Field of the Invention
This invention relates generally to the field of data processing systems. More particularly, the invention relates to a system and method for implementing composite authenticators.
Description of Related Art
Existing systems have been designed for providing secure user authentication over a network using biometric sensors. For example, Patent Application No. 2011/0082801 (“'801 Application”) describes a framework for user registration and authentication on a network which provides strong authentication (e.g., protection against identity theft and phishing), secure transactions (e.g., protection against “malware in the browser” and “man in the middle” attacks for transactions), and enrollment/management of client authentication tokens (e.g., fingerprint readers, facial recognition devices, smartcards, trusted platform modules, etc).
A better understanding of the present invention can be obtained from the following detailed description in conjunction with the following drawings, in which:
Described below are embodiments of an apparatus, method, and machine-readable medium for implementing composite authenticators. Throughout the description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are not shown or are shown in a block diagram form to avoid obscuring the underlying principles of the present invention.
The embodiments of the invention discussed below involve client devices with authentication capabilities such as biometric devices. These devices are sometimes referred to herein as “authenticators”, “tokens” or “authentication devices.” Various different biometric devices may be used including, but not limited to, fingerprint sensors, voice recognition hardware/software (e.g., a microphone and associated software for recognizing a user's voice), facial recognition hardware/software (e.g., a camera and associated software for recognizing a user's face), and optical recognition capabilities (e.g., an optical scanner and associated software for scanning the retina of a user). The authentication capabilities may also include non-biometric devices such as trusted platform modules (TPMs) and smartcards.
The assignee of the present application has developed extensions to the OSTP framework which are described in the following co-pending applications, all of which are incorporated herein by reference (hereinafter referred to as the “co-pending applications”):
QUERY SYSTEM AND METHOD TO DETERMINE AUTHENTICATION CAPABILITIES, Ser. No. 13/730,761, filed Dec. 28, 2012;
SYSTEM AND METHOD FOR EFFICIENTLY ENROLLING, REGISTERING, AND AUTHENTICATING WITH MULTIPLE AUTHENTICATION DEVICES, Ser. No. 13/730,776, Filed Dec. 28, 2012;
SYSTEM AND METHOD FOR PROCESSING RANDOM CHALLENGES WITHIN AN AUTHENTICATION FRAMEWORK, Ser. No. 13/730,780, filed Dec. 28, 2012;
SYSTEM AND METHOD FOR IMPLEMENTING PRIVACY CLASSES WITHIN AN AUTHENTICATION FRAMEWORK, Ser. No. 13/730,791, filed Dec. 28, 2012; and
SYSTEM AND METHOD FOR IMPLEMENTING TRANSACTION SIGNING WITHIN AN AUTHENTICATION FRAMEWORK, Ser. No. 13/730,795, filed Dec. 28, 2012.
Some of the embodiments of the invention described herein employ client-side “Authenticators” which encapsulate the following security-relevant functions:
1. Storing and using a cryptographic attestation key
2. Generating, storing and using cryptographic authentication keys
3. Local user verification or verification of user presence
4. Secure Display of information for the end user
In one embodiment, some of the above functions (e.g., 3 and 4) are optional. In addition, one embodiment of the invention includes authenticators which implement the following security objectives:
1. Ensure that the Attestation Key: (a) is only used to attest Authentication Keys generated and protected by the FIDO Authenticator; and (b) never leaves the FIDO Authenticator boundary.
2. If local user verification (sometimes also referred to as “user authentication”) is claimed to be supported, ensure that: (a) the Authentication cannot be bypassed/forged by a software application (e.g. malware “entering” a PIN into the authenticator); (b) the confidentiality of the Authentication data is protected (e.g. malware cannot access a PIN entered by the user nor the reference data); and (c) User Authentication is required before generating a new authentication key and reach time before using such authentication key.
One way to implement an authenticator is to implement all of the components responsible for the above functions in a single module which is protected by a single protective shell. For example the entire authenticator may be implemented in a Trusted Application (TA) running in a Trusted Execution Environment (TEE) (e.g., on a client platform which supports trusted execution). In this implementation, the TA is signed ensuring that the Authenticator cannot be modified and the TEE protects the TA when executed.
In one embodiment of the invention, each authenticator is logically subdivided into a plurality of independent components each of which include independent security and authentication capabilities. For example, in
As discussed in detail below, the protection logic 110, 112 of each component may include a component authentication engine for authenticating every component with one or more other components executed on the client device (see, e.g.,
An authenticator built from components in this manner is referred to as a “Composite Authenticator” because it is composed of separate individual components each having their own protective shell. One benefit to the composite authenticator approach is that once a component has been built for one authenticator, it may be used across multiple authenticators, thereby allowing new secure authenticators to be built more efficiently. For example, as shown in
In one embodiment, the following security measures are implemented to provide an acceptable level of security for the component authenticators described herein (e.g., “acceptable” for meeting the security objectives specified above). These security measures will be described with reference to
1. Security Measure (SM) 1: In one embodiment, each component (e.g., the user verification component 210, display component 212, or authentication kernel 214 shown in
2. Security Measure (SM) 2: Each component is capable of authenticating other components it receives messages from by verifying the public CAK of these components. For example, in
3. Security Measure (SM) 3: Depending on the specific implementation, additional security mechanisms may be leveraged to protect the communication between the components. These additional security mechanisms are illustrated in
By way of example, in one embodiment, the AK 214 is implemented as an applet in a Secure Element which provides good protection mechanisms for cryptographic keys but has no user interface. A UVC 210 may be implemented as a combination of hardware (e.g., a Fingerprint Sensor) and Trusted Application within a Trusted Execution Environment, both leveraging the ARM TrustZone or similar technology. A DC 212 may be implemented as a Trusted Application using the “Trusted User Interface” capability as defined by the Global Platform. Thus, in this embodiment, when a user swipes a finger on the fingerprint sensor, the trusted application is started and verifies the fingerprint data against stored reference data. A score is then sent to the AK 214, implemented as a Secure Element, which then enters into a series of authentication transactions with the relying party 320 to authenticate the user (e.g., as described in the co-pending applications).
In addition, a different UVC may be implemented as software component running in a Rich-OS (e.g., Android) using a combination of white box encryption, code obfuscation and runtime integrity protection. It could for example use the integrated video camera in combination with face recognition software. Another UVC may be implemented either as a Trusted Application or software running on a Rich-OS using a combination of white box encryption, code obfuscation and runtime integrity protection and providing a PIN based user verification method.
Thus, the component-based approach described herein is easily adaptable to the requirements of different authentication techniques. For example, some types of authentication such as voice recognition and facial recognition need to be implemented as a software component using a normal, rich operating system, because of the significant storage requirements and hardware interface requirements of these authentication types. All of these different types of authentication may be implemented in a secure trusted manner using different UVC components which utilize the same AK component (which, as discussed, may be implemented as a Secure Element.
Note that with the above approach, the various components logically communicate using cryptographically protected (e.g. signed) messages. This logical communication may still be “facilitated” by some other entity (e.g., such as the secure transaction logic discussed below). Moreover, in one embodiment, the logical inter-component messaging described herein is transparent to the relying party 320 which enters into attestation and authentication transactions directly with the authenticator kernel 214 (e.g., using the attestation key 215 and authentication keys 216, respectively). In one embodiment, the AK uses the attestation key 215 to validate the model and/or integrity of the authenticator during registration. For example, the relying party may send a challenge which the AK signs using the attestation key 215. The relying party then uses a corresponding key to validate the signature (e.g., a public key if the attestation key is a private key). Once an authenticator has registered with a relying party, an authentication key 216 is assigned to that relying party. The AK then uses the authentication key 216 associated with a relying party to ensure secure communications with that relying party following registration.
As an additional security measure, in one embodiment, the component authentication logic 301-303 of each component may delete its CAK pair if a component compromise is detected.
Two different types of composite authenticators may be implemented utilizing the underlying principles of the invention: “static” composite authenticators and “dynamic” composite authenticators.
Static Composite Authenticators
Referring to
1. for each authenticator 501, the Relying Party 320 has/needs access to a public attestation key (corresponding to attestation key pair 215, but not the public “Component Authentication Keys” (CAKs) 304, 306; and
2. for each supported combination of components (e.g., UVC, DC and AK) a specific Authenticator Attestation ID (AAID) 505 has been specified in advance.
