The invention relates to an apparatus and a method for inserting a postal item into an envelope.
For the mechanization of the insertion of large numbers of postal items into envelopes, many apparatuses and methods for operating such apparatuses are known. In one type of solutions, the envelope is folded around the postal item to be sent. The present invention relates to another type of solutions in which envelopes are supplied that have an envelope body constituting a pocket or pouch and a flap hinged to the envelope body along a fold for closing off an open throat of the envelope body when the flap is folded against the envelope body. The flaps of the envelopes generally have pre-gummed surface portions. The gum layer on the surface portions can be made to adhere to the envelope body by moistening the gum and pressing the gummed flap against the envelope body.
However, moistening the envelope flaps is a quite delicate process, because the gum must be made sufficiently moist to be made sufficiently adhesive, while on the other hand applying to much liquid (usually water), causes the envelope to wrinkle and excess liquid that is not absorbed by the gum and the envelope may cause the postal items to be damaged. Also the application of the liquid as such needs to be controlled accurately, since spilled liquid may also cause the envelope and/or the contents to become wrinkled and/or stained.
The invention provides a method for inserting postal items into an envelope comprising an envelope body and a flap hinged to the envelope body along a fold and for closing the envelope, using an inserting apparatus having a postal item transport path, an inserting position downstream of the postal item transport path, an envelope flap moistener and a flap closing member, the method including:
bringing the envelope in the inserting position;
holding the flap of the envelope in the inserting position in an orientation directed away from a closed end of the envelope body;
transporting at least one postal item along the postal item transport path towards the inserting position and inserting the at least one postal item into the envelope in the inserting position;
transporting the envelope with the at least one postal item inserted therein away from the inserting position; and
closing the envelope flap;
further comprising moistening a gummed portion of the flap, wherein the moistening is at least started before the transportation of the envelope away from the inserting position.
By at least starting the moistening of the gummed area of the flap before the transportation of the envelope away from the inserting position, the time interval between moistening and closing the flap is relatively long, so that relatively much time is left for the liquid to be absorbed by the gum and for the gum to become dissolved and adhesive. Thereby the amount of non-absorbed water, if any, at the time of closing of the envelope is reduced, so that the risk of damage to the envelope and the contents is reduced.
The invention can also be embodied in an apparatus for inserting documents into envelopes having a flap hinged to an envelope body, including:
a postal item transport path;
a flap holder arranged for holding the flap in an open position while the envelope body is in an inserting position downstream of the postal item transport path for receiving postal items supplied along the postal item transport path in the envelope body; and
a moisture applicator for applying moisture to the flap of the envelope;
wherein the flap holder is arranged for contacting the flap locally and leaving areas of the flap adjacent to the flap holder free; and
wherein the moisture applicator is arranged for applying moisture to the areas of the flap adjacent to the flap holder.
Such an apparatus is specifically adapted for carrying out a method according to the invention.
Because the moisture applicator is arranged for applying moisture to the areas of the flap adjacent to the flap holder, the moistening can at least be started before the transportation of the envelope away from the inserting position.
Particular elaborations and embodiments of the invention are set forth in the dependent claims.
Further features, effects and details of the invention appear from the detailed description and the drawings.
In
The first postal item transport path 11 leads to a pair of folding rollers 14, 15 defining a first folding nip 16 between first and second folding rollers 14, 15 for folding the sheets, a transport belt 17 and a folding knife 18 being arranged upstream of the first folding nip 16 for controlling the folding of the postal items, which may each consist of one or more sheets. Such a folding apparatus is disclosed in more detail in European patent application No. 08152509.
A third folding roller 19 is arranged for defining a second folding nip 20 between the second folding roller 15 and the third folding roller 19. A buckle chute 21 is aligned with the first folding nip 16 for receiving a leading end of a postal item (which may be folded or not) and oriented such that the postal item is then buckled into the second folding nip 20. A postal item transport path 22 extends from the second folding nip 20 towards the inserting position 13 and passes closely along a flap support roller 23.
