The present invention relates to a document insertion apparatus for automatically inserting documents into load supports or load make-up accessories, in particular into containers, bins or trays, which are transported by means of a conveyor in an order-picking system. The present invention further relates to a method for inserting a document into an associated load support.
With conventional document insertion apparatuses such as the ones sold by the applicant, a document is printed by means of a conventional printer and subsequently buffered in a magazine coupled to the printer which can buffer, for example, up to eight different documents. Typically, laser printers are used. For ensuring that the document is already printed when a container being assigned to the document, which is transported on a conveyor such as a roller conveyor, has passed the printer an identification number of the container is already detected relatively early. Typically, the container identification happens at a location which is located, for example, up to ten container lengths upstream relative to a hand-over point where the documents are inserted into the containers. This is necessary for retrieving the document from an upper level controlling computer, such as a warehouse management computer, and for providing sufficient time to the document printer in order to print the document. In particular, warming-up periods of the printer need to be considered.
It is considered as a disadvantage that the distance between the identification location and the inserting location is relatively long. Failures (e.g. traffic jams, an unpredictable removal of a container from the container stream or similar) can happen on the way between the identification location and the insertion location so that instead of an expected container rather any container or another container arrives at the hand-over location. In this case, the document printer is no longer capable of reacting on such a failure. Then the entire system needs to be stopped or the failure is corrected in a manual failure handling station being located downstream.
If each document comprises a number of pages or sheets, conventional document insertion apparatuses rapidly reach their limit when sheet numbers increase for each container, i.e. the throughput (container/hour) heavily decreases. If in this situation also a failure occurs during the container transport between the identification location and the insertion location this can have disastrous effects.
Existing document printing systems are relatively expensive since on the one hand a lot of mechanics and on the other hand much pneumatics is utilized. Thus, it is quite usual to connect a document conveyor to the printer instead of a document magazine. The document-conveyor track then functions as storage, and dispenses documents into the containers at the end thereof. The putting-up and the starting up of this (additional) document-conveyor track is cost intensive, however. Further, such a document-conveyor track represents another possible source of failures, and additionally requires space.
If no document conveyor is provided, typically a pneumatically operated document magazine is provided. In order to allow opening and closing of individual ducts of a magazine a pneumatic circuit is required. The pneumatic circuit in turn increases the costs and the susceptibility in the light of malfunctions.
The patent application US 2008/0289301 A1 discloses a device for delivering coupons to containers. Thereby one coupon is delivered to each container. The delivery happens by a horizontal ejection. On this occasion the coupons are clamped between two belts vertically opposing each other, which in turn are oppositely driven in order to eject one coupon in a lateral manner respectively. The coupons are printed in advance, and are provided in terms of an endless web on a roller. The device of the document US 2008/0289301 A1 additionally comprises a device for separating the endlessly provided coupons before the separated coupons are delivered to the belt.
In the light of this it is one object of the present invention to provide an improved method and an improved apparatus for automatically inserting documents into load supports.
It is another object of the invention that the system should is scalable well and equipped in a redundant manner.
A still further object is a high reliability as well as utilization of as less as possible mechanical components is desirable.
It is still another object that the system is cheap and allows high throughputs.
According to one aspect of the invention a document insertion apparatus for automatically inserting documents into load supports, in particular containers or trays, which are transported in an order-picking system by means of a conveyor, comprises: a document guiding device for storing a, particularly one single, document including at least one document sheet, and for mechanically guiding the document to an assigned load support which automatically passes the document insertion apparatus on the conveyor so that the document can be actively moved into the load support assigned thereto, wherein the document guiding device comprises two receiving members which are substantially facing each other horizontally and supported in a movably to each other and which receive the document in a space between each other in their receiving position, and an actuating member, which moves the receiving members towards their delivery position in which the document is delivered to the assigned load support; at least one sensor, wherein a first sensor (e.g. a scanner) is configured and arranged such that the load support can be identified in front of, preferably immediately in front of, the document insertion apparatus; and a controlling device, which is connected to the sensors for outputting a document print command to the printer in dependence on a signal of the first sensor identifying each of the load supports, in order to cause print of the document being assigned to the identified load support.
Failures are reduced by identifying the load support only immediately in front of the document insertion apparatus, because the load supports cannot get into trouble any more on their way to the document insertion apparatus. Even in case of wrong prints or paper jams wrong assignments between documents and load supports do not occur. A paper jam or a misprint can be removed without any problem, in particular without resulting in confusion with regard to the load supports.
Since the documents are given into the load supports directly, i.e. without simultaneous buffering of documents belonging to different load supports, documents having a greater number of sheets can be delivered without any problem. The document insertion preferably happens horizontally.