Thus, as illustrated in
Because the CAK pair is never shared with the relying party 320, it can be authenticator-specific without impacting the user's privacy. This also means that such keys could be revoked individually if successful hacks to individual components are detected. Because CAKs are not used as (publicly visible) “attestation keys,” hacks of components are not considered equivalent to hacks of authenticators. In addition, as the communication and security mechanisms of the composite authenticator 501 are not visible outside of the authenticator, the implementation of static composite authenticators doesn't affect the specifications defining the interactions between the authenticator 501 and the relying party 320. In one embodiment, each component 510, 514 is assigned a unique Component-ID which may be similar to an AAID, but it is only relevant to the AK 514 (and not to the RP or any other external entity).
As an additional optimization, in one embodiment, the Online Certificate Status Protocol (OCSP, RFC2560) may be used as a revocation checking method (e.g., “validation”) for each CAK certificate. More specifically, the AK 514 may require a sufficiently recent OCSP response for the certificates of the UVCs or DCs related to the public CAK in order to accept the incoming message. The AK 514 may also have one single Attestation Key used for all AAIDs, or it could optionally have one attestation key per AAID, or a combination thereof.
In one embodiment, the AK may maintain a static list of AAIDs. Alternatively, it may accept AAIDs received from an external entity (e.g. UVC/DC) if it is part of a signed “AAID-Update” message used to update the list. In one embodiment, the AAID-Update message has the following structure: Signature (signing_key, AAID|AK-Component-ID|UVC's/DC's public CAK). The private signing_key may be owned by the AK vendor. The public signing_key is either directly part of AK's TrustStore (in a TrustStore implementation) or it can be verified using some certificate stored in the TrustStore (i.e. is chained to such a certificate).
The architecture of the user device 500 illustrated in
Dynamic Composite Authenticators
Referring to
1. the “Component Authentication Keys” (CAKs) 604, 604 are treated as attestation keys such that the relying party 320 has and needs the related public key to verify the attestation messages (e.g., referred to as “Key Registration Data” in the OSTP specification); and
2. the relying party 320 receives multiple AAIDs 602, 603 (depending on the number of components in the authenticator 601). In one embodiment, it receives the AAIDs 602, 306 of all components 610, 614 of the authenticator 601 as part of a registration message sent from the AK 614 via the secure transaction logic 620 and browser/application 610. While
Thus, a dynamically composed authenticator 601 is implemented by dynamically combining multiple components (or, said another way, composing two authenticators to get a new authenticator). Because CAKs are relevant to RPs in this implementation, they should not be authenticator specific in one embodiment to protect the user's privacy. Instead they are either pre-generated/injected as shared keys or they are authenticated using a direct anonymous attestation (DAA) scheme, a cryptographic protocol which enables authentication of a trusted platform while preserving the user's privacy. As the multiple AAIDs and the chained attestation messages are visible to the RP, the implementation of dynamic composite authenticators affects the authentication specification used between the authenticator 601 and relying party 320.
UVC/DC Assertion Verification
Regardless of whether dynamic or static authenticators are used, in one embodiment, the UVC 210 and DC 212 send their output data such as user verification result (UVC) and the user's acceptance of the displayed transaction text (DC) to the AK 214 so that it may be processed according to the authentication specification employed between the AK 214 and the relying party 320.
For registration, in an embodiment with static authenticators, the UVC 210 and DC 212 may send a key registration message to the AK 214 which contains the Component-ID (not the AAID), where the Component-ID is an identifier similar to the AAID, but only relevant to the AK. In one embodiment, the user authentication key of the key registration message is empty and the key registration message is signed by the CAK instead of the attestation key.
For authentication, in one embodiment, the UVC 210 and DC 212 create a message signed by the CAK (not the user authentication key).
The following verification steps are implemented by the AK in one embodiment of the invention:
1. Lookup the internal trust store containing a list of acceptable public CAKs. The public CAKs may either be directly stored in the TrustStore, or there may be a public key certificate for each of the CAKs chaining to a Root Certificate in the TrustStore.
2. The AK verifies the signature of the incoming data from UVC and/or DC using the public CAK (e.g., as discussed above with respect to SM1 and SM2).
3. Check additional platform-specific protection mechanisms such as the package ID of the incoming data or using similar platform-provided protection mechanisms.
4. Check the revocation status of the certificate containing the UVC's or DC's public CAK. As the AK is only interested in the revocation information of a very few number of certificates/keys (i.e. the current UVC's or DC's), Online Certificate Status Protocol (OCSP) (mentioned above) may be employed for revocation checking. The AK is not assumed to have network connection, so the OCSP response is expected as part of the incoming data from the UVC and/or DC.
Optimized Verification Method
A further optimization may be implemented in one embodiment where asymmetric key operations are too expensive compared to symmetric key operations. In such a case, the Key Registration message created by the UVC and/or DC sent to the AK contains a symmetric key SK (e.g. instead of an empty user authentication key field as mentioned above). The modified Key Registration Data message generated by the UVC and sent to the AK may be encrypted using the AK's public CAK (or some other trusted public key belonging to the target component). The modified signature message generated by the UVC and/or DC and sent to the AK is not asymmetrically signed using CAK, but instead it is secured using a hash-based message authentication code (HMAC) computed with the SK. The AK verifies the HMAC using the symmetric key received as part of the Key Registration Data message.
Turning first to
The authentication devices 710-712 are communicatively coupled to the client through an interface 702 (e.g., an application programming interface or API) exposed by a secure transaction service 701. The secure transaction service 701 is a secure application for communicating with one or more secure transaction servers 732-733 over a network and for interfacing with a secure transaction plugin 705 executed within the context of a web browser 704. As illustrated, the Interface 702 may also provide secure access to a secure storage device 720 on the client 700 which stores information related to each of the authentication devices 710-712 such as a device identification code, user identification code, user enrollment data (e.g., scanned fingerprint or other biometric data), and keys used to perform the secure authentication techniques described herein. For example, as discussed in detail below, a unique key may be stored into each of the authentication devices and used when communicating to servers 730 over a network such as the Internet.
As discussed below, certain types of network transactions are supported by the secure transaction plugin 705 such as HTTP or HTTPS transactions with websites 731 or other servers. In one embodiment, the secure transaction plugin is initiated in response to specific HTML tags inserted into the HTML code of a web page by the web server 731 within the secure enterprise or Web destination 730 (sometimes simply referred to below as “server 730”). In response to detecting such a tag, the secure transaction plugin 705 may forward transactions to the secure transaction service 701 for processing. In addition, for certain types of transactions (e.g., such as secure key exchange) the secure transaction service 701 may open a direct communication channel with the on-premises transaction server 732 (i.e., co-located with the website) or with an off-premises transaction server 733.
The secure transaction servers 732-733 are coupled to a secure transaction database 740 for storing user data, authentication device data, keys and other secure information needed to support the secure authentication transactions described below. It should be noted, however, that the underlying principles of the invention do not require the separation of logical components within the secure enterprise or web destination 730 shown in
As mentioned above, the underlying principles of the invention are not limited to a browser-based architecture shown in
In either of the embodiments shown in
Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Alternatively, these steps may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components.
Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable program code. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, or other type of media/machine-readable medium suitable for storing electronic program code.
Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention may be practiced without some of these specific details. For example, it will be readily apparent to those of skill in the art that the functional modules and methods described herein may be implemented as software, hardware or any combination thereof. Moreover, although some embodiments of the invention are described herein within the context of a mobile computing environment, the underlying principles of the invention are not limited to a mobile computing implementation. Virtually any type of client or peer data processing devices may be used in some embodiments including, for example, desktop or workstation computers. Accordingly, the scope and spirit of the invention should be judged in terms of the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
5280527 | Gullman et al. | Jan 1994 | A |
5764789 | Pare, Jr. et al. | Jun 1998 | A |
6088450 | Davis et al. | Jul 2000 | A |
6178511 | Cohen et al. | Jan 2001 | B1 |
6377691 | Swift et al. | Apr 2002 | B1 |
6618806 | Brown et al. | Sep 2003 | B1 |
6751733 | Nakamura et al. | Jun 2004 | B1 |
6842896 | Redding et al. | Jan 2005 | B1 |
6938156 | Wheeler et al. | Aug 2005 | B2 |
7155035 | Kondo et al. | Dec 2006 | B2 |
7194763 | Potter et al. | Mar 2007 | B2 |
7263717 | Boydstun et al. | Aug 2007 | B1 |
7444368 | Wong et al. | Oct 2008 | B1 |
7487357 | Smith et al. | Feb 2009 | B2 |
7512567 | Bemmel et al. | Mar 2009 | B2 |
7698565 | Bjorn et al. | Apr 2010 | B1 |
7865937 | White | Jan 2011 | B1 |
7941669 | Foley et al. | May 2011 | B2 |
8060922 | Crichton | Nov 2011 | B2 |
8166531 | Suzuki | Apr 2012 | B2 |
8245030 | Lin | Aug 2012 | B2 |
8284043 | Judd et al. | Oct 2012 | B2 |
8291468 | Chickering | Oct 2012 | B1 |
8353016 | Pravetz et al. | Jan 2013 | B1 |
8359045 | Hopkins, III | Jan 2013 | B1 |
8458465 | Stern et al. | Jun 2013 | B1 |
8489506 | Hammad et al. | Jul 2013 | B2 |
8516552 | Raleigh | Aug 2013 | B2 |
8555340 | Potter et al. | Oct 2013 | B2 |
8561152 | Novak et al. | Oct 2013 | B2 |
8584224 | Pei et al. | Nov 2013 | B1 |
8607048 | Nogawa | Dec 2013 | B2 |
8646060 | Ben | Feb 2014 | B1 |
8713325 | Ganesan | Apr 2014 | B2 |
8719905 | Ganesan | May 2014 | B2 |
8776180 | Kumar et al. | Jul 2014 | B2 |
8856541 | Chaudhury et al. | Oct 2014 | B1 |
8949978 | Lin | Feb 2015 | B1 |
8958599 | Starner | Feb 2015 | B1 |
8978117 | Bentley et al. | Mar 2015 | B2 |
9015482 | Baghdasaryan et al. | Apr 2015 | B2 |
9032485 | Chu | May 2015 | B2 |
9083689 | Lindemann et al. | Jul 2015 | B2 |
9161209 | Ghoshal et al. | Oct 2015 | B1 |
9171306 | He et al. | Oct 2015 | B1 |
9172687 | Baghdasaryan et al. | Oct 2015 | B2 |
9396320 | Lindemann | Jul 2016 | B2 |
20010037451 | Bhagavatula et al. | Nov 2001 | A1 |
20020010857 | Karthik | Jan 2002 | A1 |
20020016913 | Wheeler et al. | Feb 2002 | A1 |
20020040344 | Preiser et al. | Apr 2002 | A1 |
20020073316 | Collins et al. | Jun 2002 | A1 |
20020073320 | Rinkevich et al. | Jun 2002 | A1 |
20020087894 | Foley et al. | Jul 2002 | A1 |
20020112170 | Foley et al. | Aug 2002 | A1 |
20020174344 | Ting | Nov 2002 | A1 |
20020174348 | Ting | Nov 2002 | A1 |
20030055792 | Kinoshita et al. | Mar 2003 | A1 |
20030065805 | Barnes | Apr 2003 | A1 |
20030084300 | Koike | May 2003 | A1 |
20030087629 | Juitt | May 2003 | A1 |
20030115142 | Brickell et al. | Jun 2003 | A1 |
20030135740 | Talmor et al. | Jul 2003 | A1 |
20030152252 | Kondo et al. | Aug 2003 | A1 |
20030226036 | Bivens et al. | Dec 2003 | A1 |
20030236991 | Letsinger | Dec 2003 | A1 |
20040101170 | Tisse et al. | May 2004 | A1 |
20040123153 | Wright et al. | Jun 2004 | A1 |
20050021964 | Bhatnagar et al. | Jan 2005 | A1 |
20050080716 | Belyi et al. | Apr 2005 | A1 |
20050097320 | Golan et al. | May 2005 | A1 |
20050125295 | Tidwell et al. | Jun 2005 | A1 |
20050160052 | Schneider | Jul 2005 | A1 |
20050187883 | Bishop et al. | Aug 2005 | A1 |
20050223236 | Yamada et al. | Oct 2005 | A1 |
20050278253 | Meek et al. | Dec 2005 | A1 |
20060026671 | Potter et al. | Feb 2006 | A1 |
20060029062 | Rao | Feb 2006 | A1 |
20060156385 | Chiviendacz et al. | Jul 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060161672 | Jolley et al. | Jul 2006 | A1 |
20060282670 | Karchov | Dec 2006 | A1 |
20070005988 | Zhang et al. | Jan 2007 | A1 |
20070077915 | Black et al. | Apr 2007 | A1 |
20070088950 | Wheeler et al. | Apr 2007 | A1 |
20070100756 | Varma | May 2007 | A1 |
20070106895 | Huang et al. | May 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070118883 | Potter et al. | May 2007 | A1 |
20070165625 | Fisner et al. | Jul 2007 | A1 |
20070168677 | Kudo | Jul 2007 | A1 |
20070169182 | Wolfond | Jul 2007 | A1 |
20070198435 | Siegal et al. | Aug 2007 | A1 |
20070239980 | Funayama | Oct 2007 | A1 |
20070278291 | Rans et al. | Dec 2007 | A1 |
20070286130 | Shao et al. | Dec 2007 | A1 |
20080005562 | Sather et al. | Jan 2008 | A1 |
20080025234 | Zhu et al. | Jan 2008 | A1 |
20080028453 | Nguyen et al. | Jan 2008 | A1 |
20080034207 | Cam-Winget et al. | Feb 2008 | A1 |
20080046334 | Lee et al. | Feb 2008 | A1 |
20080046984 | Bohmer et al. | Feb 2008 | A1 |
20080049983 | Miller et al. | Feb 2008 | A1 |
20080086759 | Colson | Apr 2008 | A1 |
20080134311 | Medvinsky | Jun 2008 | A1 |
20080141339 | Gomez et al. | Jun 2008 | A1 |
20080172725 | Fujii et al. | Jul 2008 | A1 |
20080209545 | Asano | Aug 2008 | A1 |
20080232565 | Kutt et al. | Sep 2008 | A1 |
20080235801 | Soderberg et al. | Sep 2008 | A1 |
20080271150 | Boerger et al. | Oct 2008 | A1 |
20080289019 | Lam | Nov 2008 | A1 |
20080289020 | Cameron et al. | Nov 2008 | A1 |
20080313719 | Kaliski, Jr. et al. | Dec 2008 | A1 |
20080320308 | Kostiainen et al. | Dec 2008 | A1 |
20090049510 | Zhang et al. | Feb 2009 | A1 |
20090064292 | Carter et al. | Mar 2009 | A1 |
20090089870 | Wahl | Apr 2009 | A1 |
20090100269 | Naccache | Apr 2009 | A1 |
20090116651 | Liang | May 2009 | A1 |
20090133113 | Schneider | May 2009 | A1 |
20090138724 | Chiou et al. | May 2009 | A1 |
20090138727 | Campello | May 2009 | A1 |
20090158425 | Chan et al. | Jun 2009 | A1 |
20090183003 | Haverinen | Jul 2009 | A1 |
20090187988 | Hulten et al. | Jul 2009 | A1 |
20090193508 | Brenneman et al. | Jul 2009 | A1 |
20090196418 | Tkacik et al. | Aug 2009 | A1 |
20090199264 | Lang | Aug 2009 | A1 |
20090204964 | Foley | Aug 2009 | A1 |
20090235339 | Mennes et al. | Sep 2009 | A1 |
20090271618 | Camenisch et al. | Oct 2009 | A1 |
20090271635 | Liu et al. | Oct 2009 | A1 |
20090300714 | Ahn | Dec 2009 | A1 |
20090300720 | Guo et al. | Dec 2009 | A1 |
20090307139 | Mardikar et al. | Dec 2009 | A1 |
20090327131 | Beenau et al. | Dec 2009 | A1 |
20090328197 | Newell et al. | Dec 2009 | A1 |
20100010932 | Law et al. | Jan 2010 | A1 |
20100023454 | Exton et al. | Jan 2010 | A1 |
20100029300 | Chen | Feb 2010 | A1 |
20100042848 | Rosener | Feb 2010 | A1 |
20100062744 | Ibrahim | Mar 2010 | A1 |
20100070424 | Monk | Mar 2010 | A1 |
20100082484 | Erhart et al. | Apr 2010 | A1 |
20100083000 | Kesanupalli | Apr 2010 | A1 |
20100094681 | Almen et al. | Apr 2010 | A1 |
20100105427 | Gupta | Apr 2010 | A1 |
20100107222 | Glasser | Apr 2010 | A1 |
