1. Field of the Invention
This invention relates to the field of medical devices, and more particularly to a system and method for inserting a catheter for locally delivering fluids or agents within the body of a patient. Still more particularly, it relates to a system and method for inserting a catheter that locally delivers fluids or agents into branch blood vessels or body lumens from a main vessel or lumen, respectively, and in particular into renal arteries extending from an aorta in a patient.
2. Description of Related Art
Many different medical device systems and methods have been previously disclosed for locally delivering fluids or other agents into various body regions, including body lumens such as vessels, or other body spaces such as organs or heart chambers. Local “fluid” delivery systems may include drugs or other agents, or may even include locally delivering the body's own fluids, such as artificially enhanced blood transport (e.g. either entirely within the body such as directing or shunting blood from one place to another, or in extracorporeal modes such as via external blood pumps etc.). Local “agent” delivery systems are herein generally intended to relate to introduction of a foreign composition as an agent into the body, which may include a drug or other useful or active agent, and may be in a fluid form or other form such as gels, solids, powders, gases, etc. It is to be understood that reference to only one of the terms fluid, drug, or agent with respect to local delivery descriptions may be made variously in this disclosure for illustrative purposes, but is not generally intended to be exclusive or omissive of the others; they are to be considered interchangeable where appropriate according to one of ordinary skill in the art unless specifically described to be otherwise.
In general, local agent delivery systems and methods are often used for the benefit of achieving relatively high, localized concentrations of an agent that is injected within the body in order to maximize the intended effects locally while minimizing unintended peripheral effects of the agent elsewhere in the body. Where a particular dose of a locally delivered agent may be efficacious for an intended local effect, the same dose systemically delivered would be substantially diluted throughout the body before reaching the same location. The agent's intended local effect is equally diluted and efficacy is compromised. Thus systemic agent delivery requires higher dosing to achieve the required localized dose for efficacy, often resulting in compromised safety due to for example systemic reactions or side effects of the agent as it is delivered and processed in locations throughout the body the body other than at the intended target.
Various diagnostic systems and procedures have been developed using local delivery of dye (e.g. radiopaque “contrast” agent) or other diagnostic agents, wherein an external monitoring system is able to gather important physiological information based upon the diagnostic agent's movement or assimilation in the body at the location of delivery and/or at other locations affected by the delivery site. Angiography is one such practice that uses a hollow, tubular angiography catheter for locally injecting radiopaque dye into a blood chamber or vessel, such as for example coronary arteries in the case of coronary angiography, or in a ventricle in the case of cardiac ventriculography.
Other systems and methods have been disclosed for locally delivering therapeutic agent into a particular body tissue within a patient via a body lumen. For example, angiographic catheters of the type just described above, and other similar tubular delivery catheters, have also been disclosed for use in locally injecting treatment agents through their delivery lumens into spaces within the body. More detailed examples of this type include local delivery of thrombolytic drugs such as TPA™, heparin, cumadin, or urokinase into areas of existing clot or thrombogenic implants or vascular injury. In addition, various balloon catheter systems have also been disclosed for local administration of therapeutic agents into target body lumens or spaces, and in particular associated with blood vessels. One example of this type of catheter include balloons with porous or perforated walls that elute drug agents through the balloon wall and into surrounding tissue such as blood vessel walls. Yet further examples for localized delivery of therapeutic agents include various multiple balloon catheters that have spaced balloons that are inflated to engage a lumen or vessel wall in order to isolate the intermediate catheter region from in-flow or out-flow across the balloons. According to these examples, a fluid agent delivery system is often coupled to this intermediate region in order to fill the region with agent such as drug that provides an intended effect at the isolated region between the balloons.
The diagnosis or treatment of many different types of medical conditions associated with various different body systems, organs, and tissues, may also benefit from the ability to locally deliver fluids or agents in a controlled manner. In particular, various conditions related to the renal system would benefit significantly from the capability of locally delivering therapeutic, prophylactic, or diagnostic agents into the renal arteries.
Acute renal failure (“ARF”) is an abrupt decrease in the ability of the kidney to excrete waste from a patient's blood. This change in kidney function may be attributable to many causes. A traumatic event, such as hemorrhage, gastrointestinal fluid loss, or renal fluid loss without proper fluid replacement may cause the patient to go into ARF. Patients may also become vulnerable to ARF after receiving anesthesia, surgery, or a-adrenergic agonists because of related systemic or renal vasoconstriction. Additionally, systemic vasodilation caused by anaphylaxis, and anti-hypertensive drugs, sepsis or drug overdose may also cause ARF because the body's natural defense is to shut down, i.e., the vasoconstriction of non-essential organs such as the kidneys. Reduced cardiac output caused by cardiogenic shock, congestive heart failure, pericardial tamponade or massive pulmonary embolism creates an excess of fluid in the body, which can exacerbate congestive heart failure. For example, a reduction in blood flow and blood pressure in the kidneys due to reduced cardiac output can in turn result in the retention of excess fluid in the patient's body, leading, for example, to pulmonary and systemic edema.
Previously known methods of treating ARF, or of treating acute renal insufficiency associated with congestive heart failure (“CHF”), involve the administration of drugs. Examples of such drugs that have been used for this purpose include, without limitation: vasodilators, including for example papavarine, fenoldopam mesylate, calcium-channel blockers, atrial natriuretic peptide (ANP), acetylcholine, nifedipine, nitroglycerine, nitroprusside, adenosine, dopamine, and theophylline; antioxidants, such as for example acetylcysteine; and diuretics, such as for example mannitol, or furosemide. However, many of these drugs, when administered in systemic doses, have undesirable side effects. Additionally, many of these drugs would not be helpful in treating other causes of ARF. For example, while a septic shock patient with profound systemic vasodilation often has concomitant severe renal vasoconstriction, administering vasodilators to dilate the renal artery to a patient suffering from systemic vasodilation would compound the vasodilation system wide. In addition, for patients with severe CHF (e.g., those awaiting heart transplant), mechanical methods, such as hemodialysis or left ventricular assist devices, may be implemented. Surgical device interventions, such as hemodialysis, however, generally have not been observed to be highly efficacious for long-term management of CHF. Such interventions would also not be appropriate for many patients with strong hearts suffering from ARF.
