Not Applicable
Not Applicable
1. Field of Invention
This invention relates to tropical cyclones, and, more specifically, to inhibiting the formation of tropical cyclones.
2. Prior Art
An early attempt to mitigate the destructive forces of hurricanes took place between 1962 and 1983 with a series of experiments known as project STORMFURY, carried out jointly by the U.S. Navy and the U.S. Weather Bureau, as it was then called. During these experiments, crystals of silver iodide were dropped into hurricane rainbands. It was theorized that the crystals would freeze the supercooled water in the rainbands, causing them to grow and weaken the eye wall. STORMFURY failed because hurricanes contained insufficient supercooled water, and the natural variability of hurricanes made it too difficult to interpret the experimental results.
Other approaches involving cloud seeding are disclosed in U.S. Pat. Nos. 6,315,213 to Cordani (2001), 5,357,865 to Mather (1994), 5,174,498 to Popovitz-Biro, et al. (1992), 5,441,200 to Rovella, II (1995), 4,600,147 to Fukuta, et al. (1986) and 4,096,005 to Slusher (1978). For example, Cordani's patent utilizes a super-absorbent polymer to cause a large absorption of water, resulting in a gel-like substance that precipitates to the surface and lessens storm velocities. The patent to Rovella discloses combining the water vapor in the storm with sodium tartrate powder or, alternatively, cupric sulphate to form heavier drops that disrupt the eye wall through centrifugal force. These chemical approaches all have the potential to cause serious environmental harm, and since the cyclone has already formed and contains a tremendous amount of energy, the volume of chemicals required would undoubtedly be substantial.
U.S. Pat. No. 7,798,419 to Solc (2010) discloses a wind-driven on-site pump that pumps into the eye wall a large volume (100's of m3sec−1) of seawater, which is carried aloft up to 10 to 15 km. The centrifugal force of the ascending water is said to impede the circular flow of the cyclone, inhibiting its further development. A disadvantage of this approach is the difficulty of injecting a sufficient volume of seawater into the eye wall to significantly affect the tremendous energy already contained in the cyclone. Moreover, constructing a water-injecting device of adequate capacity that could also withstand the huge sea and wind forces in and around an existing tropical cyclone would be challenging.
U.S. Pat. No. 7,520,237 to Zhekov (2009) utilizes a wind-driven on-site pump, mounted on a securely moored and buoyant platform, to pump a large volume of on-site seawater into the eye wall, which is carried aloft, thereby reducing the wind circulation velocity near the eye wall. A water pipe for sucking up the water is to extend to a depth of 450 to 500 feet, where water temperature is around 11 degrees C. This device has several apparent disadvantages, compared with the current invention. There is the cost for the platform, the mooring system, the wind turbine and its structure, the vertical pipe that extends downward 450 to 500 feet into the ocean and the associated electrical and mechanical systems. Moreover, the components and structures need to be fabricated to withstand the tremendous forces associated with hurricanes and high seas. Zhekov also describes how his structure can create bubbles to lower sea surface temperatures. Two principles operate here: the rising of the air bubbles physically push the ambient seawater upward; and through heat transfer, the cooled air within the bubbles absorbs heat from the water in the upper regions as the bubbles ascend, thereby cooling it. A major disadvantage with this method is that the compressors producing the bubbles would have to overcome deep sea pressures to function effectively. There is also a problem of scale: a large number of units would be necessary to achieve sufficient cooling, and there could be a problem of supplying the compressors with sufficient power.
U.S. Pat. No. 8,161,757 to Rosen (2012) describes using a navigable vessel with a plurality of artificial snow-making devices to spread artificial snow in the path of an existing tropical cyclone. A major disadvantage with this technique is the huge amount of snow that would be required to significantly reduce the intensity of an existing cyclone.
U.S. Patent Application 2002/0008155 to Uram (2002) discloses a method and system for first detecting the onset of a hurricane region and then rushing one or more apparatuses to the area to cool the surface waters, thereby inhibiting or weakening the hurricane's formation. A retired submarine is the preferred embodiment for pumping cooler waters from below the surface onto the surface waters. In a later U.S. Patent Application 20050133612 to Uram, a method is disclosed for rushing one or more submarine pumping systems directly below a tropical storm in its infancy and to pump cooler water onto or near the surface waters beneath it to deprive the storm of the energy it requires for further strengthening. This invention requires prior detection of a tropical cyclone, the rapid deployment of the pumping units and a pumping capability sufficient to cool the waters in the storm's path.
U.S. Pat. No. 7,832,657 to Kitamura (2010) discloses a device comprising a plurality of elongated, substantially rigid pipes, each with a suction port and an injection port, a pump to suck cold water from the suction port out onto an aim region below the sea surface; an elongated, horizontally oriented platform, that is submerged, with the plurality of pipes secured to the underwater platform. The pipes are pivotable to minimize water resistance when the platform is being relocated. A retired submarine is the preferred embodiment for the pumping function.