20100114776 | Weller et al. | May 2010 | A1 |
20100169650 | Brickell et al. | Jul 2010 | A1 |
20100175116 | Gum | Jul 2010 | A1 |
20100186072 | Kumar | Jul 2010 | A1 |
20100192209 | Steeves et al. | Jul 2010 | A1 |
20100223663 | Morimoto et al. | Sep 2010 | A1 |
20100242088 | Thomas | Sep 2010 | A1 |
20100287369 | Monden | Nov 2010 | A1 |
20100325427 | Ekberg et al. | Dec 2010 | A1 |
20100325684 | Grebenik et al. | Dec 2010 | A1 |
20100325711 | Etchegoyen | Dec 2010 | A1 |
20110004933 | Dickinson et al. | Jan 2011 | A1 |
20110022835 | Schibuk | Jan 2011 | A1 |
20110047608 | Levenberg | Feb 2011 | A1 |
20110071841 | Fomenko et al. | Mar 2011 | A1 |
20110078443 | Greenstein et al. | Mar 2011 | A1 |
20110082801 | Baghdasaryan et al. | Apr 2011 | A1 |
20110083016 | Kesanupalli et al. | Apr 2011 | A1 |
20110093942 | Koster et al. | Apr 2011 | A1 |
20110107087 | Lee et al. | May 2011 | A1 |
20110138450 | Kesanupalli et al. | Jun 2011 | A1 |
20110157346 | Zyzdryn et al. | Jun 2011 | A1 |
20110167154 | Bush et al. | Jul 2011 | A1 |
20110167472 | Evans et al. | Jul 2011 | A1 |
20110191200 | Bayer et al. | Aug 2011 | A1 |
20110197267 | Gravel et al. | Aug 2011 | A1 |
20110219427 | Hito et al. | Sep 2011 | A1 |
20110225431 | Stufflebeam, Jr. et al. | Sep 2011 | A1 |
20110228330 | Nogawa | Sep 2011 | A1 |
20110231911 | White et al. | Sep 2011 | A1 |
20110246766 | Orsini et al. | Oct 2011 | A1 |
20110265159 | Ronda | Oct 2011 | A1 |
20110279228 | Kumar | Nov 2011 | A1 |
20110280402 | Brahim | Nov 2011 | A1 |
20110296518 | Faynberg et al. | Dec 2011 | A1 |
20110307706 | Fielder | Dec 2011 | A1 |
20110307949 | Ronda | Dec 2011 | A1 |
20110313872 | Carter et al. | Dec 2011 | A1 |
20110314549 | Song et al. | Dec 2011 | A1 |
20110320823 | Saroiu et al. | Dec 2011 | A1 |
20120018506 | Hammad et al. | Jan 2012 | A1 |
20120023568 | Cha | Jan 2012 | A1 |
20120046012 | Forutanpour et al. | Feb 2012 | A1 |
20120075062 | Osman et al. | Mar 2012 | A1 |
20120084566 | Chin et al. | Apr 2012 | A1 |
20120102553 | Hsueh et al. | Apr 2012 | A1 |
20120124639 | Shaikh et al. | May 2012 | A1 |
20120124651 | Ganesan | May 2012 | A1 |
20120144461 | Rathbun | Jun 2012 | A1 |
20120159577 | Belinkiy | Jun 2012 | A1 |
20120191979 | Feldbau | Jul 2012 | A1 |
20120203906 | Jaudon et al. | Aug 2012 | A1 |
20120204032 | Wilkings et al. | Aug 2012 | A1 |
20120210135 | Panchapakesan et al. | Aug 2012 | A1 |
20120249298 | Sovio et al. | Oct 2012 | A1 |
20120272056 | Ganesan | Oct 2012 | A1 |
20120278873 | Calero et al. | Nov 2012 | A1 |
20120291114 | Poliashenko et al. | Nov 2012 | A1 |
20120313746 | Rahman et al. | Dec 2012 | A1 |
20120317297 | Bailey | Dec 2012 | A1 |
20130042327 | Chow | Feb 2013 | A1 |
20130046976 | Rosati et al. | Feb 2013 | A1 |
20130046991 | Lu et al. | Feb 2013 | A1 |
20130054967 | Davoust et al. | Feb 2013 | A1 |
20130061055 | Schibuk | Mar 2013 | A1 |
20130067546 | Thavasi et al. | Mar 2013 | A1 |
20130073859 | Carlson et al. | Mar 2013 | A1 |
20130086669 | Sondhi et al. | Apr 2013 | A1 |
20130090939 | Robinson et al. | Apr 2013 | A1 |
20130097682 | Zeljkovic | Apr 2013 | A1 |
20130104187 | Weidner | Apr 2013 | A1 |
20130104190 | Simske et al. | Apr 2013 | A1 |
20130119130 | Braams | May 2013 | A1 |
20130124285 | Pravetz et al. | May 2013 | A1 |
20130124422 | Hubert et al. | May 2013 | A1 |
20130125197 | Pravetz | May 2013 | A1 |
20130125222 | Pravetz et al. | May 2013 | A1 |
20130133049 | Peirce | May 2013 | A1 |
20130133054 | Davis et al. | May 2013 | A1 |
20130144785 | Karpenko et al. | Jun 2013 | A1 |
20130159413 | Davis et al. | Jun 2013 | A1 |
20130159716 | Buck et al. | Jun 2013 | A1 |
20130160083 | Schrix et al. | Jun 2013 | A1 |
20130167196 | Spencer et al. | Jun 2013 | A1 |
20130219456 | Sharma et al. | Aug 2013 | A1 |
20130227646 | Haggerty et al. | Aug 2013 | A1 |
20130239173 | Dispensa | Sep 2013 | A1 |
20130282589 | Shoup et al. | Oct 2013 | A1 |
20130308778 | Fosmark et al. | Nov 2013 | A1 |
20130318343 | Bjarnason et al. | Nov 2013 | A1 |
20130337777 | Deutsch et al. | Dec 2013 | A1 |
20130346176 | Alolabi et al. | Dec 2013 | A1 |
20140002238 | Taveau et al. | Jan 2014 | A1 |
20140007215 | Romano | Jan 2014 | A1 |
20140013422 | Janus et al. | Jan 2014 | A1 |
20140033271 | Barton et al. | Jan 2014 | A1 |
20140040987 | Haugsnes | Feb 2014 | A1 |
20140044265 | Kocher et al. | Feb 2014 | A1 |
20140047510 | Belton et al. | Feb 2014 | A1 |
20140066015 | Aissi | Mar 2014 | A1 |
20140068746 | Gonzalez | Mar 2014 | A1 |
20140075516 | Chermside | Mar 2014 | A1 |
20140089243 | Oppenheimer | Mar 2014 | A1 |
20140096182 | Smith | Apr 2014 | A1 |
20140101439 | Pettigrew et al. | Apr 2014 | A1 |
20140109174 | Barton | Apr 2014 | A1 |
20140115702 | Li et al. | Apr 2014 | A1 |
20140130127 | Toole et al. | May 2014 | A1 |
20140137191 | Goldsmith et al. | May 2014 | A1 |
20140164776 | Hook et al. | Jun 2014 | A1 |
20140173754 | Barbir | Jun 2014 | A1 |
20140188770 | Agrafioti et al. | Jul 2014 | A1 |
20140189350 | Baghdasaryan | Jul 2014 | A1 |
20140189360 | Baghdasaryan | Jul 2014 | A1 |
20140189779 | Baghdasaryan | Jul 2014 | A1 |
20140189791 | Lindemann | Jul 2014 | A1 |
20140189807 | Cahill et al. | Jul 2014 | A1 |
20140189808 | Mahaffey et al. | Jul 2014 | A1 |
20140189828 | Baghdasaryan | Jul 2014 | A1 |
20140189835 | Umerley | Jul 2014 | A1 |
20140201809 | Choyi et al. | Jul 2014 | A1 |
20140230032 | Duncan | Aug 2014 | A1 |
20140245391 | Adenuga | Aug 2014 | A1 |
20140250523 | Savvides et al. | Sep 2014 | A1 |
20140258125 | Gerber et al. | Sep 2014 | A1 |
20140258711 | Brannon | Sep 2014 | A1 |
20140282868 | Sheller et al. | Sep 2014 | A1 |
20140282945 | Smith et al. | Sep 2014 | A1 |
20140282965 | Sambamurthy et al. | Sep 2014 | A1 |
20140289117 | Baghdasaryan | Sep 2014 | A1 |
20140289820 | Lindemann et al. | Sep 2014 | A1 |
20140289833 | Briceno et al. | Sep 2014 | A1 |
20140289834 | Lindemann | Sep 2014 | A1 |
20140298419 | Boubez | Oct 2014 | A1 |
20140304505 | Dawson | Oct 2014 | A1 |
20150046340 | Dimmick | Feb 2015 | A1 |
20150058931 | Miu et al. | Feb 2015 | A1 |
20150095999 | Toth et al. | Apr 2015 | A1 |
20150134330 | Baldwin et al. | May 2015 | A1 |
20150142628 | Suplee et al. | May 2015 | A1 |
20150180869 | Verma | Jun 2015 | A1 |
20150244696 | Ma | Aug 2015 | A1 |
20150269050 | Filimonov | Sep 2015 | A1 |
20150326529 | Morita | Nov 2015 | A1 |
20150381580 | Graham et al. | Dec 2015 | A1 |
20160036588 | Thackston | Feb 2016 | A1 |
20160072787 | Balabine et al. | Mar 2016 | A1 |
20160078869 | Syrdal et al. | Mar 2016 | A1 |
20160087952 | Tartz et al. | Mar 2016 | A1 |
20160087957 | Shah et al. | Mar 2016 | A1 |
20160188958 | Martin | Jun 2016 | A1 |
20170004487 | Hagen et al. | Jan 2017 | A1 |
20170109751 | Dunkelberger et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1705925 | Dec 2005 | CN |
102763111 | Oct 2012 | CN |
2005003985 | Jan 2005 | WO |
WO2013082190 | Jun 2013 | WO |
2014105994 | Jul 2014 | WO |
2015130734 | Sep 2015 | WO |
Entry |
---|
Zhang, “Security Verification of Hardware-enabled Attestation Protocols”, 2012, IEEE, p. 47-54. |
Kim, “Secure user authentication based on the Trusted Platform for mobile devices”, Sep. 29, 2016, EURASIP Journal on Wireless Communications & Networking, pg. 1-15. |