The inserter is further equipped with a feeder 24 including a hopper for holding stacked envelopes 25 (not all the envelopes are designated by reference numerals) and separating and feeding individual envelopes 25 from the stacked envelopes to an envelope transport path 26. Such a feeder is disclosed in more detail in European patent application No. 07002072.
The envelope transport path 26 extends to a side of the flap support roller 23 which is about diametrically opposite to the side of the flap support roller 23 where the postal item transport path 22 passes along the flap support roller 23.
The envelopes 25 to be processed each have an envelope body 29 constituting a pocket having an opening and a flap 30 hinged to the envelope body 29 along a flap fold 31 (see one of the envelopes 25 in
The inserter is further equipped with a flap holder 38 having a free flap holder edge 39 and an envelope body guide 40. In a starting position, shown in
The envelope body guide 40 is integrally formed with envelope body guide control arms 41 of which a free end carries envelope transport rollers 45. Envelope discharge rollers 46 located adjacent to an envelope support platform 52 contact the envelope transport rollers 45 carried by the control arms 41 for forming transport nips 47, at least when the control arms 41 are in a discharge position for discharging the envelope 25 (
The flap holder 38 is held in the starting position by a flap holder displacement control arm 55 that is pivotable about an axis of rotation 56 coaxial with the flap closing roller 49. A spring force exerted by a spring (not shown) which exerts a moment urging the flap holder 38 in an anti-clockwise sense of rotation (upstream against the sense of transport 37).
The flap holder 38 is equipped with rollers 50 rotatably suspended and positioned for holding a flap between the rollers 50 and the flap support roller 23. The flap support roller 23 thus constitutes a member for holding the flap against the flap holder 30. As is best seen in
In axial direction, the counter rollers 69 are each positioned between two of the disks 51 of the flap support roller 23. The counter rollers 69 are each carried by a counter roller carrier 70, which is rotatably mounted about the axis 57 of the flap support roller 23 and each have a cylinder segment surface 71 having a radius of which the axis 57 of the flap support roller 23 constitutes the center.
In
The initial displacement of the free flap holder edge 39 from the starting position shown in
By feeding out the envelope body 29 in a first direction and then feeding out the flap 30 in a second direction different from the first direction, the first and the second directions pointing to different sides of the free flap holder edge 39, the flap 30 is more reliably caught on a side of the free flap holder edge 39 opposite of the side to which the envelope body 29 is guided, so as to be able to reliably bend the flap 30 open.
The inserter is further equipped with an envelope flap moistener 59. The flap moistener 59 is movable between a moistening position in which moistening members 60 of sponge material project towards the circumferential surface of the flap support roller 23 through slots 61-67 (
After the envelope flap 30 has entered between the flap support roller and the flap holder 38, the flap 30 contacts the moistener 59 as its leading end reaches the moistener. The flap 30 is then moved along the moistener 59 as it is further inserted between the flap support roller and the flap holder 38, so that the gum is moistened. Since the gum is moistened only in the areas of the flap 30 that are axially in line with the slots 61-67 in the flap holder 38, gum that has been moistened does not contact the flap holder 38 in spite of the flap 30 being moistened prior to insertion of postal items into the envelope 25. That the moistening of the envelope flap 30 is started, and preferably also completed, prior to insertion of postal items into the envelope 25 is advantageous, because more time is left between moistening of the gummed layer of the flap 30 and closing of the envelope 25, thereby allowing the moisture to be absorbed more deeply and evenly by the gum before the envelope is closed. This results in an improved adhesion of the flap 30 to the envelope body 29 and less penetration of humidity into the paper of the envelope body and the contents of the envelope 25.
For obtaining a particularly long period of time between moistening the gum and closing of the envelope, it is advantageous if the moistening is completed during the transportation of the envelope to the inserting position.
The envelope is preferably closed at least a quarter of a second after the flap has been moistened. In increasing order of preference, the time between moistening and closing is preferably at least 0.35, 0.5, 0.75 or 1 s.
An improved absorption of the liquid may also be achieved if the moistening of the flap is started or completed after the postal items have been inserted, but the moistening should preferably at least be started before the transportation of the envelope away from the inserting position, while it is advantageous for leaving the liquid time to absorb and reducing the risk of liquid being shaken off the envelope if the moistening is also completed before the transportation of the envelope away from the inserting position.
