Embodiments of the present invention generally pertain to an apparatus for producing a solvent, such as vegetable oil, infused with the essence of another material, such as an herb. The infused oil produced by the contemplated apparatus may be used for medicinal purposes (internally or as a topical) or for human/animal consumption.
Infusing is the process of transferring chemical compounds, nutrients, or flavors from plant-based material into a solvent, such as water, oil, or alcohol, by allowing the plant-based material to remain suspended in a solvent for a predetermined time and at a predetermined temperature. The resultant liquid produced from the infusion process is often called an “infusion.” Infusing commonly connotes the use of plant-based matter that dissolve quickly or release their active ingredients easily into a solvent. Examples of plant-based matter include, but are not limited to, dried herbs, seeds, flowers, cannabis, or berries. Infusing solvents is a conventional practice in many fields including homeopathic medicine, the culinary arts, skincare, aromatherapy, beauty, alternative wellness, and beverage production.
As one of ordinary skill in the art will appreciate, the infusion process is often referred to as “steeping,” a method that involves heating a liquid to a desired temperature, such as its boiling point, before the introduction of the plant-based material. The infusing material soaks in the liquid for a predetermined period of time dependent on the purpose for which the infusion is being prepared and the desired infusion potency. The length of time for steeping also depends upon ingredients used in the infusion. Some infusing processes may require minutes while others require days or weeks. The infusion is often strained to remove the spent plant-based material. The infusion may be consumed immediately or be bottled and stored for future use. Infusions are used in their native state or as an ingredient in a recipe or formula.
Typically, a solvent is exposed to infusing material contained in metal, plastic, or paper steeping device having permeable walls. Such steeping devices are filled with material then placed in the solvent for infusing, wherein the permeable walls allow for the passage of solvent and, thus, exposure to the infusing material. Although well-suited for fluids of low viscosity, this prior art steeping technology does not allow for proper fusion of oil-based solvents. More specifically, oil-based solvents are of higher viscosity and, thus often cannot flow through permeable walls suited for water or water-based solvents. Accordingly, to facilitate infusion, oil-based infusion processes commonly must be performed at increased temperatures to reduce their viscosity. Adding heat is also often desirable as it reduces processing time, but increased heat has drawbacks related to safety concerns associated with increase burn exposure.
As alluded to above, infusing chambers are often associated with a heater element and agitator. Some prior art are operatively interconnected to a lid of the infusing chamber, wherein a portion of the agitator extends into the infusing chamber when the lid is closed. The agitator helps accelerate and control the infusing process, especially when heat is also applied. In operation, the user adds oil-based solvent and often plant-based material to the infusing chamber which is then exposed to high temperatures by the heater element. Concurrently, the agitator churns the liquid and infusing material, which helps circulate the infusing material into the oil-based solvent. The agitator may be configured to pulverize material to increase its surface area, which exposes more of the material to the solvent and, thus, increases processes effectivity. After the infusing process is complete, the user removes the lid with the interconnected agitator, which may expose the user to hot liquid as it inevitably drips therefrom.
Another drawback with traditional agitator is that filtering material particulate from the infused solvent is often rendered difficult because the agitator creates an increased number of small particulates. One of ordinary skill in the art will appreciate that small particulate matter results in an unsightly and undesirable cloudy or dirty end product. Users must strain heated infusion, which is a cleanup issue and increases the probability of burn injuries. Some agitators used in prior art devices operatively mount to the bottom of the infusing chamber, a structure similar to that commonly found in blenders. One drawback of these types of arrangements is that residual oil-based solvent and infusing material may adhere to agitator components and make it difficult to clean the infusing chamber and agitator. Such contamination may also adversely affect future infusion processes.
To address this in other drawbacks with infusing systems of the prior art, some embodiments of the present invention provide an apparatus and method for infusing a solvent with a contained infusing material to produce an infusion of desired character and potency.