Martins, “A Potpourri of authentication mechanisms the mobile device way”, Jan. 2013, CISTI, pg. 843-848. |
Anthony J. Nicholson, “Mobile Device Security Using Transient Authentication,” IEEE Transactions on Mobile Computing vol. 5, No. 11, pp. 1489-1502 (Nov. 2006). |
Mohammad O. Derawi, “Unobtrusive User-Authentication on Mobile Phones using Biometric Gait Recognition” (2010). |
Koichiro Niinuma, Anil K. Jain, “Continuous User Authentication Using Temporal Information” (currently at http://www.cse.msu.edu/biometrics/Publications/Face/NiinumaJain—ContinuousAuth—SPIE10.pdf). |
BehavioSec, “Measuring FAR/FRR/EER in Continuous Authentication,” Stockholm, Sweden (2009). |
The Online Certificate Status Protocol (OCSP, RFC2560). |
See current WikiPedia article for “Eye Tracking” at en.wikipedia.org/wiki/Eye—tracking. |
(See Hartzell, “Crazy Egg Heatmap Shows Where People Click on Your Website” (Nov. 30, 2012), currently at www.michaelhartzell.com/Blog/bid/92970/Crazy-Egg-Heatmap-shows-where-people-click-on-your-website). |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US13/77888, mailed Aug. 8, 2014, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US14/39627, mailed Oct. 16, 2014, 3 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US14/31344, mailed Nov. 3, 2014, 8 pages. |
Office Action from U.S. Appl. No. 14/145,439, mailed Feb. 12, 2015, 18 pages. |
Office Action from U.S. Appl. No. 14/145,533, mailed Jan. 26, 2015, 13 pages. |
Office Action from U.S. Appl. No. 14/145,607, mailed Mar. 20, 2015, 22 pages. |
Office Action from U.S. Appl. No. 14/218,551, mailed Apr. 23, 2015, 9 pages. |
Office Action from U.S. Appl. No. 14/218,575, mailed Feb. 10, 2015, 17 pages. |
Office Action from U.S. Appl. No. 14/066,273, mailed May 8, 2015, 31 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,533, mailed May 11, 2015, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,439, mailed Jul. 6, 2015, 6 pages. |
Transmittal of International Preliminary Report on Patentability from foreign counterpart PCT/US2013/077888, mailed Jul. 9, 2015, 7 pages. |
Office Action from U.S. Appl. No. 14/268,733, mailed Jul. 16, 2015, 13 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/028924, mailed Jul. 30, 2015, 10 pages. |
Office Action from U.S. Appl. No. 14/218,575, mailed Aug. 7, 2015, 19 pages. |
Office Action from U.S. Appl. No. 14/268,619, mailed Aug. 24, 2015, 17 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,607, mailed Sep. 2, 2015, 19 pages. |
Final Office Action from U.S. Appl. No. 14/218,551, mailed Sep. 9, 2015, 15 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,533, mailed Sep. 14, 2015, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697, mailed Sep. 15, 2015, 14 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/042785, mailed Oct. 16, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/042799, mailed Oct. 19, 2015, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686, mailed Nov. 5, 2015, 23 pages. |
Office Action from U.S. Appl. No. 14/448,641, mailed Nov. 9, 2015, 21 pages. |
Barker et al; “Recommendation for key management Part 3: Application—Specific Key Management Guidance”; NIST special Publication 800-57, pp. 1-103, Dec. 2009. |
Office Action from U.S. Appl. No. 14/448,814, mailed Aug. 4, 2015, 13 pages. |
World Wide Web Consortium, W3C Working Draft: Media Capture and Streams (2013). |
Office Action from U.S. Appl. No. 14/218,692, mailed Nov. 4, 2015, 16 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,439, mailed Oct. 28, 2015, 12 pages. |
Brickell, Ernie, Jan Camenisch, and Liqun Chen. “Direct anonymous attestation.” Proceedings of the 11th ACM conference on Computer and communications security. ACM, 2004, 6 pages. |
Chen, Liqun, and Jiangtao Li. “Flexible and scalable digital signatures in TPM 2.0.” Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security. ACM, 2013. |
Chakka, Murali Mohan, et al. “Competition on counter measures to 2-d facial spoofing attacks.” Biometrics (IJCB), 2011 International Joint Conference on. IEEE, 2011, 6 pages. |
Marcialis, Gian Luca, et al. “First international fingerprint liveness detection competition—livdet 2009.” Image Analysis and Processing—ICIAP 2009. Springer Berlin Heidelberg, 2009. 12-23. |
Uludag, Umut, and Anil K. Jain. “Attacks on biometric systems: a case study in fingerprints.” Electronic Imaging 2004. International Society for Optics and Photonics, 2004, 12 pages. |
Ratha, Nalini K., Jonathan H. Connell, and Ruud M. Bolle. “An analysis of minutiae matching strength.” Audio-and Video-Based Biometric Person Authentication. Springer Berlin Heidelberg, 2001, 7 pages. |
Schneier, B., “Biometrics: Uses and Abuses”. Aug. 1999. Inside Risks 110 (CACM 42, 8, Aug. 1999). http://www.schneier.com/essay-019.pdf. |
Zhao, W., et al. “Face Recognition: A Literature Survey”. ACM Computing Surveys, vol. 35, No. 4. Dec. 2003, pp. 399-458. |
Abate, A., et al., “2D and 3D face recognition: A survey”. Pattern Recognition Letters. 2007, 28, pp. 1885-1906. |
GSM Arena. GSM Arena. [Online] Nov. 13, 2011. [Cited: Sep. 29, 2012.] http://www.gsmarena.com/ice—cream—sandwichs—face—unlock—duped—using—a—photograph-news-3377.php. Downloaded Aug. 18, 2015. |
Wilson, R., James. Unbuntu Life, “How to Trick Google's New Face Unlock on Android 4.1 Jelly Bean”. Print Screen Mac. [Online] Aug. 6, 2012. [Cited: Sep. 28, 2012.] http://printscreenmac.info/how-to-trick-android-jelly-bean-face-unlock/. downloaded Aug. 13, 2015. |
Phillips, P., J., et al., “Face Recognition Vendor Test 2002: Evaluation Report”. s.l. : NISTIR 6965, 2002. 56 pages. http://www.face-rec.org/vendors/FRVT—2002—Evaluation—Report.pdf. |
Phillips, P.J., et al., “FRVT 2006 and ICE 2006 Large-Scale Results”, NIST IR 7408. Gaithersburg : NIST, 2006. Mar. 29, 2007. pp. 1-55. |
Grother, P.J., et al., NIST. Report on the Evaluation of 2D Still-Image Face Recognition Algorithms, NIST IR 7709. s.l. : NIST, 2011. Jun. 22, 2010. pp. 1-58. |
Roberts, C., “Biometric Attack Vectors and Defences”. Sep. 2006. 25 pages. http://otago.ourarchive.ac.nz/bitstream/handle/10523/1243/BiometricAttackVectors.pdf. |
Pinto, A., et al., “Video-Based Face Spoofing Detection through Visual Rhythm Analysis”. Los Alamitos : IEEE Computer Society Conference Publishing Services, 2012. Conference on Graphics, Patterns and Images, 25. 8 pages.(SIBGRAPI). http://sibgrapi.sid.inpe.br/rep/sid.inpe.br/sibgrapi/2012/07.13.21.16?mirror=sid.inpe.br/banon/2001/03.30.15.38.24&metadatarepository=sid.inpe.br/sibgrapi/2012/07.13.21.16.53. |
Li, J., et al., “Live Face Detection Based on the Analysis of Fourier Spectra”. Biometric Technology for Human Identification. 2004, pp. 296-303. |
Tan, X., et al., “Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model”. s.l. : European Conference on Computer Vision, 2010. pp. 1-14. |
Määttä, J., et al., “Machine Vision Group, University of Oulu”, Finland. “Face Spoofing Detection From Single Images Using Micro-Texture Analysis”. Oulu, Finland : IEEE, 2011. pp. 1-7. http://www.ee.oulu.fi/research/mvmp/mvg/files/pdf/131.pdf. |