If the moistening is started while the envelope flap is stationary, the need of accurate timing of the start of the moistening in relation to detection and movement of the envelope is avoided and the liquid can be applied very accurately in a simple manner, in particular if the moistening is also completed while the envelope flap is stationary.
The flap holder 38 is movable for pivoting the flap 30 held against the flap holder 38 relative to the envelope body 29 about the fold 31 to an open position. In the present example, this is realized in the form of pivotability of the flap holder 38 about an axis of rotation 57 of the flap support roller 23. After the fold 31 between the flap 30 and the envelope body has passed the closing roller nips 48 between the flap closing roller 49 and the counter rollers 69, the flap 30 of the envelope 25 is entrained further by the rotation of the flap support roller 23 in the sense of rotation indicated by arrow 58, since the flap 30 is held against the flap support roller 23 by the rollers 50 of the flap holder 38. When the fold 31 between the flap 30 and the envelope body 29 abuts against the free edge 39 of the flap holder 38, the flap holder 38 is entrained by the envelope 25, of which the flap 30 moves along with the circumferential surfaces of the flap support roller 23, until a position shown in
The flap holder 38 is coupled to the counter roller carriers 70 for co-rotation with the counter roller carriers 70, so that the rotation of the flap holder 38 also causes the counter roller carriers 70 to rotate in the sense of rotation 58. As the flap holder 38 is rotated, briefly after the counter rollers 69 have become free from the envelope closing roller 49, the cylinder segment surfaces 71 of the counter roller carriers 70 contact the driven flap closing roller 49. The position in which the free flap holder edge 39 is stopped is then controlled by stopping the flap closing roller 49 so that the free flap holder edge 39 reaches the position shown in
In the present example, this is achieved by providing that when the flap holder 38 reaches the position in which its free edge 39 is positioned for holding the envelope 25 in the insert position, the flap holder 38 contacts an operating member of a wrap spring coupling (not shown) that causes the flap pressing roller 49 to be uncoupled from a drive (not shown).
While the flap holder 38 rotates from the flap scraping position shown in
In the present example, the flap moistener surfaces 60 are arranged in a row extending along a straight line parallel to the axis 57 of the flap support roller 23. It is, however, also possible to provide that the flap moistener surfaces 60 are arranged in a configuration having sections that extend at angles relative to each other.
After the envelope 25 has reached the inserting position shown in
Next, the separated ones of the postal items 3, 4, 8 fed along the postal item transport path 22 are displaced along the envelope throat opener and into the envelope 25 by insert rollers 64, 65.
After the postal items have been inserted into the envelope 25, the throat opener 62 is retracted to its retracted position and the flap pressing roller 49 is driven in a sense opposite to its sense of rotation during feeding of the envelope 25, causing the counter roller carriers 70 and accordingly also the flap holder 38 and the flap support roller 23, to be entrained in a sense indicated by arrow 63 in
The rotation of the flap support roller 23 causes the flap 30 engaged between disks of the flap support roller 23 and the rollers 50 of the flap holder 38 to be urged back into the closing roller nips 48 between the flap closing roller 49 and the counter rollers 69, which closing roller nips 48 have meanwhile been re-established since the counter roller carriers 70 have returned to the flap opening position. As the envelope 25 is engaged in the closing roller nips 48, the envelope 25 is transported in a discharge sense opposite to the feeding sense along the envelope transport path 26, the flap 30 is closed and pressed against the envelope body 29 between the flap closing roller 49 and the counter rollers 69.
After the entire flap 30 has passed through the closing roller nip 48 between the flap closing roller 49 and the counter rollers 48, the sense of rotation of the flap closing rollers 49 is again reversed and the envelope discharge roller 46 is driven to transport the filled and closed envelope 25 through the nip 47 into an output holder 72.
Finally, the flap holder displacement control arm 55 is pivoted back to the starting position shown in
Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
08156564.0 | May 2008 | EP | regional |