The renal system in many patients may also suffer from a particular fragility, or otherwise general exposure, to potentially harmful effects of other medical device interventions. For example, the kidneys as one of the body's main blood filtering tools may suffer damage from exposure to high-density radiopaque contrast dye, such as during coronary, cardiac, or neuro angiography procedures. One particularly harmful condition known as “radiocontrast nephropathy” or “RCN” is often observed during such procedures, wherein an acute impairment of renal function follows exposure to such radiographic contrast materials, typically resulting in a rise in serum creatinine levels of more than 25% above baseline, or an absolute rise of 0.5 mg/dl within 48 hours. Therefore, in addition to CHF, renal damage associated with RCN is also a frequently observed cause of ARF. In addition, the function of the kidney is directly related to cardiac output and related blood pressure into the renal system. These physiological parameters, as in the case of CHF, may also be significantly compromised during a surgical intervention such as an angioplasty, coronary artery bypass, valve repair or replacement, or other cardiac interventional procedure. Therefore, the various drugs used to treat patients experiencing ARF associated with other conditions such as CHF have also been used to treat patients afflicted with ARF as a result of RCN. Such drugs would also provide substantial benefit for treating or preventing ARF associated with acutely compromised hemodynamics to the renal system, such as during surgical interventions.
There would be great advantage therefore from an ability to locally deliver such drugs into the renal arteries, in particular when delivered contemporaneously with surgical interventions, and in particular contemporaneously with radiocontrast dye delivery. However, many such procedures are conducted with medical device systems, such as using guiding catheters or angiography catheters having outer dimensions typically ranging between about 4 French to about 12 French, and ranging generally between about 6 French to about 8 French in the case of guide catheter systems for delivering angioplasty or stent devices into the coronary or neurovascular arteries (e.g. carotid arteries). These devices also are most typically delivered to their respective locations for use (e.g. coronary ostia) via a percutaneous, translumenal access in the femoral arteries and retrograde delivery upstream along the aorta past the region of the renal artery ostia. A Seldinger access technique to the femoral artery involves relatively controlled dilation of a puncture hole to minimize the size of the intruding window through the artery wall, and is a preferred method where the profiles of such delivery systems are sufficiently small. Otherwise, for larger systems a “cut-down” technique is used involving a larger, surgically made access window through the artery wall.
Accordingly, a system and method for inserting an intra-aorta catheter through a delivery sheath contemporaneous with other retrogradedly delivered medical device systems, such as of the types just described above, would preferably be adapted to allow for such interventional device systems, in particular of the types and dimensions just described, to pass upstream across the renal artery ostia (a) while the agent is being locally delivered into the renal arteries, and (b) while allowing blood to flow downstream across the renal artery ostia, and (c) in an overall cooperating system that allows for Seldinger femoral artery access. Each one of these features (a), (b), or (c), or any sub-combination thereof, would provide significant value to patient treatment; a local renal delivery system providing for the combination of all three features is particularly valuable.
Notwithstanding the clear needs for and benefits that would be gained from such a system and method for inserting an intra-aorta catheter through a delivery sheath, the ability to do so presents unique challenges.
Finally, among other additional considerations, previous disclosures have yet to describe an efficacious and safe system and method for positioning these types of local agent delivery devices at the renal arteries through a common introducer or guide sheath shared with additional medical devices used for upstream interventions, such as angiography or guide catheters. In particular, to do so concurrently with multiple delivery catheters for simultaneous infusion of multiple renal arteries would further require a guide sheath of such significant dimensions that the preferred Seldinger vascular access technique would likely not be available, instead requiring the less desirable “cut-down” technique.
Certain prior disclosures have provided surgical device assemblies and methods intended to enhance blood delivery into branch arteries extending from an aorta. For example, intra-aortic balloon pumps (IABPs) have been disclosed for use in diverting blood flow into certain branch arteries. One such technique involves placing an IABP in the abdominal aorta so that the balloon is situated slightly below (proximal to) the branch arteries. The balloon is selectively inflated and deflated in a counterpulsation mode (by reference to the physiologic pressure cycle) so that increased pressure distal to the balloon directs a greater portion of blood flow into principally the branch arteries in the region of their ostia. However, the flow to lower extremities downstream from such balloon system can be severely occluded during portions of this counterpulsing cycle. Moreover, such previously disclosed systems generally lack the ability to deliver drug or agent to the branch arteries while allowing continuous and substantial downstream perfusion sufficient to prevent unwanted ischemia.
Notwithstanding the interest and advances toward locally delivering agents for treatment or diagnosis of organs or tissues, the previously disclosed systems and methods summarized immediately above generally lack the ability to effectively deliver agents from within a main artery and locally into substantially only branch arteries extending therefrom while allowing the passage of substantial blood flow and/or other medical devices through the main artery past the branches. This is in particular the case with previously disclosed renal treatment and diagnostic devices and methods, which do not adequately provide for local delivery of agents into the renal system from a location within the aorta while allowing substantial blood flow continuously downstream past the renal ostia and/or while allowing distal medical device assemblies to be passed retrogradedly across the renal ostia for upstream use. Much benefit would be gained if agents, such as protective or therapeutic drugs or radiopaque contrast dye, could be delivered to one or both of the renal arteries in such a manner.