Heikkilä, M., et al., “A Texture-Based Method for Modeling the Background and Detecting Moving Objects”. Oulu : IEEE, Jun. 22, 2005. DRAFT. 16 pages. http://www.ee.oulu.fi/mvg/files/pdf/pdf—662.pdf. |
Peng, Y., et al. “RASL: Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images”. IEEE Conference on Computer Vision and Pattern Recognition. 2010, pp. 763-770. http://yima.csl.illinois.edu/psfile/RASL—CVPR10.pdf. |
Kong, S., et al., “Recent advances in visual and infrared face recognition”—a review. Journal of Computer Vision and Image Understanding. Jun. 2005, vol. 1, 97, pp. 103-135. |
Kollreider, K., et al., Halmstad University, SE-30118, Sweden. Evaluating Liveness by Face Images and the Structure Tensor. Halmstad, Sweden : s.n., 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.6534&rep=rep1&type=pdf. |
Smiatacz, M., et al., Gdansk University of Technology. Liveness Measurements Using Optical Flow for Biometric Person Authentication. Metrology and Measurement Systems. 2012, vol. XIX, 2. pp. 257-268. |
Bao, W., et al., et al.,“A liveness detection method for face recognition based on optical flow field”. Image Analysis and Signal Processing, IASP 2009. Apr. 11-12, 2009, pp. 233-236. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5054589&isnumber=5054562. |
Pan, G., et al., “Liveness Detection for Face Recognition”. Recent Advances in Face Recognition. Vienna : I-Tech, 2008, Ch. 9, pp. 109-124, ISBN: 978-953-7619-34-3. |
National Science & Technology Council's Subcommittee on Biometrics. Biometrics Glossary. 33 pages, Last updated Sep. 14, 2006. NSTC. http://www.biometrics.gov/documents/glossary.pdf. |
Ross, A., et al. “Multimodal Biometrics: An Overview”. Proceedings of 12th European Signal Processing Conference (EUSIPCO). Sep. 2004, pp. 1221-1224. http://www.csee.wvu.edu/˜ross/pubs/RossMultimodalOverview—EUSIPCO04.pdf. |
Rodrigues, R.N., et al. Robustness of multimodal biometric fusion methods against spoof attacks. Journal of Visual Language and Computing. 2009. 11 pages, doi:10.1016/j.jvlc.2009.01.010; http://cubs.buffalo/edu/govind/papers/visual09.pdf. |
Akhtar, Z., et al., “Spoof Attacks on Multimodal Biometric Systems”. Alfarid. Singapore : IACSIT Press, Singapore, 2011. 2011 International Conference on Information and Network Technology IPCSIT. vol. 4. pp. 46-51. http://www.ipcsit.com/vol4/9-ICINT2011T046.pdf. |
Hernandez, T., “But What Does It All Mean? Understanding Eye-Tracking Results (Part 3)”, Sep. 4, 2007, 2 pages. EyeTools. Part III: What is a heatmap . . . really? [Online] [Cited: Nov. 1, 2012.] http://eyetools.com/articles/p3-understanding-eye-tracking-what-is-a-heatmap-really. |
Nielsen, Jakob. useit.com. Jakob Nielsen's Alertbox—Scrolling and Attention. [Online] Mar. 22, 2010. [Cited: Nov. 1, 2012.] 6 pages. http://www.useit.com/alertbox/scrolling-attention.html. |
Nielsen, Jakib. useit.com. Jakob Nielsen's Alertbox—Horizontal Attention Leans Left. [Online] Apr. 6, 2010. [Cited: Nov. 1, 2012.] 4 pages. http://www.useit.com/alertbox/horizontal-attention.html. |
Lubin, G., et al., Business Insider. “16 Heatmaps That Reveal Exactly Where People Look”. [Online] May 21, 2012. [Cited: Nov. 1, 2012.] pges 1-21. http://www.businessinsider.com/eye-tracking-heatmaps-2012-5?op=1. |
Huang, L., et al., “Clickjacking: Attacks and Defenses”. s.l. : Usenix Security 2012, pp. 1-16, 2012. https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final39.pdf. |
Willis, N., Linux.com. Weekend Project: Take a Tour of Open Source Eye-Tracking Software. [Online] Mar. 2, 2012. [Cited: Nov. 1, 2012.] https://www.linux.com/learn/tutorials/550880-weekend-project-take-a-tour-of-open-source-eye-tracking-software. |
Chetty, G. School of ISE, University of Canberra, Australia. “Multilevel liveness verification for face-voice biometric authentication”. BYSM-2006 Symposium. Baltimore: BYSM-Symposium, 9 pages. Sep. 19, 2006. http://www.biometrics.org/bc2006/presentations/Tues—Sep—19/BSYM/19—Chetty—research.pdf. |
Tresadern, P., et al., “Mobile Biometrics (MoBio): Joint Face and Voice Verification for a Mobile Platform”. 2012. http://personal.ee.surrey.ac.uk/Personal/Norman.Poh/data/tresadern—PervComp2012—draft.pdf. |
Jafri, R., et al., “A Survey of Face Recognition Techniques. Journal of Information Processing Systems”, vol. 5, No. 2, Jun. 2009. Jun. 2009, vol. 5, 2, pp. 41-68. http://www.cosy.sbg.ac.at/˜uhl/face—recognition.pdf. |
Himanshu, et al., “A Review of Face Recognition”. International Journal of Research in Engineering & Applied Sciences. Feb. 2012, vol. 2, 2, pp. 835-846. http://euroasiapub.org/IJREAS/Feb2012/81.pdf. |
Phillips, P. J., et al., “Biometric Image Processing and Recognition”. Chellappa. 1998. Eusipco .8 pages. |
Zhou, et al., “Face Recognition from Still Images and Videos”. University of Maryland, College Park, MD 20742. Maryland : s.n., Nov. 5, 2004.pp. 1-23, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.1312&rep=rep1&type=pdf. |
Quinn, G.W., et al., NIST. “Performance of Face Recognition Algorithms on Compressed Images”, NIST Inter Agency Report 7830. s.l. : NIST, Dec. 4, 2011. |
The Extended M2VTS Database. [Online] [Cited: Sep. 29, 2012.] downloaded Jan. 28, 2015, 1 page; http://www.ee.surrey.ac.uk/CVSSP/xm2vtsdb/. |
Ratha, N. K., et al., IBM. “Enhancing security and privacy in biometrics-based authentication systems”. IBM Systems Journal. 2001, vol. 40, 3. pp. 614-634. |
Schuckers, S., Schuckers SAC. “Spoofing and Anti-Spoofing Measures”. Information Security Technical Report. Dec. 10, 2002, vol. 7, 4., pp. 56-62. |
Schwartz, W., et al., “Face Spoofing Detection through Partial Least Squares and Low-Level Descriptors”. s.l. : Intl. Joint Conference on Biometrics,, 2011. pp. 1-8. |
Edited by Kresimir Delac, Mislay Grgic and Marian Stewart Bartlett. s.l. : InTech, Jun. 1, 2008. http://cdn.intechopen.com/finals/81/InTech-Recent—advances—in—face—recognition.zip. ISBN 978-953-7619-34-3. Uploaded as Chapters 1-15. |
Pan, G., et al., “Monocular camera-based face liveness detection by combining eyeblink and scene context” pp. 215-225. s.l. : Springer Science+Business Media, LLC, Aug. 4, 2010. http://www.cs.zju.edu.cn/˜gpan/publication/2011-TeleSys-liveness.pdf. |
Tronci, R, et al., “Fusion of multiple clues for photo-attack detection in face recognition systems”. 09010 Pula (CA), Italy : s.n., 2011. pp. 1-6. http://prag.diee.unica.it/pra/system/files/Amilab—IJCB2011.pdf. |
Rocha, A., et al., “Vision of the Unseen: Current Trends and Challenges in Digital Image and Video Forensics”. s.l. : ACM Computing Surveys, 2010. http://www.wjscheirer.com/papers/wjs—csur2011—forensics.pdf. |
Linux.com, The source for Linux information. 2012. 3 pages, downloaded Jan. 28, 2015. |
Kollreider, K., et al., “Non-instrusive liveness detection by face images”. Image Vis. Comput. (2007). doi:10.1016/j.imavis.2007.05.004, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/042870, mailed Oct. 30, 2015, 9 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US2015/42827, mailed Oct. 30, 2015, 9 pages. |
Validity, OSTP Framework, 24 pages, 2010. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent Cooperation Treaty Application No. PCT/US15/50348, mailed Dec. 22, 2015, 9 pages. |
