252931 | Aach | Jun 2001 | B1 |
6320934 | Carroll | Nov 2001 | B1 |
6404851 | Possin | Jun 2002 | B1 |
6404854 | Carroll | Jun 2002 | B1 |
6418241 | Schreiner | Jul 2002 | B1 |
6587537 | Hsieh | Jul 2003 | B1 |
6763129 | Honda | Jul 2004 | B1 |
6819740 | Takahashi | Nov 2004 | B2 |
6829384 | Schneiderman | Dec 2004 | B2 |
6904126 | Endo | Jun 2005 | B2 |
6925140 | Bruder | Aug 2005 | B2 |
6952015 | Kameshima | Oct 2005 | B2 |
7381963 | Endo | Jun 2008 | B2 |
7582876 | Overdick | Sep 2009 | B2 |
7593508 | Tsuchiya | Sep 2009 | B2 |
7689055 | Zhang | Mar 2010 | B2 |
7773130 | Hara | Aug 2010 | B2 |
7848566 | Schneiderman | Dec 2010 | B2 |
7965333 | Groh | Jun 2011 | B2 |
8031978 | Tamura | Oct 2011 | B2 |
8041092 | Inoue | Oct 2011 | B2 |
8045781 | Nakanishi | Oct 2011 | B2 |
8050509 | Jeong | Nov 2011 | B2 |
8055052 | Burns | Nov 2011 | B2 |
8090181 | Omi | Jan 2012 | B2 |
8106971 | Lee | Jan 2012 | B2 |
8213701 | Tsuchiya | Jul 2012 | B2 |
8244013 | Galant | Aug 2012 | B2 |
8264580 | Mori | Sep 2012 | B2 |
8355594 | Noda | Jan 2013 | B2 |
8374412 | Kimura | Feb 2013 | B2 |
9214012 | Tsuchiya | Dec 2015 | B2 |
Number | Date | Country |
---|---|---|
2003-087656 | Mar 2003 | JP |
2004-261514 | Sep 2004 | JP |
2006-135423 | May 2006 | JP |
2004105609 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20160071247 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13487004 | Jun 2012 | US |
Child | 14940000 | US | |
Parent | 12403267 | Mar 2009 | US |
Child | 13487004 | US |