Another technique for cooling surface waters with cool subsurface waters is described in U.S. Pat. No. 8,148,840 to Gradle (2012). His apparatus is operated from within the eye of a hurricane and travels along the anticipated track of the storm, staying within the eye. The apparatus comprises a wind turbine mounted on a platform that pumps water with a temperature at least 20 degrees C. cooler than the surface water temperature into a plurality of pipes. These pipes then inject the water into an elongate tube through which is passing an air stream, and the atomized air-water mixture is injected into the hurricane eye to de-energize the storm. One significant disadvantage with this method is that such cold water would normally be found only at considerable depth, and moving a platform along the surface at a speed sufficient to stay within the hurricane eye and with pipes extending downward to the required depth could impose a tremendous force at the juncture of the pipes and the platform. To deal with this, Gradle mounts one or more impellers on the shaft to reduce the strain, but keeping the impellers synchronized while driven by a variable power source, such as a wind turbine, could be challenging.
In Super Freakonomics (S D Levitt and Dubner S J, William Morrow & Co., 2009), the authors report on inventors who are proposing a method for cooling surface seawaters in which a multiplicity of rings is floated on the ocean surface, each with a flexible tube extending downward into the cooler regions of the ocean. The rings extend above the surface so that when they are overtopped by waves, seawater within the rings is momentarily above sea level. The resulting hydraulic pressure will push the warmer surface water downward through the bottom of the flexible tubes, forcing cooler water upward as the water is ejected. The inventors claim that the devices can be very inexpensive, but they acknowledge that towing a large number of them to the preferred locations and mooring them would be costly. Barber, in U.S. Pat. No. 7,536,967 (2009) discloses a similar method, except that surface waters are forcibly injected into a region with cooler waters, forcing the cooler waters to rise to the surface.
3. Objects and Advantages
In most years, hurricanes cause major property damage in the United States. Katrina alone caused estimated damages of $85 billion in 2005. Blake et al. report estimates for the thirty costliest hurricanes to hit the United States since 1900.1 Measured in contemporaneous dollars, damages total damages were estimated at $312 billion, or $408 billion in 2010 dollars. If each of those same hurricanes had struck the U.S. in the same way but with our current population distribution and current property exposure, the estimated total damages would have soared to slightly over $1 trillion. In the 112 years since 1900, the average annual loss from just these 30 hurricanes exceeds $9 billion per year. This estimate for hurricane Katrina, as well as the other statistics in this paragraph are from “The Deadliest, Costliest, and most Intense United States Tropical Cyclones from 1851 to 2006 (and other Frequently Requested Hurricane Facts),” Eric S. Blake, Rappaport, Edward N., and Landsea, National Hurricane Center, Miami, FL, updated 15 Apr. 2007.
Hurricanes also cause substantial loss of life. While over 8,000 deaths were attributed to the 1900 Galveston hurricane, Katrina caused at least 1,500 deaths in 2005, even with the substantial progress over the past several decades in advanced warnings, emergency management plans, improved evacuation capabilities and more wind-resistant structures.
It has been suggested that all Atlantic tropical cyclones, and even some tropical cyclones forming in the Pacific, originated as tropical waves from Africa's West Equatorial coast, where they derive their power from warm sea-surface temperatures (SSTs) [http://www.physorg.com/news6753.html]. That is why the hurricane season begins in summer, after hot winds have warmed the coastal surface waters to above 80° F. Since water temperatures in the thermoclines below the sea surface are significantly cooler, a logical strategy for inhibiting tropical cyclone formation, as suggested by the prior art, is to bring cooler waters to the surface, thereby depriving the tropical waves of the heat energy they require to evolve into large, powerful and destructive storms. This potential to materially inhibit the formation of tropical cyclones by disrupting their formation off the West Coast of Africa is substantial.
The basic invention is an apparatus that is suspended from the ocean surface and that pumps cooler water from below the ocean surface out onto the near-ocean surface. The pump is driven by wave energy and comprises two one-way valves, one fixed and one movable. By preventing SSTs from reaching the critical temperature of 80° F., the development of tropical cyclones can be inhibited.
Another embodiment of this invention enables the apparatus to navigate to a pre-determined location. Yet another embodiment enables it to submerge to some pre-determined depth during heavy seas, during periods of calm, or when the apparatus is in the path of an approaching ship, and to re-emerge after these conditions no longer obtain. Still another embodiment enables the apparatus to operate as one member of a fleet of similar apparatuses, each maintaining its distance from the others in order to achieve a relatively uniform distribution of the cooler waters.
The objects and advantages of the apparatus, as a result of inhibiting the formation of tropical cyclones, include major reductions in:
(a) loss of life from wind, storm surge, flooding and evacuation accidents;
(b) economic losses from wind and water damage;
(c) costs and inconvenience attributable to evacuations;
(d) loss of electrical power;
(e) disruption to national, regional and local product supply chains, including disruption of energy supplies;
(f) loss of use of property;
(g) disruption of the daily lives of residents in at-risk areas;
(h) resources necessary to respond to and recover from tropical cyclones;
(i) cost of hurricane insurance premiums, including flood insurance; and
(j) anxiety among at-risk populations from an approaching storm.
The present invention is a method and an apparatus for inhibiting the formation of tropical cyclones, comprising an elongated rigid tube open at both ends, a flotation device at the top end, a weighting device at the bottom end; and a wave-driven device for pumping cooler seawater from the bottom end, through the tube and out onto the near-ocean surface. Additional major embodiments include a means for propelling and steering the apparatus and a means for submerging the apparatus and causing it to re-emerge.