The document insertion apparatus in accordance with the present invention operates extremely reliable (in average one failure per 10,000 sheets). The invention is scalable without any problems. i.e. a number of document insertion apparatuses can be coupled sequentially to one and the same conveyor track (conveyor) for increasing the throughput (preferably at the same number of sheets for each document).
The load-support conveyor is built very short since a so-called sign-in track, like the one known in the prior art having, for example, a length of eight containers, is not required any more.
Less mechanical components are used which, however, are simple thereby resulting in a higher reliability.
The receiving members are preferably realized by bucket wheels which are mounted in a rotatable manner and in the receiving position the buckets thereof are closed towards the assigned load supports.
(Multi-sectional) bucket wheels having, for example, two to four buckets per wheel represent simple mechanical components, which on the other hand safely receive the sheets of a document and on the other hand safely guide same towards the load support during an insertion process.
Apart from this it is advantageous if the bucket wheels are operated by means of a single drive such that the bucket wheels rotate from their receiving position in an opposite direction of rotations, wherein preferably the bucket wheels always rotate in the respectively same direction in order to get into their respective delivery position.
The bucket wheels are rotated in order to be moved from their receiving position into their delivery position. The advantage of bucket wheels is that if a first bucket wheel pair has been rotated from the receiving position into the delivery position the subsequent bucket wheel pair in turn is simultaneously rotated to its receiving position. Moving the pairs of bucket wheels back and forth is not required resulting in a gain of time. This increases the throughput.
Since only one drive is used the system is less susceptible to failures with regard to synchronization. The synchronization of the receiving members typically happens by moving, for example, the bucket wheels by means of a traction device, particularly a driving belt, which is guided around parallel axes of the bucket wheels in an opposite sense of rotation. Preferably, the drive is an electric motor.
In this manner the utilization of a pneumatic circuit can be completely omitted. This in turn increases the reliability. Thereby, also the acquisition costs are reduced.
Alternatively, the receiving members are formed as supported flaps.
By using flaps the above-mentioned advantages can be achieved as well, except that the flaps need to be moved back and forth in order to get to the receiving position or delivery position.
If pivotal flaps are used, it is advantageous to use a stamp as an actuating member for bringing the flaps from above to their delivery position. Then, the flaps can be brought again into their receiving position by means of a restoring mechanism, in particular a spring device.
This system in turn is—in comparison to the prior art—characterized in that only mechanical components—and thus no pneumatic components—are used.
With a preferred embodiment a second sensor is provided which is arranged and configured such that a number of sheets belonging to one document can be counted and checked, wherein the controlling device interrupts the insertion of documents in dependence on signals from the second sensor, if the number of document sheets deviates from a predetermined number, or causes the insertion of documents, if the number of document sheets matches the predetermined number.
In this manner it can be controlled whether all sheets of one document are actually present. This measure in turn turns off one of the frequent failure sources.
Further it is preferred if a third sensor is provided which is arranged and configured for checking whether the right document is located in the receiving members for being inserted.
Preferably, a bar code scanner is used for identifying the document in the receiving position.
In this manner failures can be detected in the printing device itself and can be eliminated in time.
Also, it is advantageous if a fourth sensor is provided which is arranged and configured for checking whether the receiving members are in the respectively right position.
With this measure it is possible to check whether the receiving members have run through a complete motion cycle during the preceding insertion of one document. If the receiving members have not been moved entirely to their receiving position, a mechanical jam can happen preventing the insertion of documents into the receiving members. Such a failure can be detected immediately or in good time by the fourth sensor.
According to another object of the invention an order-picking system is proposed, having at least one document insertion apparatus in accordance with the present invention and having a conveyor for transporting load supports, wherein a number of document insertion apparatuses share one common single first sensor (e.g. scanner) being arranged one accumulation length upstream relative to the first document insertion apparatus for each document insertion apparatus provided.
If the order-picking system is provided, for example, with two document insertion apparatuses, it is recommended to place the identification location by the length of two load supports in front of the first document insertion apparatus. Thus, it is possible, to identify two load supports for each cycle so that each document insertion apparatus can print one document for one of the load supports. It is clear that the identification location is preferably shifted correspondingly further upstream if the number of document insertion apparatuses increases.
Alternatively, the document insertion apparatus can be bypassed by another conveyor if, for example, invoices are printed as documents. Typically, only the last container of a series of containers gets added the invoice. If a container series includes, for example, five containers, this means that the fifth container is provided with one document. i.e. an invoice. For avoiding the passage of unnecessary many containers at the document insertion apparatus, i.e. for letting only pass such containers at the document insertion apparatus which are to be provided actually with one document, a bypass-conveyor track (conveyor) is provided on which the containers run along the document insertion apparatus without detour. In this manner the throughput can be increased.