However, such previously disclosed designs would still benefit from further modifications and improvements in order to maximize the range of useful sizing for specific devices to accommodate a wide range of anatomic dimensions between patients; and optimize the construction, design, and inter-cooperation between system components for efficient, atraumatic use.
A need still exists for improved devices and methods for locally isolating delivery of fluids or agents into the renal arteries of a patient from a location within the patient's aorta adjacent the renal artery ostia along the aorta wall, and while allowing other treatment or diagnostic devices and systems, such as angiographic or guiding catheter devices and related systems, to be delivered across the location.
A need still exists for improved devices and methods for delivering both a local renal drug delivery system and at least one adjunctive distal interventional device, such as an angiographic or guiding catheter, through a common delivery sheath.
A need also still exists for improved devices and methods for delivering both a local renal drug delivery system and at least one adjunctive distal interventional device, such as an angiographic or guiding catheter, through a single access site, such as a single femoral arterial puncture.
A need still exists for an improved device configured with the necessary bore, transition angle and fittings to pass one or more devices smoothly into an introducer sheath lumen.
A need still exists for adjustable sheaths to allow placement of a local renal drug delivery system and aortic access with commercially available catheters and intervention equipment.
One aspect of the invention is a method for providing a renal therapy system for use in a local renal therapy procedure in a patient by selecting an introducer sheath based on a length along a catheter that corresponds with a distance between a percutaneous vascular access site and a renal ostium. The introducer sheath is chosen from a plurality of introducer sheaths having different lengths.
One mode includes: accessing an abdominal aorta in the patient via the percutaneous access site; inserting the catheter through the percutaneous vascular access site; positioning a distal end of the catheter at a location within the abdominal aorta associated with a renal artery ostium; indicating the relative location of the percutaneous vascular access site on said catheter; and withdrawing said catheter and measuring the length from the percutaneous access point to the distal end of said catheter.
Another aspect of the invention is a local renal therapy system that includes an introducer sheath with a tubular wall with a tubular wall with a proximal end portion, a distal end portion that is adapted to be positioned at a location within an abdominal aorta associated with first and second renal ostia of first and second renal arteries, respectively, while the proximal end portion extends externally from the patient, and an introducer lumen that extends along a longitudinal axis between a proximal port along the proximal end portion and a distal port along the distal end portion. A bilateral renal delivery assembly with a local injection assembly that is adapted to be delivered to the location in a first condition through the introducer lumen is also provided. The introducer sheath has an adjustable length between a first configuration and a second configuration. In the first configuration the introducer sheath has a first length that is adapted to deliver the local injection assembly in a first condition to the location. In the second configuration the introducer sheath has a second length that is shorter than the first length and that corresponds with the local injection assembly extending in a second condition distally from the distal port at the location. In addition, in the second condition at the location the local injection assembly is adapted to be coupled to a source of fluid agent externally of the patient and to deliver a volume of fluid from the source bilaterally into each of the two renal arteries.
Another aspect of the invention is a system for locally delivering therapy to a renal system in a patient and that includes an introducer sheath in combination with a proximal coupler assembly as follows. The introducer sheath has an elongate tubular body with a proximal end portion, a distal end portion that is adapted to be placed percutaneously into a patient across a vascular access site when the proximal end portion extends externally from the patient, and a delivery lumen extending along a longitudinal axis between a proximal port along the proximal end portion and a distal port along the distal end portion. The proximal coupler assembly has a proximal portion and a distal portion. The distal portion comprises a distal lumen and is coupled to the proximal port with the distal lumen substantially aligned with the longitudinal axis of the delivery lumen. The proximal portion comprises a first branch lumen and a second branch lumen extending proximally from the distal lumen and terminating proximally at first and second entry ports, respectively. The first entry port is adapted to receive a percutaneous translumenal interventional device therethrough into the first branch lumen, whereas the second entry port is adapted to receive a bilateral renal delivery device assembly therethrough and into the second branch lumen. The first and second branch lumens are of sufficient orientation relative to the distal lumen, and the first and second branch lumens and distal and delivery lumens are of sufficient dimension, such that each of the percutaneous translumenal interventional device and the bilateral renal delivery device may be slideably engaged simultaneously within the distal lumen and further within the delivery lumen without substantial mutual interference therebetween.
Another aspect of the invention is a system for locally delivering therapy to a renal system in a patient that also includes an introducer sheath and a proximal coupler assembly as follows. The introducer sheath has an elongate tubular body with a proximal end portion, a distal end portion that is adapted to be placed percutaneously into a patient across a vascular access site when the proximal end portion extends externally from the patient, and a delivery lumen extending along a longitudinal axis between a proximal port along the proximal end portion and a distal port along the distal end portion. The proximal coupler assembly has a proximal portion and a distal portion. The distal portion comprises a distal lumen assembly and is coupled to the proximal port with the distal lumen assembly substantially aligned with the longitudinal axis of the delivery lumen. The proximal portion comprises a first branch lumen, a second branch lumen, and a third branch lumen coupled to and extending proximally from the distal lumen assembly and terminating proximally at first, second, and third entry ports, respectively. The first entry port is adapted to receive a percutaneous translumenal interventional device therethrough into the first branch lumen. The second entry port is adapted to receive a first delivery member of a bilateral renal delivery system therethrough and into the second branch lumen. The third entry port is adapted to receive a second delivery member of the bilateral renal delivery system therethrough and into the third branch lumen. Accordingly, the first, second, branch lumens are of sufficient orientation relative to the distal lumen assembly, and the first, second, and third branch lumens, distal lumen assembly, and delivery lumens are of sufficient dimension, such that each of the first and second delivery members of the bilateral renal delivery system and the percutaneous translumenal interventional device may be slideably engaged simultaneously within the distal lumen assembly and further within the delivery lumen without substantial mutual interference therebetween.
Further aspects of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing preferred embodiments of the invention without placing limitations thereon.