In the drawings, closely related elements may be designated by the same number but with a different alphabetic suffixes.
A preferred embodiment of the current invention is shown in
A large plurality of apparatuses operates together as a fleet of apparatuses, with a master apparatus exercising remote control over other apparatuses in its fleet. One or more fleets operate in region(s) of the ocean whose surface waters are to be cooled.
As shown in
To add directional stability to the apparatus, a wedge-shaped, rigid plastic fairing (106) is attached with PVC fittings to the front of the rigid tube, as shown in
The length of the rigid tube is extended by means of a relatively inexpensive, flexible tube extender (132). The overall length of the tube extender is sufficient to reach seawater with a temperature in summer months at least several degrees Fahrenheit cooler than the sea surface temperature (SST) during warmer months. These cooler temperatures are typically found within the lower region of a thermocline. The specific overall length of the tube is to be determined by the marine environments in which the apparatus is expected to operate.
The construction of the tube extender is shown in
As shown in the cross-sectional view in
Between the rigid tube and the tube extender is a tubular length of expandable or elasticized fabric (131) to absorb shock should the apparatus experience a shock or suddenly change its vertical speed and/or direction. At its upper end, the elasticized fabric is held in place with tube extender clamps (134) constructed from two straps of webbing, as shown in
Upper and lower steering vane panel sets (120a and 120b) are mounted in plastic pipe couplers (130a and 130b) that can connect sections of the rigid tube (100). Steering vane panel sets also can be installed on the tube extender as needed; the couplers are attached to the tube extender by means of tube extender clamps (134), as shown in
In the preferred embodiment, the tube weighting device (104a) is a rugged, rigid, circular tube surrounding and attached to the lower outside perimeter of the rigid tube and filled with sand for ballast. One or more storage batteries (116) may be incorporated within the weighting device.
In the preferred embodiment, the flotation device (102) is a rugged, rigid, round tube that surrounds and is attached to the upper outside perimeter of the rigid tube (100). The buoyancy of the entire apparatus, inclusive of other embodiments, is controlled by a water-ballast or submersion system (108) that is described later. There is also an electronics package (112) comprising, in the preferred embodiment, a global positioning system (GPS), a controller for providing the means to control current from at least one solar cell (114) to at least one long-life, deep-cycle storage battery (116), an antenna and receiver for receiving electronic signals, a transmitter for communicating information to other apparatuses in the fleet, a turbulence detector, temperature sensors, a mercury switch, a tilt meter; and, for controlling the submersion (108) and steering vane panel sets (120a, 120b and 120c), an electronic depth gauge, a processor, solenoids and an air pump. A transmitter on the master apparatus is capable of transmitting information to onshore receivers. In the preferred embodiment, there is also a package containing a plurality of solar cells (114) mounted on the top of the rigid tube.
PUMPING. In the preferred embodiment shown in
a shows the pumping device, or pump assembly, in greater detail. In the preferred embodiment, the movable flap valve (124) consists of a flap valve disk (140) with a diameter slightly less than the inner diameter of the rigid tube within which it operates. The disk contains four apertures (not shown), one in each quadrant of the disk. Overlapping each aperture on all sides is a flat flap (146) that is fabricated from an elastomeric material and that cover the apertures. Each flap is attached to the disk with a stainless steel hinge (148) along one straight side. On the top of each flap, there is attached a rigid plate (144) that substantially conforms to the outer edges of the aperture. In the preferred embodiment, it is slightly smaller than the aperture and centered within its non-hinged sides. The purpose of this plate is to facilitate a seal between the disk surface and the flap. An elastomeric annulus (142), whose outer circumference edge is shaped like a squeegee blade, is fabricated from a durable material that is affixed to the outer rim of the disk. It has a diameter slightly greater than the inside diameter of the rigid tube, thereby providing a seal between the inner surface of the rigid tube and the outer circumference of the disk. When the disk changes direction as it slides within the tube, friction causes the outer edge of the annulus to flip direction and to point in the opposite direction in which the disk is moving, similar to the action of a windshield wiper blade upon a windshield.
In the center of the movable valve is a bushing (150) through which the shaft (152) of the pump assembly oscillates. The inner wall of the bushing is fabricated from a non-corrosive, low-friction and durable material, such as PTFE in the preferred embodiment. The drive disk (128) of the assembly is connected to the movable valve by means of rigid, “T”-shaped connecting members (118) that are attached to the disk between its apertures, and are connected to the outer drive disk through vertical slots (156) in the rigid tube. These connecting members are preferably made from stainless steel, and the valve disk (140) and drive disk are preferably fabricated from fiberglass.
It is desirable that the vertical slots be as narrow as possible to minimize water leakage through them during pumping.
The fixed flap valve (122) at the top of the pump assembly is substantially the same as the movable flap valve, except that instead of being connected to an outer drive disk, it is fastened to the inner surface of the rigid tube and sealed with a marine sealant. A PVC cap (160), affixed to the center of the fixed valve disk, caps the top of the pump shaft (152) and secures the shaft in place. The support framework (126) at the bottom of the pump assembly comprises a hub (166) and a plurality of spokes (162), each of which is attached at its outer end to a bracket (164) that is mounted onto the rigid tube. The preferred material for the support framework is PVC, except for the stainless steel brackets.