Office Action from U.S. Appl. No. 14/448,868, mailed Dec. 3, 2015, 15 pages. |
Office Action from U.S. Appl. No. 14/487,992, mailed Dec. 31, 2015, 12 pages. |
Final Office Action from U.S. Appl. No. 14/268,619, mailed Dec. 14, 2015, 10 pages. |
Notification of Transmittal of International Search Report and Written Opinion from PCT/US2015/028927, mailed Jul. 30, 2015, 12 page. |
Transmittal of International Preliminary Report on Patentability from foreign counterpart PCT Patent Application No. PCT/US2014/039627 mailed Dec. 10, 2015, 8 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697, mailed Jan. 14, 2016, 23 pages. |
Final Office Action from U.S. Appl. No. 14/268,733, mailed Jan. 15, 2016, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,533, mailed Jan. 20, 2016, 12 pages. |
Office Action from U.S. Appl. No. 14/218,743, mailed Jan. 21, 2016, 12 pages. |
Office Action from U.S. Appl. No. 14/218,551, mailed Jan. 21, 2016, 11 pages. |
Office Action from U.S. Appl. No. 14/218,575, mailed Jan. 29, 2016, 25 pages. |
Advisory Action from U.S. Appl. No. 13/730,791 dated Jan. 23, 2015, 4 pages. |
Brickell, E., et al., Intel Corporation; Jan Camenish, IBM Research; Liqun Chen, HP Laboratories. “Direct Anonymous Attestation”. Feb. 11, 2004, pp. 1-28 [online]. Retrieved from the Internet: URL:https://eprint.iacr.org/2004/205.pdf. |
Dawei Zhang; Peng Hu, “Trusted e-commerce user agent based on USB Key”, Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 vol. I, IMECS 2008, Mar. 19-21, 2008, Hong Kong, 7 pages. |
Doherty, et al., Internet Engineering Task Force (IETF), “Dynamic Symmetric Key Provisioning Protocol (DSKPP)”, Dec. 2010, 105 pages. |
Edited by Kresimir Delac, Mislay Grgic and Madan Stewart Bartlett. s.l. : InTech Jun. 1, 2008. http://cdn.intechopen.com/finals/81/InTech-Recent_advances_in_face_recognition.zip. ISBN 978-953-7619-34-3. Uploaded as Chapters 1-15. |
Extended European Search Report for Application No. 13867269, dated Nov. 34, 2016, 10 pages. |
Final Office Action from U.S. Appl. No. 13/730,761 dated Jan. 15, 2015, 31 pages. |
Final Office Action from U.S. Appl. No. 13/730,761 dated Jul. 8, 2014, 36 pages. |
Final Office Action from U.S. Appl. No. 13/730,776 dated Nov. 3, 2014, 20 pages. |
Final Office Action from U.S. Appl. No. 13/730,780 dated Jan. 27, 2015, 30 pages. |
Final Office Action from U.S. Appl. No. 13/730,780 dated May 12, 2014, 34 pages. |
Final Office Action from U.S. Appl. No. 13/730,791 dated Nov. 13, 2014, 22 pages. |
Final Office Action from U.S. Appl. No. 13/730,795 dated Aug. 14, 2014, 20 pages. |
Final Office Action from U.S. Appl. No. 14/066,273 dated Feb. 11, 2016, 29 pages. |
Final Office Action from U.S. Appl. No. 14/218551 dated Sep. 16, 2016, 11 pages. |
Final Office Action from U.S. Appl. No. 14/218,575 dated Jul. 7, 2016, 29 pages. |
Final Office Action from U.S. Appl. No. 14/218,646 dated Aug. 11, 2016, 25 pages. |
Final Office Action from U.S. Appl. No. 14/218,692 dated Mar. 2, 2016,. |
Final Office Action from U.S. Appl. No. 14/448,814 dated Feb. 16, 2016, 14 pages. |
Final Office Action from U.S. Appl. No. 14/448,814 dated Jun. 14, 2016, 17 pages. |
Final Office Action from U.S. Appl. No. 14/448,868 dated Aug. 19, 2016, 11 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/028924 dated Nov. 17, 2016, 9 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/028927 dated Nov. 17, 2016, 10 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,761 dated Feb. 27, 2014, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,761 dated Sep. 9, 2014, 36 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,776 dated Jul. 15, 2014, 16 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,780 dated Aug. 4, 2014, 30 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,780 dated Mar. 12, 2014, 22 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,791 dated Jun. 27, 2014, 17 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,795 dated Jan. 5, 2015, 19 pages. |
Non-Final Office Action from U.S. Appl. No. 13/730,795 dated Jun. 11, 2014, 14 pages. |
Non-Final Office Action from U.S. Appl. No. 14/066,273 dated Jun. 16, 2016, 43 pages. |
Non-Final Office Action from U.S. Appl. No. 14/145,466 dated Sep. 9, 2016, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,551 dated May 12, 2016, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,611 dated Jun. 16, 2016, 13 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,646 dated Mar. 10, 2016, 23 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,677 dated Aug. 2, 2016, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,692 dated Oct. 25, 2016, 33 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,743 dated Aug. 19, 2016, 11 pages. |
Non-Final Office Action from U.S. Appl. No. 14/268,619 dated Mar. 21, 2016, 7 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,747 dated Aug. 19, 2016, 21 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,868 dated Dec. 31, 2015, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/487,992 dated Dec. 3, 2015, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 14/859,328 dated Sep. 15, 2016, 39 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992 dated May 12, 2016, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,761 dated Jun. 10, 2015, 15 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,761 dated Sep. 28, 2015, 5 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,776 dated Feb. 13, 2015, 16 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,776 dated Mar. 24, 2015, 3 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,780 dated Aug. 13, 2015, 13 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,791 dated Mar. 10, 2015, 17 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,795 dated Jan. 14, 2016, 11 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,795 dated May 15, 2015, 8 pages. |
Notice of Allowance from U.S. Appl. No. 13/730,795 dated Sep. 17, 2015, 11 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,439 dated Mar. 14, 2016, 17 pages. |
Notice of Allowance from U.S. Appl. No. 14/145,607 dated Feb. 1, 2016, 28 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,619 dated Oct. 3, 2016, 65 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,619 dated Jul. 19, 2016, 5 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Apr. 18, 2016, 16 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Jul. 8, 2016, 4 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,686 dated Mar. 30, 2016, 38 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,733 dated Sep. 23, 2016, 8 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,641 dated Jun. 7, 2016, 13 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697 dated May 20, 2016, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,697 dated Sep. 1, 2016, 3 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992 dated Sep. 6, 2016, 26 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent cooperation Treaty Application No. PCT/US2015/042786, dated Oct. 16, 2015, 3 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion from counterpart Patent cooperation Treaty Application No. PCT/US2015/42783, dated Oct. 19, 2015, 13 pages. |