The invention will be more fully understood by reference to the following drawings which are for illustrative purposes only:
As will be appreciated by reference to the detailed description below and in further respect to the figures, the present invention is principally related to selective renal flow systems and methods, which are thus generally related to subject matter disclosed in the following prior filed co-pending U.S. Patent Applications that are commonly owned with the present application; Ser. No. 09/229,390 to Keren et al., filed Jan. 11, 1999 now U.S. Pat. No. 6,749,598, issued Jun. 15, 2004; Ser. No. 09/562,493 to Keren et al., filed May 1, 2000; and Ser. No. 09/724,691 to Kesten et al., filed Nov. 28, 2000, now allowed. The disclosures of these prior patent applications are herein incorporated in their entirety by reference thereto.
The invention is also generally related to certain aspects of subject matter disclosed in other Published International Patent Applications as follows: WO 00/41612 to Libra Medical Systems, published Jul. 20, 2000; and WO 01/83016 to Libra Medical Systems, published Nov. 8, 2001. The disclosures of these Published International Patent Applications are also herein incorporated in their entirety by reference thereto.
Various particular dimensions, constructions, and materials are herein described according to the various embodiments and are considered highly beneficial. However, it is contemplated that such are illustrative and other modifications may be made to suit a particular need without departing from the intended present scope.
Referring more specifically to the drawings, for illustrative purposes the present invention is embodied in the apparatus generally shown in
The description herein provided relates to medical material delivery systems and methods in the context of their relationship in use within a patient's anatomy. Accordingly, for the purpose of providing a clear understanding, the term proximal should be understood to mean locations on a system or device relatively closer to the operator during use, and the term distal should be understood to mean locations relatively further away from the operator during use of a system or device. The present embodiments described below generally relate to the local delivery of renal drugs from within the renal arteries themselves; however, it is contemplated that these systems and methods may be suitably modified for use in other anatomical regions and for other medical conditions without departing from the broad scope of various of the aspects illustrated by the embodiments.
In general, the disclosed material delivery systems will include a fluid delivery assembly, a proximal coupler assembly and one or more elongated bodies, such as tubes or catheters. These elongated bodies may contain one or more delivery lumens and generally consist of a proximal region, a mid-distal region, and a distal tip region or regions in the case of multi-tipped embodiments. The distal tip region will typically have means for delivering a material such as a fluid agent. Radiopaque markers or other devices may be coupled to the specific regions of the elongated body to assist introduction and positioning.
The material delivery system of the present invention is intended to be placed into position by a physician, typically either an interventionalist (cardiologist or radiologist) or an intensivist, a physician who specializes in the treatment of intensive-care patients. The physician will gain access to a femoral artery in the patient's groin, typically using a Seldinger technique of percutaneous vessel access or other conventional method.
Turning now to
Delivery sheath handle 130 is positioned and attached firmly at the proximal end 132 of delivery sheath 110. Delivery sheath handle 130 is further comprised of delivery handle tabs 134 and delivery handle cap 136. In an exemplary embodiment, delivery sheath handle 130 is configured to break symmetrically in two parts when delivery handle cap 136 is removed and delivery handle tabs 134 are forced apart. By way of example and not of limitation, distal end 104 of stiff tube 106 can be configured to couple to bifurcated catheters, flow diverters, and other devices configured to infuse fluids into a major blood vessel or one or more branch blood vessels. By way of example and not of limitation distal end 104 of stiff tube 106 can be configured with radiopaque markers or other diagnostic devices to aid in positioning.
In
In
Local fluid delivery system 252 has a fluid agent infuser device 102 (shown in
Catheter assembly 254 is similar to that previously shown in
In
In
In
Guiding catheter 328 is advanced distally through delivery sheath 314 along side hypotube 322 and finally to a target site as previously described in
Vessel dilator 354, with distal end 380 and proximal end 382 is a polymer, (e.g. extrusion) tubing with a center lumen for a guide wire (not shown). Distal end 380 is adapted with a taper cone shape. Proximal end 382 is coupled to a Luer fitting 384.
Fluid delivery system 356 has stiff tube 386, torque handle 388, and proximal hub 390 as previously described in
A single lumen, tear-away delivery sheath 404 has a distal end 406, a proximal end 408, and slidingly encases stiff tube 386. Delivery sheath 404 is positioned between the torque handle 388 and the bifurcated catheter 358. The distal end 406 has a shape and outer diameter adapted to mate with the channel restriction in the distal end of the main channel of the Y hub body as shown previously in
Dilator 354 is inserted through Touhy Borst valve 368 on secondary port 370 until distal end 380 protrudes from distal tip 378 of introducer sheath 376 to form a smooth outer conical shape. Distal tip 378 of introducer sheath 376 is positioned in the aorta system near the renal arteries (not shown). Dilator 354 is removed and fluid delivery device 356 is prepared by sliding delivery sheath 404 distally until distal extensions 393 and 394 of bifurcated catheter 358 are enclosed in delivery sheath 404. Distal end 406 of delivery sheath 404 is inserted in Touhy Borst valve 368 and advanced to the restriction in the main channel of the Y hub body shown in
Notwithstanding the particular benefits provided by the various embodiments described above, one particular highly beneficial embodiment of an overall renal therapy system as shown previously in
A Y hub body as shown previously in
An introducer sheath is coupled to the introducer sheath fitting of the Y hub body and is constructed with an inner liner of TFE material; an inner-coiled wire reinforcement, and an outer polymer jacket. The nominally 8 French introducer sheath has an inner diameter of about 0.116 inches and an outer diameter of about 0.138 inches. The distal tip is shaped as a truncated cone to adapt with the distal tip of a vessel dilator and has a radiopaque marker band. The proximal end of the introducer sheath is comprised of the outer polymer jacket only and is flared to couple to the introducer sheath fitting on the Y hub body. In one highly beneficial embodiment, multiple introducer sheaths are provided with a renal therapy system to accommodate different anatomies. Introducer sheaths with nominal usable lengths L, as shown in
A vessel dilator is used with this renal therapy system to guide the distal tip of the introducer sheath to the proximal region of the renal arteries. The vessel dilator is a polymer extrusion, tapered at the distal end with an inner lumen of about 0.040 inches and adapted for passage of a guide wire of about 0.035 inches to about 0.038 inches in diameter. The vessel dilator length is nominally about 11 cm longer than the usable length of the corresponding introducer sheath used so as to extend from the distal tip of the sheath and also out the appropriate proximal port of the Y hub body. The proximal end of the vessel dilator has a Luer fitting, primarily for flushing the inner lumen with a saline solution.