PROPULSION. The preferred embodiment includes a propulsion and steering system that is comprised of a device for: (a) propelling the apparatus through the water, (b) controlling the direction in which the apparatus moves, (c) imparting directional stability to its motion through the water, (d) receiving directional instructions from an on-board source and/or from a remote location, and (e) translating the directional instructions into physical action.
The device for propelling the apparatus through the water in the preferred embodiment comprises three steering vane panel sets mounted on pipe couplers (130a, 130b and 130c), with the upper steering vane panel set (120a) mounted near the top of the rigid tube, the lower steering vane panel set (120b) mounted near the bottom of the rigid tube, as shown in
a shows a back and front view of a single steering vane panel assembly in the preferred embodiment. Each set comprises an upper steering vane panel (188) and a lower steering vane panel (190), with each steering vane panel pivoting independently on a butt-type hinge (186). The steering vane panels share a common hinge shaft (187) that rotates within the hinge knuckles (204). The vertical stop (182) is fabricated from fiberglass. Each steering vane panel assembly is mounted onto the pipe coupler by means of a PVC flange (196) and a PVC flange backer plate (198) and fastened with stainless steel mounting hardware. The steering vane panels are on the front side of each steering vane panel assembly, where the front is determined by the direction of motion of the apparatus.
Details of the construction of a steering vane panel assembly in the preferred embodiment are shown in the side view in
Referring to
b shows the preferred embodiment assembly for controlling the rotation of the steering vane panels (188 and 190) about the hinge shaft (187) and away from the vertical stop (182). This assembly comprises a braided marine nylon line or rope (212), one end of which is spliced onto a ring (216) that is fabricated as part of a weighted container (218). The container is constructed of a rugged polymer, filled with sand and topped with seawater, and its total weight should be adjusted to reliably prevent any slack in the rope when the steering vane panels are rotating outward.
To prevent the weight from swinging and damaging the vertical stop, it operates within a travel-guide tube (220) constructed from PVC pipe that is affixed to the steering vane panel with PVC clamps (222). The other end of the rope passes through the smooth stainless steel fairleads (214a and 214b) mounted in either side of the vertical stop (182), and through a hole in the steering vane panel. The fairleads minimize abrasion of the marine rope. Finally, a first nylon stop (224a) is clamped to the upper end of the rope and a second nylon stop (224b) is clamped to the rope a short distance above the weighted container ring (216). The second nylon stop is disposed such that the rotation of the steering vane panel is limited to approximately 45° from the vertical stop when wide open. (To the extent that the prevailing orientation of the apparatus is not vertical—say, due to strong currents affecting only part of the apparatus—the optimal angle of the steering vane panels with respect to the vertical stop may deviate from 45°.) Each steering vane panel is fitted with a similar assembly for controlling panel rotation (see
STEERING.
The means for receiving directional instructions from an on-board source is the global positioning system (GPS) that is included with the apparatus's electronics package (112). The means for receiving directional instructions from a remote source or location is an antenna-equipped receiver, which is also included in the electronics package.
The means for translating the directional instructions into physical action is an electrical or printed circuit board (PCB) that includes a processor and memory with encoded instructions. In “local” mode, software compares the desired position of the apparatus with its actual position, as determined by the onboard GPS. The encoded instructions determine when the PCB is to signal the rope-clamp solenoid(s) (226) to engage and for how long. In the “remote” mode, the directional instructions are received by the PCB from a remote location and similarly are translated into signals sent to the rope-clamp solenoids.
The rope-clamp solenoid is normally energized when the apparatus is ascending; i.e., when the movable valve (124) is on its downstroke. This is facilitated by a mercury switch (246) in the preferred embodiment. This switch is attached to the external wall of the vacuum tank (252) of the water-ballast system (108 in
SUBMERSION. In the preferred embodiment, the apparatus has the capability to submerge below the surface and to re-emerge when conditions are favorable. This system is mounted on the rigid tube (100) on its trailing side; i.e., orthogonal to the axis of the steering vane panel sets and at the rear of the apparatus when it is moving forward. The main components of the submersion system are shown in
If air needs to be replenished to the system, a second one-way solenoid air valve (268) permits fresh air to enter the vacuum tank via an air tube (260) that extends to the surface. This air tube runs upward along the outside of the submersion system tanks, over to the rigid tube (100), and finally up the outside of the rigid tube to the flotation device on the surface, forming an inverted “U” as it curves around the top of the flotation device with its end facing downward. A ball-check valve at the end of this air tube inhibits water from entering the tube. In the preferred embodiment, the electronic components (262, 264 and 268) are housed inside a waterproof compartment between the pressurized air tank and the vacuum tank. An electronic depth gauge, included in the electronics package (112 in
In the preferred embodiment, when an oncoming vessel approaches the apparatus, the apparatus submerges. To implement this feature, all vessels plying waters populated by the apparatus would have a legal requirement to transmit a continuous directional signal that would be received by any functioning apparatus in the vessel's path. A transmitter range of a mile would likely be sufficient, except for unusually fast vessels. When the antenna and receiver aboard the apparatus receive the appropriate transmitted signal, the PCB is signaled to initiate the submersion process.