It is one aspect of some embodiments of the present invention to provide an infusing apparatus that employs an infusing chamber with an agitator component located on an interior surface thereof. The contemplated apparatus also employs a power supply, a computing device, a permeable compartment for receipt of infusing material, heating element, and a gravity-based drain. The apparatus also employs a permeable container for holding infusion material and, thus, allows for infusion while limiting the pulverization of infusing material and dispersion of spent materials in the solvent. The agitator of this embodiment is designed to permit easy removal of the infusing chamber from the infusing apparatus, which facilitates cleaning. In some embodiments of the present invention, the agitator is magnetically driven and provides churning from the bottom of the infusing chamber, which also addresses the drawbacks discussed above associated with gear or shaft-driven agitators. It may be desired in some embodiments of the present invention to limit the rotational speed of the agitator component to be below 200 rotations per minute (RPM), while in other embodiments it may be desired for the agitator component to be between about 70 and 90 RPM. Rotational speed limitation helps prevent cavitation that may result in solvent aeration and a cloudy end-product. While it is preferred that the agitator spins at a rate that to prevent aeration, it will be appreciated agitator RPM may be selectively adjusted.
It is another aspect of some embodiments of the present invention to provide a permeable compartment for receiving infusing material. The permeable compartment allows for solvents to flow therethrough without significant material pulverization and dispersion into the infusion. That is, the permeable compartments prevent the infusing material from escaping into the infusing chamber.
It will be appreciated that some embodiments of the present invention may alternatively utilize prepackaged units configured to hold infusing material, e.g., plant-based material. The contemplated prepackaged unit may comprise a permeable pod, cup, or another container that allows solvent the past therethrough. The prepackaged units may be prefilled and sold ready-to-use or packaged by the user with a desired infusing material. In some embodiments, the prepackaged unit may be selectively openable such that a user may supplement the infusing material provided by a third party. In one example, prepackaged units are filled, sealed, and delivered to a state that allows the sale of cannabinoids. Here, the end-user or secondary in-state seller has the ability to selectively open the prepackaged unit and add material that is otherwise illegal in other states. As one of ordinary skill in the art will appreciate, the prepackaged units may alternatively employ a temporary closure that is discarded in lieu of a permanent disclosure created by a secondary provider after the original infusing material mixture is modified. The prepackaged units may be configured to fit within a permeable compartment that is mounted in the infusing chamber. Alternatively, the prepackaged unit may be supported by a mount provided in the infusing chamber. It will be appreciated that the prepackaged units as contemplated herein may be reusable or disposable and may be constructed of biodegradable material.
The permeable compartment may be removably affixed to an inner surface of the infusing chamber. One benefit of removably affixing a compartment is an increased ease of filling with the plant-based material, for example. An ancillary benefit is that such a compartment can be removed for easy cleaning. The permeable compartment may be selectively affixed to the infusion chamber by way of one or more permanent or temporary magnets. One of ordinary skill in the art will appreciate that a combination of magnetic and ferromagnetic materials may be used without departing from the scope of the invention.
Again, the viscosity oil-based solvents decrease as the solvent temperature increases. Thus, it is advantageous to elevate the temperature of oil-based solvents to increase the flow through the permeable surface provided by the container. As used herein, “oils” may include, but is not limited to butter, animal fat, or plant-based oils. The heating elements provided by some embodiments control and maintain elevated temperatures of the solvent but not in excess of 100° C. (212° F.). Limiting the temperature of the solvent to 100° C. (212° F.) greatly reduces the risk of injury from contact with heated solvents, particularly oil-based solvents. Additionally, certain solvents such as butter and Flaxseed oil have material properties having a boiling point slightly above 100° C. (212° F.). In maintaining the temperature of the solvent to 100° C. (212° F.) or less, boiling and aeration are avoided.
Limiting maximum infusing process temperature is identical when using some temperature-sensitive infusing materials. More specifically, some infusing materials or solvents have a temperature threshold at which their chemical structure changes. Examples of such chemical structure changes include, but are not limited to, denaturation, unwanted enzymatic reactions or, unwanted hydrolytic reactions. Setting the infusing process to a particular temperature reduces unwanted changes in chemical compound of those infusing materials and solvents. Still, other materials rely on exposure to heat of a predetermined temperature to effect a desired chemical change. More specifically, some materials, such as cannabinoids, benefit from a decarbonization or decarboxylation process wherein temperature is raised above about 220-240° F. Decarbonization or decarboxylation “cracks” the material to release the often-desired cannabidiol (CBD) and/or tetrahydrocannabinol (THC) compounds into the solvent.