After the position of the renal arteries relative to the percutaneous entry point has been established using a guide wire with a diagnostic catheter and methods known to exist in the art, an integrated introducer sheath system of suitable length is selected. The vessel dilator is introduced through the Touhy Borst valve on the secondary branch of the Y hub and advanced until the distal tip of the vessel dilator protrudes from the distal tip of the introducer sheath resulting in a smooth outer conical shape. A saline flush is introduced through the port on the Y body and the proximal port of the vessel dilator. The introducer sheath with vessel dilator inserted is advanced on the guide wire through the percutaneous entry point and to the region in the aorta of the renal arteries. The marker band on the distal tip of the introducer sheath may be used with fluoroscopy to aid in positioning. When the distal tip of the introducer sheath is positioned at or near the renal arteries, the vessel dilator and guide wire are retracted, and removed, from the Y hub body through the Touhy Borst valve, while the introducer sheath remains in place.
A fluid delivery system as previously shown in
The fluid delivery system has a torque handle coupled at the mid proximal portion of the stiff tube and a proximal hub coupled at the proximal end of the stiff tube. The proximal hub has a Luer fitting for infusing a fluid agent and a saline flush port fluidly coupled with the stiff tube.
A single lumen, tear-away delivery sheath slidingly encases the stiff tube and is positioned between the torque handle and the bifurcated catheter. The delivery sheath is nominally about 15 cm in length with a distal end and a proximal end. The distal end has a shape and outer diameter adapted to mate with the channel restriction in the distal end of the main channel of the Y hub body as shown previously in
The fluid delivery system is prepared by flushing saline solution from the saline port in the stiff tube proximal hub through to infusion ports in the distal extension tips of the bifurcated catheter. The bifurcated catheter is loaded into the delivery sheath by pulling the catheter relative to the delivery sheath handle until the tips of the distal extensions of the bifurcated catheter are completely within the delivery sheath.
The distal end of the delivery sheath, with the bifurcated catheter loaded, is inserted through the Touhy Borst valve on the secondary port of the Y hub body until the distal end seats in the channel restriction in the main channel. Distal force on the torque handle of the stiff tube advances the bifurcated catheter into the introducer sheath, preferably at least about 15 cm (about the length of the tear away delivery sheath) into introducer sheath to ensure the distal extensions are completely out of the tear away delivery sheath and into the introducer sheath.
The tear away delivery sheath is retracted from the Y hub body by pulling in a proximal position on the delivery sheath handle assembly as previously described in
The bifurcated catheter is advanced to the distal tip of the introducer sheath by distal movement of the stiff tube at the torque handle relative to the Y hub body. Using fluoroscopic guidance, the bifurcated catheter is advanced out of the distal tip of the introducer sheath. The bifurcated catheter is manipulated through the torque handle, and the introducer sheath is simultaneously retracted, and the distal extensions bias toward their memory shape in the aorta and cannulate the renal arteries. Once the distal extensions are completely extended out of the distal tip of the introducer sheath and positioned in the renal arteries, the distal tip of the introducer sheath is retracted at least just proximal of the marker bands on the polymer tube of the bifurcated catheter to allow for interventional catheter advancement, while the bifurcated catheter remains in place. With the introducer sheath positioned, the Touhy Borst valve is tightened to prevent further movement of the bifurcated catheter in the introducer sheath.
The introducer sheath may be sutured or otherwise positionally controlled at or near the percutaneous entry site to prevent sheath movement during the subsequent procedure. Fluid agent may now be delivered through the proximal port of the fluid delivery system, through the stiff tube and into the renal arteries through the bifurcated catheter similar to that shown in
Medical intervention procedures, such as coronary procedures, are initiated by inserting the appropriate guide wires and catheters through the hemostasis valve on the proximal fitting of the Y hub body. In this example, a nominal 6 French catheter will advance through the introducer sheath and along side the stiff tube without significant resistance.
When medical interventions are complete, the intervention catheters and guide wires are retracted and removed from the Y hub body through the hemostasis valve. Fluid agent delivery is often stopped. The Touhy Borst valve is loosened and torque handle of the stiff tube is pulled proximally relative to the Y hub body, withdrawing the distal extensions of the bifurcated catheter out of the renal arteries and into the introducer sheath. The introducer sheath is retracted from the percutaneous entry point and the entry point closed with standard medical procedures.
The various embodiments herein described for the present invention can be useful in treatments and therapies directed at the kidneys such as the prevention of radiocontrast nephropathy (RCN) arising from diagnostic procedures using iodinated contrast materials. As a prophylactic treatment method for patients undergoing interventional procedures that have been identified as being at elevated risk for developing RCN, a series of treatment schemes have been developed based upon local therapeutic agent delivery to the kidneys. Among the agents identified for such treatment are normal saline (NS) and the vasodilators papaverine (PAP) and fenoldopam mesylate (FM).