In the preferred embodiment, the apparatus also possesses a means for detecting heavy sea conditions. A simple bell-shaped motion detector (310), such as that shown in
When the apparatus determines that conditions might be favorable to return to the surface, it begins its ascent. As it approaches the surface, if the clapper contacts the casting a predetermined number of times within a given time period, indicating turbulence, the apparatus re-submerges. The frequency with which attempts are made to resurface would depend upon the average duration of heavy sea conditions in the local area and the electrical charge status of the battery, as the system is reliant on battery power to resurface. In a preferred embodiment, the decision on when to submerge and re-emerge due to heavy seas would be based on satellite weather information, with appropriate instructions sent electronically to a receiver onboard the apparatus and included in the electronics package.
In a further embodiment, an emergency-ascent capsule (320 in
The present invention deprives tropical waves of the heat energy they require to develop into tropical cyclones. The invention is a wave-driven apparatus that pumps cooler water from below the ocean surface and redistributes it onto or near the ocean surface. As already noted, to inhibit the formation of tropical cyclones, the surface waters must be kept below 80° F. The preferred embodiment is the apparatus shown in
PUMPING. As the apparatus rides the waves, a pump within the rigid tube forces water out through openings (168) near the top of the tube, at the same time sucking water in through the bottom of the tube extender. The main components of this pump are a fixed flap valve (122), a movable flap valve (124) and a support framework (126) that anchors a shaft (152), along which the movable valve slides. The movable valve is attached to a flat outer drive disk (128) by rigid connecting members (118) that project through slots (156) fabricated into the rigid tube.
In deep water, the vertical motion of water due to surface action drops off rapidly with depth, so that both the flat outer drive disk and the movable valve to which it is attached largely maintain their vertical position relative to the ocean floor while the pump is operating. When the apparatus is riding waves on the ocean surface, the fixed valve oscillates with respect to the movable valve, pumping seawater upward through the tube and tube extender.
As the apparatus comes off of a wave crest and begins its descent, ambient water pressure acting on the lower face of the flat outer drive disk (128) keeps the movable valve (124) substantially in place, while the tube (100) slides downward and water pressure above the movable valve keeps its flaps closed. As water inside the tube above the movable valve is pushed upward, the fixed valve (122) is forced open and water spills out onto the near-ocean surface through the openings (168) near the top of the tube. At the same time, reduced water pressure below the movable valve causes water to be sucked in through the bottom of the tube extender.
As the apparatus ascends toward the crest of the next wave, water pressure acting on the upper surface of the flat outer drive disk creates a pressure drop in the volume of water between the fixed and movable valves as the tube slides away from the movable valve. This pressure drop causes the flaps of the fixed flap valve to close and the flaps of the movable flap valve to open. Pressure is equalized as water flows up through the movable valve. When the apparatus reaches the wave crest, the cycle begins again.
PROPULSION. In the preferred embodiment, the apparatus has the ability to navigate through the water in a specified direction by means of a propulsion and steering system. Given the tendency of the apparatus to be moved by the action of wind, waves and currents, this system can—within limits—maintain the apparatus in a globally fixed position. The navigation system also enables the apparatus to travel to another specified location, and/or to maintain a given distance between itself and other like apparatuses so that a relatively uniform distribution of cooler water onto the sea surface can be achieved.
Referring to
Given the upper steering vane panel's angle of attack as it ascends, water impinging on the panel's upper surface imparts a horizontal component to the motion of the steering vane panel, and therefore to the apparatus. The operation is similar when the apparatus is descending through the water, except that the lower steering vane panel is rotated outward, while the water flow presses the upper steering vane panel against the vertical stop.
Another substantially identical steering vane panel assembly is installed on the opposite side of the pipe coupler (130a in
The direction of motion of the apparatus will be approximately at the same angle and in the same direction as the opened steering vane panels, but the length of the flare and the slope of the bevel can affect that direction. The horizontal progress of the apparatus through the water can be optimized by adjusting the length of the marine rope (212) between the two nylon stops (224a and 224b).
Steering the apparatus is accomplished by controlling the outward rotation of the lower steering vane panels mounted on the front of each steering vane panel set. A lower steering vane panel is prevented from rotating outward by energizing the rope-clamp solenoid (226 in
When the apparatus is to be turned in a clockwise direction, as viewed from above, the rope-clamp solenoid on the lower right steering vane panel is energized on all three steering vane panel sets (120a, 120b and 120c in
The PCB is populated with a processor and a memory encoded with program instructions. In one operational mode, the program instructions compare the apparatus's desired global position with its actual global position. If a change in position is called for, the processor determines which rope-clamp solenoids, if any, to engage and for how long in order to orient the apparatus in the desired direction. In another operational mode, the PCB receives its input from a remote location. Because the apparatus could be driven off course by wind, waves and currents to a point of no return, a decision could then be made at a remote location how best to deploy the apparatus for future operations. Instructions resulting from the decision would then be transmitted to the master apparatus's PCB via its antenna and receiver included in the electronics package (112). It would then transmit instructions to the apparatuses under its control, which units are also capable of receiving instructions remotely.