According to still another object of the invention a method is proposed for inserting documents into an assigned load support, wherein the method comprises the following steps: detecting a load support identification number immediately, preferably one accumulation length, in front of a document insertion apparatus; retrieving a document assigned to the identification number from a controlling device; printing by means of a printing device and delivering the assigned document to a document guiding device of the document insertion apparatus; checking whether the document is complete; delivering the document if complete; wherein the delivery comprises an opposing movement of receiving members of the document guiding device for guiding the document mechanically into the assigned load support.
Failures can be prevented by reading the identification number of the load support only immediately in front of the document insertion apparatus, the failures being caused by the length of the sign-in track (advance track) typically used in the prior art between identification and insertion.
It is clear that the above-mentioned and hereinafter still to be explained features cannot only be used in the respectively given combination but also in other combinations or alone without departing from the scope of the present invention.
Embodiments of the invention are illustrated in the drawing and will be explained in more detail in the following description.
In the following description identical features will be designated by the same reference numerals. Similar features are designated by slightly varying reference numerals.
The document insertion apparatus 12 of
The containers 30 are transported downstream past the document insertion apparatus 12 on the segments 28 along the direction X, as illustrated by means of an arrow 31. The segments 28-4 to 28-1 are provided with the figures 0 to 3 (from the right to the left) for illustrating the distance of one container 30 relative to the document insertion apparatus 12. Hence, the container 30 on the conveyor segment 28-1 is only three positions apart from the document insertion apparatus 12. In
In dependence on the content of a document 32 the document insertion apparatus 12 is positioned in the order-picking systems 10 either at the beginning or at the end thereof. The document insertion apparatus 12 is positioned at the beginning if empty containers 30 are to be filled with articles in accordance with a picking order by means of the documents 32. In this case, the documents 32 signal to the operator how many articles of a specific type belong to a respective one of the containers 30. In case of invoices, the document insertion apparatus 12 is only arranged at the end, i.e. nearby a goods issue of the order-picking system 10. In this case, typically only the last container 30 of a container series gets one invoice added, assuming that an order comprises several containers 30. However, this embodiment will be explained in greater detail with reference to
With reference to
With reference to
In the present example, the document guiding device 40 comprises first and second receiving members 42, 44 which are implemented in terms of bucket wheels 46, 47 in
The bucket wheels 46, 47 can be rotated around axes 48 and 50. The axes 48, 50 are substantially orientated parallel to each other. The axes 48, 50 are orientated, in the present example, along the axis Y, i.e. transversally relative to the conveying direction 31.
The bucket wheels 46, 47 are orientated to each other such that two pairs of bucket blades are preferably arranged in a horizontal plane and the bucket wheels can be rotated freely with respect to each other, but preferably in a synchronized manner. In the example of
For generating this movement, which is preferably synchronous, a (preferably single) drive 52 is used which is implemented in terms of an electric motor 54 in the present example of
In order to verify whether a document 32 comprises a required number of document sheets, a sensor 64 such as a light probe or a light barrier is provided on a frame 62 of the document guiding device 40, the sensor 64 being preferably arranged in a horizontal plane (plane XY) where also document sheets are output by the printer 14 (cf.
In order to ensure that the right document 32 was printed another sensor 66 such as a bar code scanner can be used. In
Another safety feature can require another sensor 68 such as a Reed contact. A Reed contact can verify the position of the bucket wheels 46, 47 which are preferably made of metal in this case. If one of the bucket wheels, in this case the bucket wheel 46, moves through the sensor area of the sensor 68, it can be determined whether the bucket wheel 46 has rotated in the right direction and about the right angle. If the bucket wheel 46 has rotated in the right direction and about the right angle. Also the second bucket wheel 46 has rotated correctly as a logical consequence of the drive by means of the traction device 56. By checking the position of the bucket wheels 46, 47, it can be prevented that sheets cannot be delivered from the printer 14 to the next free pair of bucket blades, and thereby resulting in a paper jam, if a delivery device (in this case one rotation of the bucket wheels 46, 47 about 90 degree) has not completely run through.
With reference to
The sensor 64 has a free line of sight between the bucket wheels 46, 47 on one dispenser slot of the printer 14. If the printer 14 dispenses a document sheet, for example, a light beam of the sensor 64 is interrupted for a short time since the sheet falls in a space between two bucket pairs assigned to each other as it will be described hereinafter in greater detail. The sensor 64 preferably measures along the direction Y, i.e. perpendicular to the drawing plane of
The sensors 66 and 66a are preferably arranged so that they substantially operate in the direction of Z. The sensor 66a can check whether the compartment was empty before the insertion process.