The approved use for fenoldopam is for the in-hospital intravenous treatment of hypertension when rapid, but quickly reversible, blood pressure lowering is needed. Fenoldopam causes dose-dependent renal vasodilation at systemic doses as low as approximately 0.01 mcg/kg/min through approximately 0.5 mcg/kg/min IV and it increases blood flow both to the renal cortex and to the renal medulla. Due to this physiology, fenoldopam may be utilized for protection of the kidneys from ischemic insults such as high-risk surgical procedures and contrast nephropathy. Dosing from approximately 0.01 to approximately 3.2 mcg/kg/min is considered suitable for most applications of the present embodiments, or about 0.005 to about 1.6 mcg/kg/min per renal artery (or per kidney). As before, it is likely beneficial in many instances to pick a starting dose and titrate up or down as required to determine a patient's maximum tolerated systemic dose. Recent data, however, suggest that about 0.2 mcg/kg/min of fenoldopam has greater efficacy than about 0.1 mcg/kg/min in preventing contrast nephropathy and this dose is preferred.
The dose level of normal saline delivered bilaterally to the renal arteries may be set empirically, or beneficially customized such that it is determined by titration. The catheter or infusion pump design may provide practical limitations to the amount of fluid that can be delivered; however, it would be desired to give as much as possible, and is contemplated that levels up to about 2 liters per hour (about 25 cc/kg/hr in an average about 180 lb patient) or about one liter or 12.5 cc/kg per hour per kidney may be beneficial.
Local dosing of papaverine of up to about 4 mg/min through the bilateral catheter, or up to about 2 mg/min has been demonstrated safety in animal studies, and local renal doses to the catheter of about 2 mg/min and about 3 mg/min have been shown to increase renal blood flow rates in human subjects, or about 1 mg/min to about 1.5 mg/min per artery or kidney. It is thus believed that local bilateral renal delivery of papaverine will help to reduce the risk of RCN in patients with pre-existing risk factors such as high baseline serum creatinine, diabetes mellitus, or other demonstration of compromised kidney function.
It is also contemplated according to further embodiments that a very low, systemic dose of papaverine may be given, either alone or in conjunction with other medical management such as for example saline loading, prior to the anticipated contrast insult. Such a dose may be on the order for example of between about 3 to about 14 mg/hr (based on bolus indications of approximately 10–40 mg about every 3 hours—papaverine is not generally dosed by weight). In an alternative embodiment, a dosing of 2–3 mg/min or 120–180 mg/hr. Again, in the context of local bilateral delivery, these are considered halved regarding the dose rates for each artery itself.
Notwithstanding the particular benefit of this dosing range for each of the aforementioned compounds, it is also believed that higher doses delivered locally would be safe. Titration is a further mechanism believed to provide the ability to test for tolerance to higher doses. In addition, it is contemplated that the described therapeutic doses can be delivered alone or in conjunction with systemic treatments such as intraveneous saline.
It is to be understood that the invention can be practiced in other embodiments that may be highly beneficial and provide certain advantages. For example radiopaque markers are shown and described above for use with fluoroscopy to manipulate and position the introducer sheath and the intra renal catheters. The required fluoroscopy equipment and auxiliary equipment devices are typically located in a specialized location limiting the in vivo use of the invention to that location. Other modalities for positioning intra renal catheters are highly beneficial to overcome limitations of fluoroscopy. For example, non fluoroscopy guided technology is highly beneficial for use in operating rooms, intensive care units, and emergency rooms, where fluoroscopy may not be readily available or its use may cause undue radiation exposure to users and others due to a lack of specific radiation safeguards normally present in angiography suites and the like. The use of non-fluoroscopy positioning allows intra renal catheter systems and methods to be used to treat other diseases such as ATN and CHF in clinical settings outside of the angiography suite or catheter lab.
In one embodiment, the intra renal catheter is modified to incorporate marker bands with metals that are visible with ultrasound technology. The ultrasonic sensors are placed outside the body surface to obtain a view. In one variation, a portable, noninvasive ultrasound instrument is placed on the surface of the body and moved around to locate the device and location of both renal ostia. This technology is used to view the aorta, both renal ostia and the intra renal catheter.
In another beneficial embodiment, ultrasound sensors are placed on the introducer sheath and the intra renal catheter itself; specifically the tip of the distal extensions, along the distal extensions or at the distal end of the catheter. The intra renal catheter with the ultrasonic sensors implemented allows the physician to move the sensors up and down the aorta to locate both renal ostia.
A further embodiment incorporates Doppler ultrasonography with the intra renal catheters. Doppler ultrasonography detects the direction, velocity, and turbulence of blood flow. Since the renal arteries are isolated along the aorta, the resulting velocity and turbulence is used to locate both renal ostia. A further advantage of Doppler ultrasongraphy is it is non invasive and uses no x rays.
A still further embodiment incorporates optical technology with the intra renal catheter. An optical sensor is placed at the tip of the introducer sheath. The introducer sheath's optical sensor allows visualization of the area around the tip of the introducer sheath to locate the renal ostia. In a further mode of this embodiment, a transparent balloon is positioned around the distal tip of the introducer sheath. The balloon is inflated to allow optical visual confirmation of renal ostium. The balloon allows for distance between the tip of the introducer sheath and optic sensor while separating aorta blood flow. That distance enhances the ability to visualize the image within the aorta. In a further mode, the balloon is adapted to allow profusion through the balloon wall while maintaining contact with the aorta wall. An advantage of allowing wall contact is the balloon can be inflated near the renal ostium to be visually seen with the optic sensor. In another mode, the optic sensor is placed at the distal tips of the intra renal catheter. Once the intra renal catheter is deployed within the aorta, the optic sensor allows visual confirmation of the walls of the aorta. The intra renal catheter is tracked up and down the aorta until visual confirmation of the renal ostia is found. With the optic image provided by this mode, the physician can then track the intra renal catheter into the renal arteries to a predetermined depth.