Referring to
Referring to
Referring again to
SUBMERSION. In the preferred embodiment, the apparatus also has the capability to submerge when facing hazards such as oncoming ocean vessels and heavy seas, or when ocean waves are too small to pump water from the lower depth, or to avoid a strong, adverse surface current. Moreover, unless the apparatus needs to reposition itself or recharge its batteries, submersion also may be preferable when the water temperature at the base of the tube extender is not sufficiently cooler than the water at the surface. In this last case, a further embodiment would include an electronic temperature sensors mounted at the top of the rigid tube and at the bottom of the tube extender and integrated with the PCB.
The components of the submersion system are shown in
While the apparatus is maintaining its depth below the surface, a PCB with embedded digital instructions receives signals from the electronic depth gauge, which it compares with the desired depth. If the desired depth is greater than the actual depth by some predetermined amount, the PCB signals the two-way solenoid air valve (266) to open and initiate the submersion process. If the desired depth is less than the actual depth by some predetermined amount, the PCB signals both solenoid air valves (264 and 266) to open and initiate the ascension process. Otherwise, the PCB maintains the current depth within an appropriate range.
Whenever the submersion system is signaled to ascend, both solenoid air valves are opened for a predetermined time, allowing air under pressure to enter the ballast tank and forcing water out through the thru-hull. After both valves are closed, the air pump (262) re-pressurizes the upper tank (250), creating a partial vacuum in the middle tank (252). This prepares the apparatus to submerge again.
If, during an ascent, the motion detector (310 in
To fully implement the submersion capabilities of the apparatus, all vessels plying waters populated by the apparatus would have a legal requirement to transmit from an onboard transmitter a directional signal along the vessel's path and to a depth of, say, 100 feet below the vessel's draft. The latter requirement will prevent an apparatus from ascending into the path of a vessel or into the vessel itself. In this embodiment, when the apparatus receives the transmitted signal, it interprets the signal as an instruction to submerge. If it is already ascending, it must open the two-way solenoid air valve (266), and, at the same time, pump air from the vacuum tank into the pressurized air tank, thereby sucking seawater into the ballast tank and causing the apparatus to submerge.
In the preferred embodiment, the apparatus also possesses the means for detecting heavy sea conditions, as well as the means for detecting the absence of such conditions so it can return to the surface. The simple, bell-shaped, turbulence detector (310), shown in
To determine when it is safe to return to the surface, the same criterion is applied: as the apparatus is approaching the surface, if the clapper contacts the casting a predetermined number of times within a given time period, the apparatus re-submerges. The frequency with which attempts are made to resurface will depend upon the average duration of heavy-sea conditions, as well as on the charge status of the on-board battery. The latter criterion is imposed to minimize the chance that the battery will be drained beyond further use, thereby rendering the submersion system inoperative. However, in the preferred embodiment, the decision when to submerge and re-emerge is based on satellite weather information, with appropriate instructions sent electronically to the antenna and receiver onboard the apparatus.
The task of reducing sea surface temperatures (SSTs) to below 80° F. requires that a large number of apparatuses be distributed over a region of the ocean, and particularly the ocean region off the West Coast of Africa, where most powerful Atlantic cyclones originate. In this region, SSTs in the summer normally do not exceed 86° F.
It has been determined that the current invention offers both a technically and financially feasible solution. The method will be technically feasible if it can be shown how surface temperatures can be reduced by 5° to 6° F.; it will be financially feasible if the expected direct and indirect costs attributable to future tropical cyclones are sufficiently greater than the cost of inhibiting the formation of tropical cyclones by producing, distributing, launching and maintaining a sufficiently large fleet or fleets of the current invention.
If the current invention is operating in an oceanic region in which the average wave height over a typical 24-hour period is four feet and the average wave period is seven seconds, then, if its rigid tube has an inside diameter of five feet and its pump operates at 80% efficiency, it will disgorge about 775,000 cubic feet of cooler water per day or nine cubic feet per second onto the near-ocean surface. The volume of water pumped over the course of a month by a single apparatus and spread uniformly over an area of one square mile would have a depth of 10.0 inches, or, in a year, 10 feet, less any output lost while in a submerged state.
The efficiency of the pump will be less than 100% because there will be some vertical movement in the drive disk (128) relative to the water in which it directly operates, and also because the ambient water itself will have some vertical motion due to motion on the ocean surface. I estimate that the efficiency loss from the latter will be about 12% if the drive disk is 15 feet below the wave trough and the wave length is 60 feet. In addition, the flap valve flaps may be momentarily open at the beginning of each stroke, though this pumping loss should be minor. Furthermore, there may be minor leakage through the movable valve's bushing (150), around the elastomeric annulus or seal (142) and around the flaps (146) of the flap valves. Finally, leakage will occur through the slits (159) in the elastomeric strips (155) that cover the vertical slots (156) in the rigid tube.
Under most conditions, the volume of pumped water will be sufficient to cool the ocean surface waters surrounding each pump. Because, over deep water, nearly all of the water circulation and mixing occurs in the region near the surface, the cooler water will mix well with the surface waters, and the dissipation of the cooling effect to waters several feet below is likely to be small. Moreover, the effect of wind and the Stoke's drift will further cause the cooler waters disgorged from the apparatus to spread outward.