Some embodiments also provide a gravity-fed drain device that allows for solvent delivery after the infusing process is complete. The gravity-fed drain omits the need to pick up, tip, or otherwise handle or manipulate the infusing chamber or infusing apparatus. The gravity-fed drain device also limits the risk of injury due to contact with solvent and make cleanup easier. Other advantages of the gravity-fed drain device include aeration mitigation that can occur when solvent is dispensed from the infusing chamber. As mentioned briefly above, aeration is undesirable as it induces cloudiness into the finished product, which makes it appear cloudy or gray. Furthermore, solvent aeration is undesirable as the entrained air may accelerate spoilage. Some problems associated with air entrainment include lipid oxidation and potential microorganism growth. As such, aeration prevention within the solvent improves shelf life, quality and makes infused solvents safer for human consumption.
It is one aspect of some embodiments the present invention to provide an infusing apparatus that employees modular and removable components, such as the agitator component, permeable infusion material compartment, infusing chamber, and/or the gravity-fed drain for ease of cleaning. Some embodiments of the present invention of the invention use materials including, but not limited to Polyethylene (PE), copolyesters, Acrylonitrile Butadiene Styrene (ABS), Melamine, Nylon, Polypropylene (PP), Polystyrene (PS), Silicone, Glass, Ceramic, Stainless Steel or any other materials appreciated to be appropriate for cleaning in a dishwasher appliance.
It is one aspect of some embodiments of the present invention to provide a pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; and a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip.
It is yet another aspect of some embodiments to provide an apparatus for infusing a solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; and a mount that selectively secures the pod to the infusing chamber.
It is still yet another aspect of some embodiments to provide a method of filling a pod with infusing material, comprising: providing a permeable member having an open end; inserting a cage within the permeable member; folding a top edge of the permeable member over an upper edge of the cage; and inserting a clip into the cage such that a lower edge of the clip is captured by the at least one protrusion, and wherein a portion of the permeable member is captured by the clip and the cage.
Further aspects of the present invention are provided in the following embodiments:
A pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip; and wherein the permeable member is a flexible bag made of mesh.
A pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip; and wherein the cage is comprised of first portion and a second portion.
A pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip; wherein the cage is comprised of first portion and a second portion; and wherein the first portion and the second portion are separated by a non-permeable wall.
A pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip; and further comprising a cap with a portion configured to be inserted within the clip.
A pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip; further comprising a cap with a portion configured to be inserted within the clip; and wherein the cap is integrated into the clip, the cap being configured to move from an open to a closed position.
A pod for receiving an infusing material, comprising: a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable member in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having an upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion to position a portion of the open end of the permeable member between the cage and the clip; and wherein the cap employs a removable membrane.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; and wherein the permeable member is a flexible bag made of mesh.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; wherein the permeable member is a flexible bag made of mesh; and wherein the mount comprises a ring with an internal diameter of a dimension greater than a maximum outer dimension of the permeable member, and a greater than maximum outer dimension of the cage, and less than a maximum outer dimension of the clip.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; wherein the permeable member is a flexible bag made of mesh; and wherein the mount is selectively interconnected to the infusing chamber.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; and wherein the mount is interconnected to an internal side wall of the infusing chamber, and further comprising an agitator positioned within the infusing chamber and operatively interconnect at a center point of a bottom surface of the infusing chamber.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; and wherein the cap is integrated into the clip, the cap being configured to move from an open to a closed position.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; and wherein the cap employs a removable membrane.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; and wherein the cage is comprised of first portion and a second portion.
A solvent, comprising: a housing having an infusing chamber adapted to receive the solvent; a heating element associated with the infusing chamber; a drain associated with the infusing chamber; a removable pod interconnected to an inner surface of the infusing chamber, the pod adapted to a permeable member having an open end; a cage configured to fit within the permeable member and generally maintain the permeable pod in an expanded configuration, the cage having a plurality of openings and an upper portion with at least one inwardly-extending protrusion; a clip having a upper surface and a lower surface configured to fit within the upper portion of the cage, wherein the lower surface engages the at least one protrusion with a portion of the open end of the permeable member positioned therebetween; a cap with a portion configured to be inserted within the clip to close the permeable member; a mount that selectively secures the pod to the infusing chamber; wherein the cage is comprised of first portion and a second portion; and wherein the first portion and the second portion are separated by a non-permeable wall.