Another embodiment uses sensors that measure pressure, velocity, and/or flow rate to locate renal ostia without the requirement of fluoroscopy equipment. The sensors are positioned at the tip of distal extensions of the intra renal catheter. The sensors display real time data about the pressure, velocity, and/or flow rate. With the real-time data provided, the physician locates both renal ostia by observing the sensor data when the intra renal catheter is around the approximate location of the renal ostia. In a further mode of this embodiment, the intra renal catheter has multiple sensors positioned at a mid distal and a mid proximal position on the catheter to obtain mid proximal and mid distal sensor data. From this real time data, the physician can observe a significant flow rate differential above and below the renal arteries and locate the approximate location. With the renal arteries being the only significant sized vessels within the region, the sensors would detect significant changes in any of the sensor parameters.
In a still further embodiment, chemical sensors are positioned on the intra renal catheter to detect any change in blood chemistry that indicates to the physician the location of the renal ostia. Chemical sensors are positioned at multiple locations on the intra renal catheter to detect chemical change from one sensor location to another.
Additional modifications or improvements may be made by the embodiments shown and described herein without departing from the intended scope of the invention which is considered to be broadly beneficial according to various independent aspects described. For example, various modifications to or combinations with the present embodiments may be made in view of other available information to one of ordinary skill in the art upon review of this disclosure and remain within the intended scope of the invention.
Although the description above contains many details, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. Therefore, it will be appreciated that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” All structural, chemical, and functional equivalents to the elements of the above-described preferred embodiment that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112, sixth paragraph, unless the element is expressly recited using the phrase “means for.”
This application is a continuation of PCT Patent Application No. PCT/US03/29585 filed Sep. 22, 2003, which claims priority from U.S. Provisional Patent Application Ser. Nos.: 60/412,476, filed on Sep. 20, 2002; 60/486,206, filed on Jul. 9, 2003; and 60/502,399, filed on Sep. 13, 2003. The full disclosure of each of the foregoing applications is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1696018 | Schellberg | Dec 1928 | A |
2499045 | Walker et al. | Feb 1950 | A |
3344791 | Foderick | Oct 1967 | A |
3455298 | Anstadt | Jul 1969 | A |
3516408 | Montanti | Jun 1970 | A |
3667069 | Blackshear et al. | Jun 1972 | A |
3730186 | Edmunds, Jr. et al. | May 1973 | A |
3791374 | Guarino | Feb 1974 | A |
3970090 | Loiacono | Jul 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4248224 | Jones | Feb 1981 | A |
4309994 | Grunwald | Jan 1982 | A |
4345602 | Yoshimura et al. | Aug 1982 | A |
4407271 | Schiff | Oct 1983 | A |
4423725 | Baran et al. | Jan 1984 | A |
4449532 | Storz | May 1984 | A |
4459977 | Pizon et al. | Jul 1984 | A |
4490374 | Bandurco et al. | Dec 1984 | A |
4493697 | Krause et al. | Jan 1985 | A |
4536893 | Parravicini | Aug 1985 | A |
4546759 | Solar | Oct 1985 | A |
4554284 | Stringer et al. | Nov 1985 | A |
4685446 | Choy | Aug 1987 | A |
4705502 | Patel | Nov 1987 | A |
4705507 | Boyles | Nov 1987 | A |
4712551 | Rayhanabad | Dec 1987 | A |
4714460 | Calderon | Dec 1987 | A |
4723939 | Anaise | Feb 1988 | A |
4753221 | Kensey et al. | Jun 1988 | A |
4781716 | Richelsoph | Nov 1988 | A |
4784639 | Patel | Nov 1988 | A |
4817586 | Wampler | Apr 1989 | A |
4834707 | Evans | May 1989 | A |
4846831 | Skillin | Jul 1989 | A |
4861330 | Voss | Aug 1989 | A |
4863461 | Jarvik | Sep 1989 | A |
4888011 | Kung et al. | Dec 1989 | A |
4902272 | Milder et al. | Feb 1990 | A |
4902291 | Kolff | Feb 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4909252 | Goldberger | Mar 1990 | A |
4911163 | Fina | Mar 1990 | A |
4919647 | Nash | Apr 1990 | A |
4925377 | Inacio et al. | May 1990 | A |
4925443 | Heilman et al. | May 1990 | A |
4927407 | Dorman | May 1990 | A |
4927412 | Menasche | May 1990 | A |
4938766 | Jarvik | Jul 1990 | A |
4950226 | Barron | Aug 1990 | A |
4957477 | Lundback | Sep 1990 | A |
4964864 | Summers et al. | Oct 1990 | A |
4976691 | Sahota | Dec 1990 | A |
4976692 | Atad | Dec 1990 | A |
4990139 | Jang | Feb 1991 | A |
4995864 | Bartholomew et al. | Feb 1991 | A |
5002531 | Bonzel | Mar 1991 | A |
5002532 | Gaiser et al. | Mar 1991 | A |
5053023 | Martin | Oct 1991 | A |