If a large plurality or fleet of apparatuses is deployed in the area off the West Africa coast, but more specifically, in the area somewhat north of 16° North latitude and between 18° and 23° West longitude, then the cooler water from the apparatuses will be driven by the prevailing winds, waves and surface currents southward initially, and then westward, along the same pathway where most major tropical cyclones form, develop and make their journey to the Western Hemisphere. Of course, the cooler water may be slowly dissipated to deeper waters the further it travels, which suggests that booster fleets of apparatuses may need to be deployed along the westward pathway. On the other hand, the effect of just the original fleet of apparatuses off the West Africa coast may be sufficient to disrupt the sequence of environmental conditions needed to generate most tropical cyclones.
If surface currents are inadequate to move the cooled surface waters to the south and then to the west, then the ability of the apparatuses to reposition themselves can be used to deploy at least some of the apparatuses further to the south where the currents tend to be stronger. If the efficiency of the steering vane panel sets is 70 percent, average wave height four feet and the wave period seven seconds on average, then the apparatus will be able to make way through the water at a speed of over one-half mph, or nearly 25 cm/s.
A person skilled in the art will be able to determine the number and placement of apparatuses required to provide sufficient cooling in a given environment. As already noted, the output volume of the pump is readily determined from the diameter of the cylinder tube, the average wave period and wave height of the ambient waves, and the efficiency of the pump. Next, the volume of water that is to be cooled per unit time must be estimated. An upper layer of water is mixed as a result of wind and wave action, and water that is deeper than about half the wave length will experience little mixing. In addition, the horizontal velocity of water below the wave trough falls off rapidly with depth. The water volume per unit time that is to be cooled can be calculated as equal to the layer depth times the average velocity at which this upper water layer is moving times the average distance between pump centers.
The distance between pump centers, or, equivalently, the number of equally spaced pumps to be deployed, is determined in part by the temperature difference between the pumped cooler water and the surface waters: the greater the temperature difference, the greater this distance can be, and the fewer the number of pumps needed. In the earlier example, a five-foot-diameter rigid tube pumped nine cubic feet of cooler water per second. If the SST averages 88° F. and the water pumped up from a thermocline is 70° F., then to reduce the SST to no more than 79° F., the volumes of pumped water and warmer surface water per unit time must be in a ratio of at least 1:1. Thus, the average distance between pumps must be such that no more than nine cubic feet of warmer surface water per second crosses an imaginary line between adjacent pumps.
To minimize the number of pumps needed, the pumps should be placed where the sea surface waters are driven almost entirely by mild-to-moderate prevailing winds and any underwater currents move slowly. The navigational capabilities of the apparatuses enable them to proceed to locations characterized by these conditions. It is noted that in the ocean region of interest, currents at a depth of 50 feet (15 m) are less than two inches (5 cm) per second [http://www.cpc.ncep.noaa.gov/products/GODAS/]. Of course, normal wind and waves have virtually no effect on currents at a depth of 50 feet.
If 90,000 individual apparatuses were positioned equidistantly along a straight line between 18° and 23° West longitude in the region just north of 16° North latitude, their center points would lie just 17.6 feet apart. Assume wave height averages six feet, wave length 60 feet, wave period seven seconds, and that water mixing 15 feet below the wave trough is negligible. After adjusting for the difference in flow rates as a function of depth due to the Stokes drift, the average flow of ocean water between pumping units is estimated at 48 cubic feet per second. This compares well with the 54 cubic feet per second of cooler water that are pumped from each apparatus.
Having considered the technical feasibility of the project, we now consider the financial feasibility. A rough estimate of the current cost of each apparatus is $15,000 each. The cost of 90,000 units would then be $1.35 billion. Delivery and launch of the units should be no more than an additional 10 percent of these costs. Predrilled cylinder tubes and subassemblies (e.g., tube extenders, and steering and submerging subassemblies) could be stored efficiently on a delivery vessel, and final assembly of the units could take place on deck prior to launch.
As stated earlier, the apparatus is designed to operate at least five years without maintenance. However, there still will be failures and losses. Lost units, if not recovered, would have to be replaced, and it usually would be cost-effective to refurbish failed units. If the apparatuses are located within the approximately 300 miles between 18° and 23° West longitude, and within a relatively narrow band above 16° North latitude, two to four ocean-going vessels with tenders operating full-time could provide security, recovery, maintenance and replacement services.
When all costs are amortized, the annual cost of maintaining a fleet of 90,000 units is estimated at well under $300 million. Refurbishing a unit after five years of use should be considerably less than $5,000. The most expensive component, the rigid tube (100), estimated to cost about $160 per foot, should last indefinitely. Should booster fleets be necessary to provide additional cooling of SSTs along the tropical cyclone sea-lanes, costs would increase accordingly. However, even multiple fleets would not have to eliminate or mitigate many tropical cyclones to be cost-effective. As already noted, the total cost of losses from Hurricane Katrina alone was estimated at $108 billion (2005 U.S. dollars)
[http://www.nhc.noaa.gov/pdf/TCR-AL122005_Katrina.pdf, p. 13], and the estimated average annual cost of hurricanes in the U.S. is $9 billion in 2006 dollars, given the extensive urbanization along the coastal regions of the Atlantic Ocean. Moreover, nearly 85% of major hurricanes began as easterly waves off West Africa [Landsea 1993, cited at http://www.faqs.org/faqs/meteorology/storms-faq/part1/#b]. Thus, the full cost of maintaining a single fleet of the current invention would be about three percent of the expected costs incurred from Atlantic hurricanes.