Requirement for Restriction/Election from U.S. Appl. No. 14/218,504 dated Aug. 16, 2016, 11 pages. |
Supplementary Partial European Search Report for Application No. 13867269, dated Aug. 3, 2016, 7 pages. |
T. Weigold et al., “The Zurich Trusted Information Channel-An Efficient Defence against Man-in-the-Middle and Malicious Software Attacks,” P. Lipp, A.R. Sadeghi, and K.M. Koch, eds., Proc. Trust Conf. (Trust 2008), LNCS 4968, Springer-Verlag, 2008, pp. 75-91. |
Transmittal of International Preliminary Report on Patentability from foreign counterpart PCT Patent Application No. PCT/US2014/031344 dated Oct. 1, 2015, 9 pages. |
Vassilev, A.T.; du Castel, B.; Ali, A.M., “Personal Brokerage of Web Service Access,” Security & Privacy, IEEE , vol. 5, No. 5, pp. 24-31, Sep.-Oct. 2007. |
Communication pursuant to Rules 161(2) and 162 EPC for EP Application No. 15826364.0, dated Mar. 7, 2017, 2 pages. |
Extended European Search Report for Application No. 14803988.6, dated Dec. 23, 2016, 10 pages. |
Extended European Search Report from European Patent Application No. 14770682.4, dated Jan. 17, 2017, 14 pages. |
Final Office Action from U.S. Appl. No. 14/066,273, dated Jan. 10, 2017, 24 pages. |
Final Office Action from U.S. Appl. No. 14/145,466, dated Apr. 13, 2017, 61 pages. |
Final Office Action from U.S. Appl. No. 14/218,611, dated Jan. 27, 2017, 14 pages. |
Final Office Action from U.S. Appl. No. 14/218,692, dated Feb. 28, 2017, 27 pages. |
Final Office Action from U.S. Appl. No. 14/218,743, dated Mar. 3, 2017, 67 pages. |
Final Office Action from U.S. Appl. No. 14/448,747, dated Feb. 13, 2017, 74 pages. |
Final Office Action from U.S. Appl. No. 14/859,328, dated Mar. 6, 2017, 26 pages. |
Julian J., et al., “Biometric Enabled Portable Trusted Computing Platform,” Trust Security and Privacy Communications (TRUSTCOM), 2011 IEEE 10th International Conference on Nov. 16, 2011, pp. 436-442, XP032086831, D0I:10.1109/TRUSTCOM.2011.56, ISBN: 978-1-4577-2135-9. |
Non-Final Office Action from U.S. Appl. No. 14/066,273, dated May 18, 2017, 46 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,504, dated Feb. 27, 2017, 12 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,575, dated May 4, 2017, 88 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,646, dated Mar. 27, 2017, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,677, dated Feb. 10, 2017, 18 pages. |
Non-final Office Action from U.S. Appl. No. 14/268,563, dated Apr. 21, 2017, 83 pages. |
Non-Final Office Action from U.S. Appl. No. 14/448,814, dated Apr. 5, 2017, 57 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Feb. 8, 2017, 56 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Mar. 1, 2017, 7 pages. |
Notice of Allowance from U.S. Appl. No. 14/268,733, dated Jan. 20, 2017, 62 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,747, dated Jun. 20, 2017, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Apr. 27, 2017, 52 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Mar. 23, 2017, 57 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Apr. 12, 2017, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Dec. 27, 2016, 28 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Jun. 14, 2017, 14 pages. |
Office Action from foreign counterpart Taiwan Patent Application No. 102148853, dated Feb. 17, 2017, 9 pages. |
Partial Supplementary European Search Report from European Patent Application No. 14770682.4, dated Oct. 14, 2016, 8 pages. |
TechTarget, What is network perimeter? Definition from Whatls.com downloaded from http://searchnetworking.techtarget.com/definition/network-perimeter on Apr. 14, 2017, 5 pages. |
Final Office Action from U.S. Appl. No. 14/066,273, dated Sep. 8, 2017, 30 pages. |
Final Office Action from U.S. Appl. No. 14/218,504, dated Sep. 12, 2017, 83 pages. |
Final Office Action from U.S. Appl. No. 14/218,575, dated Jul. 31, 2017, 42 pages. |
Final Office Action from U.S. Appl. No. 14/218,646, dated Sep. 27, 2017, 81 pages. |
Final Office Action from U.S. Appl. No. 14/218,677, dated Sep. 28, 2017, 16 pages. |
Final Office Action from U.S. Appl. No. 14/448,814 dated Oct. 6, 2017, 24 pages. |
First Office Action and Search Report from foreign counterpart China Patent Application No. 201380068869.3, dated Sep. 19, 2017, 15 pages. (translation available only for office action). |
First Office Action and Search Report from foreign counterpart China Patent Application No. 201480025959.9, dated Jul. 7, 2017, 10 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/042786, dated Feb. 9, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/042799, dated Feb. 9, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/042870, dated Feb. 9, 2017, 8 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/050348, dated Mar. 30, 2017, 7 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/42783, dated Feb. 9, 2017, 12 pages. |
International Preliminary Report on Patentability for Application No. PCT/US2015/42827, dated Feb. 9, 2017, 6 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,611, dated Sep. 2017, 76 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,692, dated Sep. 2017, 37 pages. |
Non-Final Office Action from U.S. Appl. No. 14/218,743, dated Aug. 2, 2017, 24 pages. |
Non-Final Office Action from U.S. Appl. No. 14/859,328, dated Jul. 14, 2017, 29 pages. |
Non-Final Office Action from U.S. Appl. No. 15/396,452 dated Oct. 13, 2017, 76 pages. |
Non-Final Office action from U.S. Appl. No. 15/595,460, dated Jul. 27, 2017, 9 pages. |
Notice of Allowance from U.S. Appl. No. 14/218,551, dated Aug. 16, 2017, 24 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Jun. 26, 2017, 14 pages. |
Notice of Allowance from U.S. Appl. No. 14/487,992, dated Jul. 17, 2017, 8 pages. |
Extended European Search Report for Application No. 15786487.7, dated Oct. 23, 2017, 8 pages. |
Extended European Search Report for Application No. 15786796.1, dated Nov. 33, 2017, 9 pages. |
Extended European Search Report for Application No. 15826660.1, dated Nov. 16, 2017, 9 pages. |
Extended European Search Report for Application No. 15827334.2, dated Nov. 17, 2017, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2017/045534, dated Nov. 27, 2017, 14 pages. |
Kim H.C., et al., “A Design of One-Time Password Mechanism Using Public Key Infrastructure,” Networked Computing and Advanced Information Management, 2008, NCM'08, 4th International Conference on IEEE, Sep. 2, 2008, pp. 18-24. |
Starnberger G., et al., “QR-TAN: Secure Mobile Transaction Authentication,” Availability, Reliability and Security, 2009, ARES'09, International Conference on IEEE, Mar. 16, 2009, pp. 578-585. |
LIYMATIA0 M.L.T., et al., “Time-based OTP authentication via secure tunnel (TOAST); A mobile TOTP scheme using TLS seed exchage and encrypted offline keystore,” 2014 4th IEEE International Conference on Information Science and Technology, IEEE, Apr. 26, 2014, pp. 225-229. |
Final Office Action from U.S. Appl. No. 14/268,563, dated Nov. 3, 2017, 46 pages. |
Notice of Allowance from U.S. Appl. No. 14/448,868, dated Nov. 17, 2017, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20150121068 A1 | Apr 2015 | US |