5059178 | Ya | Oct 1991 | A |
5067960 | Grandjean | Nov 1991 | A |
5069662 | Bodden | Dec 1991 | A |
5069680 | Grandjean | Dec 1991 | A |
5073094 | Dorman et al. | Dec 1991 | A |
5089019 | Grandjean | Feb 1992 | A |
5098370 | Rahat et al. | Mar 1992 | A |
5098442 | Grandjean | Mar 1992 | A |
5112301 | Fenton, Jr. et al. | May 1992 | A |
5112349 | Summers et al. | May 1992 | A |
5119804 | Anstadt | Jun 1992 | A |
5129883 | Black | Jul 1992 | A |
5131905 | Grooters | Jul 1992 | A |
5135474 | Swan et al. | Aug 1992 | A |
5158540 | Wijay et al. | Oct 1992 | A |
5163910 | Schwartz et al. | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5180364 | Ginsburg | Jan 1993 | A |
5205810 | Guiraudon et al. | Apr 1993 | A |
5226888 | Arney | Jul 1993 | A |
5256141 | Gencheff et al. | Oct 1993 | A |
5257974 | Cox | Nov 1993 | A |
5282784 | Willard | Feb 1994 | A |
5290227 | Pasque | Mar 1994 | A |
5308319 | Ide et al. | May 1994 | A |
5308320 | Safar et al. | May 1994 | A |
5312343 | Krog et al. | May 1994 | A |
5320604 | Walker et al. | Jun 1994 | A |
5326374 | Ilbawi et al. | Jul 1994 | A |
5328470 | Nabel et al. | Jul 1994 | A |
5332403 | Kolff | Jul 1994 | A |
5345927 | Bonutti | Sep 1994 | A |
5358493 | Schweich et al. | Oct 1994 | A |
5358519 | Grandjean | Oct 1994 | A |
5364337 | Guiraudon et al. | Nov 1994 | A |
5370617 | Sahota | Dec 1994 | A |
5383840 | Heilman et al. | Jan 1995 | A |
5397307 | Goodin | Mar 1995 | A |
5411479 | Bodden | May 1995 | A |
5421826 | Crocker et al. | Jun 1995 | A |
5429584 | Chiu | Jul 1995 | A |
5453084 | Moses | Sep 1995 | A |
5464449 | Ryan et al. | Nov 1995 | A |
5476453 | Mehta | Dec 1995 | A |
5478331 | Heflin et al. | Dec 1995 | A |
5484385 | Rishton | Jan 1996 | A |
5505701 | Anaya Fernandez de Lomana | Apr 1996 | A |
5509428 | Dunlop | Apr 1996 | A |
5536250 | Klein et al. | Jul 1996 | A |
5558617 | Heilman et al. | Sep 1996 | A |
5599306 | Klein et al. | Feb 1997 | A |
5609628 | Keranen | Mar 1997 | A |
5613949 | Miraki | Mar 1997 | A |
5613980 | Chauhan | Mar 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5643171 | Bradshaw et al. | Jul 1997 | A |
5643215 | Fuhrman et al. | Jul 1997 | A |
5702343 | Alferness | Dec 1997 | A |
5713860 | Kaplan et al. | Feb 1998 | A |
5720735 | Dorros | Feb 1998 | A |
5755779 | Horiguchi | May 1998 | A |
5762599 | Sohn | Jun 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5776190 | Jarvik | Jul 1998 | A |
5797876 | Spears et al. | Aug 1998 | A |
5807895 | Stratton et al. | Sep 1998 | A |
5817046 | Glickman | Oct 1998 | A |
5902229 | Tsitlik et al. | May 1999 | A |
5902336 | Mishkin | May 1999 | A |
5913852 | Magram | Jun 1999 | A |
5928132 | Leschinsky | Jul 1999 | A |
5935924 | Bunting et al. | Aug 1999 | A |
5968013 | Smith et al. | Oct 1999 | A |
5971910 | Tsitlik et al. | Oct 1999 | A |
5984955 | Wisselink | Nov 1999 | A |
6039721 | Johnson et al. | Mar 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6077256 | Mann | Jun 2000 | A |
6086527 | Talpade | Jul 2000 | A |
6086557 | Morejohn et al. | Jul 2000 | A |
6117117 | Mauch | Sep 2000 | A |
6165120 | Schweich et al. | Dec 2000 | A |
6176852 | Ischinger | Jan 2001 | B1 |
6287608 | Levin et al. | Sep 2001 | B1 |
6387037 | Bolling et al. | May 2002 | B1 |
6390969 | Bolling et al. | May 2002 | B1 |
6468241 | Gelfand et al. | Oct 2002 | B1 |
6508787 | Erbel et al. | Jan 2003 | B2 |
6514226 | Levin et al. | Feb 2003 | B1 |
6533747 | Polschegg et al. | Mar 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6595959 | Statienko et al. | Jul 2003 | B1 |
6699231 | Sterman et al. | Mar 2004 | B1 |
20010031907 | Downey et al. | Oct 2001 | A1 |
20020090388 | Humes et al. | Jul 2002 | A1 |
20020091355 | Hayden | Jul 2002 | A1 |
20020169413 | Keren et al. | Nov 2002 | A1 |
20030069468 | Bolling et al. | Apr 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030144636 | Liu | Jul 2003 | A1 |
20030153898 | Schon et al. | Aug 2003 | A1 |
20030181856 | Goldman | Sep 2003 | A1 |
20040044302 | Bernard et al. | Mar 2004 | A1 |
20040064089 | Kesten et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
43 24 637 | Mar 1995 | DE |
0 654 283 | May 1995 | EP |
0 884 064 | Dec 1998 | EP |
2 239 675 | Jul 1997 | GB |
WO 9711737 | Apr 1997 | WO |
WO 9803213 | Jan 1998 | WO |
WO 9817347 | Apr 1998 | WO |
WO 9852639 | Nov 1998 | WO |
WO 9922784 | May 1999 | WO |
WO 9933407 | Jul 1999 | WO |
WO 9951286 | Oct 1999 | WO |
WO 0041612 | Jul 2000 | WO |
WO 0141861 | Jun 2001 | WO |
WO 01083016 | Nov 2001 | WO |
WO 0197687 | Dec 2001 | WO |
WO 0197717 | Dec 2001 | WO |
WO 0197878 | Dec 2001 | WO |
WO 0197879 | Dec 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050245892 A1 | Nov 2005 | US |
Number | Date | Country | |
---|---|---|---|
60502399 | Sep 2003 | US | |
60486206 | Jul 2003 | US | |
60412476 | Sep 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US03/29585 | Sep 2003 | US |
Child | 11084295 | US |