While the above description contains many specificities, these should not be construed as limitations on the scope of the current invention, but as exemplifications of the presently preferred embodiments thereof. Many other ramifications and variations are possible within the teaching of the invention. Examples are provided below. Thus the scope of the invention should be determined by the appended claims and their legal equivalents, rather than the examples given.
In most cases, the apparatus and its components can be constructed from a wide variety of materials. The best materials to use at any given time will depend on the environmental conditions in which the apparatus operates the durability and effectiveness of the materials and their cost. If dissimilar metals are used in combination, then zincs or other devices to protect against galvanic action should be installed.
In further embodiment of the apparatus shown in
The following are alternative embodiments to the current invention:
The reduction gear set is interposed between the drive gear and gear strips because the rotation of the drive gear, if driven directly by the gear strips, would likely be insufficient to achieve maximum electrical output from the generator. To stabilize the motion of the generator assembly in the horizontal plane, a guide rod (346), which is an extension of the generator rotor shaft, travels within a guide-rod channel (348). The guide rod channel is installed on the interior wall of the pump shaft nearly opposite from and parallel to the gear-strip mount (342). Components exposed to seawater are made from corrosive-resistant materials. For example, gears and gear strips in the preferred embodiment are made from nylon, while the slide shafts and guide rod are made from titanium or stainless steel.
The generator assembly is designed to generate electricity on both the upstroke and downstroke of the rigid tube (100). In the preferred embodiment, a mechanical means is used to slide the generator back and forth between the opposing gear strips. When the apparatus is ascending from a wave trough—i.e., when the movable valve (124 in
To slide between the two opposing gear strips, the entire generator assembly slides along two cylindrical, round-ended, titanium slide shafts (350) that slide within bores (352) that have been bored through the movable valve bushing (150) and into each polymer slide-shaft block (354) mounted on opposing sides of the generator housing. The slide shafts are oriented orthogonally to the rotor axis of the generator. The height of the bushing (150) is such that the bottom edge of the lower bevel block is at least ⅛″ above the lower end of the bushing, and the upper edge of the upper bevel block is at least ⅛″ below the upper end of the bushing.
To prevent the generator from pivoting around the slide shafts, a vertical, small-diameter domed pin (362) is pressed orthogonally through each slide shaft (350) near its inner end, as shown in
From the foregoing description, several advantages of the invention are evident. It has been shown how the current invention, when implemented as a multi-unit fleet is capable of cooling SSTs to below 80° F. over a wide area. Relatively slow surface currents in the critical area off the West Coast of Equatorial Africa make this possible with a smaller number of deployed units.
The current invention requires no platforms to be constructed, no mooring lines to be secured and no external power other than from sun and waves. Its pump is powered by wave energy and has few moving parts, which will keep maintenance low and reduce risk of premature failure. Its electrical components are solar-powered with supplementary battery capability. Its onboard navigational ability provides the mobility to maintain a given position, to operate as an optimally spaced fleet or to be deployed to a more advantageous location. The apparatus can make way through the water at about 0.5 knots, depending on wave height and wave period, and therefore it can maintain its position against modest, adverse surface currents. It also can be instructed to proceed to a different location; for example, it can travel westward in the South Equatorial Current, further cooling the surface as it proceeds. Working its way southward to about longitude 50° West, it then can catch the Equatorial Countercurrent eastward (except in the winter months, when the Countercurrent is weak or nonexistent; but it could still make progress eastward using wave energy). The Countercurrent will carry the apparatus back to the Gulf of Guinea, where the travel cycle can begin anew.
The ability of the apparatus to submerge increases its survivability by avoiding collisions with ocean vessels and by preventing damage from major storms. Submersion also enables the apparatus to retard degradation when seas are too calm to produce sufficient wave energy and to remain on location when surface currents are too strong for holding an advantageous position.
The objective was to design a unit that is simple, rugged, versatile, and efficient. Because of the hostile environment in which the apparatuses would be operating, rugged materials are used throughout toward achieving a goal of five-year, maintenance-free operation. Simplicity of design for each of the apparatus's three main functions—pumping, navigating and submerging—contributes to this goal.
If the units are to be commercialized, they must be cost-effective. In the Background of this document, we observed that after adjusting hurricane loss estimates in the United States for changes in personal wealth and coastal county populations, the estimated average property loss from tropical cyclones amounts to $9 billion annually, and this estimate is based on only the 30 most costly hurricanes. Our estimate of the annual amortized cost of producing, distributing, launching and maintaining a fleet of the current invention off the West Coast of Africa would be under $300 million annually. It is quite possible that this fleet alone could disrupt the process of hurricane development. But even if additional fleets are required, the net benefits from of this invention with respect to property losses averted are still quite favorable, and this conclusion holds, even without consideration of the other less costly hurricanes as well as the lives saved.
This application claims the benefit of provisional patent application No. 61/523,024, filed Aug. 12, 2011.
Number | Date | Country | |
---|---|---|---|
61523024 | Aug 2011 | US |