A method of filling a pod with infusing material, comprising: providing a permeable member having an open end; inserting a cage within the permeable member; folding a top edge of the permeable member over an upper edge of the cage; and inserting a clip into the cage such that a lower edge of the clip is captured by the at least one protrusion, wherein a portion of the permeable member is captured by the clip and the cage; and wherein the pod further comprises a cap with a portion configured to be inserted within the clip to seal the permeable member.
A method of filling a pod with infusing material, comprising: providing a permeable member having an open end; inserting a cage within the permeable member; folding a top edge of the permeable member over an upper edge of the cage; and inserting a clip into the cage such that a lower edge of the clip is captured by the at least one protrusion, wherein a portion of the permeable member is captured by the clip and the cage; and wherein the cage is comprised of a first portion and a second portion, and wherein the first portion is filled with a first infusing material at one geographic location and the second portion is filled with a second infusing material at a second geographic location.
A method of filling a pod with infusing material, comprising: providing a permeable member having an open end; inserting a cage within the permeable member; folding a top edge of the permeable member over an upper edge of the cage; and inserting a clip into the cage such that a lower edge of the clip is captured by the at least one protrusion, wherein a portion of the permeable member is captured by the clip and the cage; and wherein the cage is comprised of a first portion and a second portion, wherein the first portion is filled with a first infusing material at one geographic location and the second portion is filled with a second infusing material at a second geographic location; and wherein the second infusing material is illegal in the first geographic location.
The Summary of the Invention is neither intended nor should it be construed as being representative of the full extent and scope of the present invention. That is, these and other aspects and advantages will be apparent from the disclosure of the invention(s) described herein. Further, the above-described embodiments, aspects, objectives, and configurations are neither complete nor exhaustive. As will be appreciated, other embodiments of the invention are possible using, alone or in combination, one or more of the features set forth above or described below. Moreover, references made herein to “the present invention” or aspects thereof should be understood to mean some embodiments of the present invention and should not necessarily be construed as limiting all embodiments to a particular description. The present invention is set forth in various levels of detail in the Summary of the Invention as well as in the attached drawings and the Detailed Description of the Invention and no limitation as to the scope of the present invention is intended by either the inclusion or non-inclusion of elements, components, etc. in this Summary of the Invention.
Additional aspects of the present invention will become more readily apparent from the Detailed Description, particularly when taken together with the drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention and together with the general description of the invention given above and the detailed description of the drawings given below, serve to explain the principles of these inventions.
The following component list and associated numbering found in the drawings is provided to assist in the understanding of one embodiment of the present invention:
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted. It should be understood, of course, that the invention is not necessarily limited to the particular embodiments illustrated herein.
The agitator 124 may be magnetically actuated and spun using a rotating magnetic field. In some embodiments, the agitator 124 rests on the bottom surface 132 of the infusing chamber 120 and a rotating magnetic field component 136 is located on an external bottom side of the infusing chamber 120. The agitator 124 is configured to mix and induce a rotational solvent flow within the infusing chamber without substantial pulverization of the infusing material. The agitator 124 may be coated with a chemically-inert coding, such as a polymer or ceramic material. The rotating magnet system used to impart rotation of the agitator of one embodiment of skill of the art may be similar to those disclosed in U.S. Pat. No. 2,350,534 to Rosinger, which is incorporated by reference herein. Alternatively, the agitator 124 may be spun using a stationary electromagnet with a rotating electromagnetic field as disclosed in U.S. Pat. No. 1,242,493 to Stringham, which is incorporated by reference in its entirety herein.
In one embodiment, the gravity-fed drain 128 is mechanically actuated by actuation mechanism 200 comprised of a button 204 connected to the gravity-fed drain 128 through a series of mechanical linkages. The button 204 extends through an outer surface 208 of the infusing apparatus 100. The bottom of the button 204 is attached to a proximal end 212 of a linkage 216, which is directed toward a pivot arm 220. A distal end 232 of the pivot arm 220 is located opposite a pivot point 236 disposed between a proximal end 228 and the distal end 232 of the pivot arm 220. The pivot point 236 is constrained by a rod 240 that is interconnected to an internal surface 244 of the infusing apparatus 100. When the proximal end 228 of the pivot arm 220 traverses in a first direction, the distal end 232 of the pivot arm 220 traverses in a second direction. When the distal end 232 of the pivot arm 220, which is connected to the gravity-fed drain 128, traverses in the second direction, the gravity-fed drain 128 moves to an open state.
More specifically, the tube provided by some embodiments of the present invention is selectively closed by the closure mechanism 320 shown in
The permeable container 420 may have a cap 435. In addition, the permeable container 420 may be removably affixed to the interior of the infusing chamber 120 by a first magnetic element 440 interconnected to the exterior of the permeable container. A second magnetic element 444 interconnected to the exterior the infusing chamber 120. It will be appreciated that selective interconnection is achieved when the first magnetic element 440 and the second magnetic element 444 are brought in proximity to each other. It will also be appreciated that selective magnetic interconnection maybe achieved with a permanent or an electromagnets.
The bag clip 516 interconnects the bag 504 to the cage 508, wherein an upper edge 518 of the bag 504 is positioned between a lower ridge 520 of the bag clip 516 and at least one protrusion 524 that extends from the upper, inner surface 528 of the cage. One of ordinary skill in the art will appreciate that other methods of interconnecting the bag clip 516, bag 504, and/or cage 508 may be employed without departing from the scope of the invention. A cap 532, which may have a ring 536 at its lower surface, is used to close the pod. The cage 508, bag clip 516, and cap 532 of one embodiment of the present invention are reusable.
The pod 502 is selectively inserted and maintained by a mount 540 selectively interconnected to an inside surface of the infusing chamber as in the embodiments described above. The mount 540 may be selectively interconnected to the inner surface of the infusing chamber with a magnet housing as shown in
The cage shown in
The cage of one embodiment possesses more than one compartment adapted to receive infusing material of differing forms, characteristics, etc. In this example, one or more compartments can be filled by different co-packers perhaps at different times. Filling of a pod contemplated by this embodiment is performed by a first co-packer that fills a first compartment with a first infusing material, i.e., an herb blend, and the second compartment is filled by a second co-packer with a second infusing material, i.e., cannabis. The cap used in this pod may comprise two sealable portions. Alternatively, the first co-packer seals the pod with a cap that is later removed and perhaps destroyed by the second co-packer who adds a final cap, which may only be removed upon destruction thereof. The cap of some embodiments can only be removed after installation by destroying a portion thereof, which may serve as a safety feature. That is, the caps of some embodiments can only be removed after installation by destroying a portion thereof, which serves as a safety feature.
With specific reference to
Components of the pod may be injection molded or made be additive manufacturing processes. One of ordinary skill in the art will appreciate that the pod may be configured in size and shape to be used in many infusing apparatus, not just the apparatus described herein. The pod does not absorb more than a negligible amount of solvent. However, in one embodiment, portions of the cage can be made of infusing material that will at least partially dissolve into particulates captured by the bag during the infusing process. The pod of one embodiment is temperature resistant up to 250° F. when immersed in oil without degradation for at least about 10 hours.
The bag of one embodiment is made of biodegradable polylactic acid (PLA) mesh. For example, PLA mesh manufactured by Yamanaka Industry Co., Ltd., commonly known as Tearoad® Soilon®. Such material is capable of remaining in a heated vegetable oil bath for 10 hours, which make it ideal for the contemplated applications. The mesh may also be made of food grade stainless steel.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and alterations of those embodiments will occur to those skilled in the art. It is to be expressly understood that such modifications and alterations are within the scope and spirit of the present invention, as set forth in the following claims. Further, it is to be understood that the invention(s) described herein is not limited in its application to the details of construction and the arrangement of components set forth in the preceding description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application claims the benefit of U.S. Patent Application Ser. No. 62/587,011, filed Nov. 16, 2017, the entirety of which is incorporated by reference herein. This application is also related to U.S. patent application Ser. No. 15/428,765, now U.S. Pat. No. 9,795,246, which claims the benefit of U.S. Provisional Patent Application No. 62/401,369, filed Sep. 29, 2016, the entirety of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62587011 | Nov 2017 | US |