The dispenser slot of the printer 14 is preferably arranged such that it dispenses sheets in a gap 72 between neighbouring buckets of the bucket wheels 46, 47.
The bucket wheel 47 preferably comprises a base area which preferably is substantially circular and forms a rear wall 74 of the bucket wheels 47, which is rotatably mounted around its axis 50 in the direction of rotation 60 on the frame 62 (cf.
In the present case, the bucket wheel 47 comprises four bucket blades 76-1, . . . , 76-4 being orientated substantially perpendicular to the rear side 74. Preferably the angle is not exactly 90° providing a certain tolerance in the vertical direction when the documents are inserted. However, the bucket blades 76 can also be inclined slightly relative to the vertical. It is clear that more or less of the bucket blades 76 can be used. However, preferably three or four bucket blades 76 are utilized.
Preferably, each of the bucket blades 76 is connected to a side guiding element 78 arranged oppositely to the rear side 74. The side guiding elements 78-1, . . . , 78-4 of
Respectively one gap 72 is formed between the bucket blades 76 and the side guiding elements 78 of a neighbouring bucket blade. Thus, one of the gaps 72 is formed, for example, between the side guiding element 78-1 of the bucket blade 76-4 and the bucket blade 76-1 of the neighbouring bucket.
The bucket wheel 47 is preferably made of sheet metal, wherein the individual elements of the bucket wheel 47 are formed or crimped such that the document sheets, which are put into one of the bucket wheel spaces being defined respectively between two neighbouring bucket blades and one associated side guiding element as well as one corresponding part of the rear side 74 cannot fall out unintentionally. Therefore, neighbouring bucket blades (e.g. 76-1 and 76-4) together form an area with almost no transitions.
With reference to
In
As soon as all of the document sheets 82 of one document 30 are present in the receiving space, which is defined by the buckets 80-1 and 80-2, the bucket wheels are turned in opposite directions around their respective axes. The left bucket wheel is presently turned in a clockwise direction, i.e. along the direction of rotation 60. The right bucket wheel is turned against the clockwise direction. i.e. alone the direction of rotation 58.
Then the entire process can start from the beginning since another bucket wheel pair, which follows the bucket pair 80, is now in its receiving position whereas the bucket wheel pair 80 being underlined bold is in its delivery position.
It is clear that the receiving space defined by the buckets 80-1 and 80-2 can be varied arbitrarily with regard to the geometrical dimensions thereof. However, the space should be adapted preferably to the paper size being preferably used, namely such that the length of the paper is slightly smaller than the length of the receiving space for guiding the documents 30 safely downwards during one rotation cycle.
It is clear that the shape of the receiving members 42, 44 which was explained up to now in terms of bucket wheels turning around an axis in a horizontal plane can be varied. Also, the orientation of the rotation axes 48, 50 can be changed. Hence, it is possible, for example, to orientate the rotation axes 48, 50 vertically so that the document guiding device 40 receives the documents 32, for example, from a printer 14 being arranged at the left-hand side, and delivers to the right into adjacent containers 30 so that the essential movement happens when the documents are inserted in the horizontal.
Another embodiment of another document guiding device 40′ is shown in
Instead of providing endless rotating bucket wheels 46, 47, in the present case flaps 90 are provided, which are pivotally supported on the frame 62. A first flap 90-1 and a second flap 90-2 are substantially orientated horizontally when there are in their receiving position as shown in
Document sheets can be delivered to the receiving space from above, which is restricted by the flaps 90-1, 90-2 and the frame 62. As soon as all of the document sheets of one document are completely present in the receiving space and the corresponding associated container 30 is positioned beneath the flaps 90-1, 90-2, the document is pressed downwards (−Z) by the aid of a stamp 92, which is represented in this case by an actuating member, capable of moving substantially back and forth along the direction of Z. The flaps 90-1 and 90-2 then pivot downwards as indicated by two curved double arrows. The removed flaps 90-1 and 90-2 then release the path of the document 32 towards the container 30 (not depicted here). The flaps 90-1, 90-2 typically comprise a restoring mechanism such as a correspondingly biased spring in the rotation axis thereof for returning the flaps 90-1, 90-2 after a successful delivery of the document 32 from the delivery position to the receiving position.
With reference to
It is clear that the actuating member 92 of
In
The first document insertion apparatus 12 is again facing the conveyor segment 28-4. The second document insertion apparatus 12′ is arranged adjacent to the conveyor segment 28-6. Thus, one conveyor segment (28-5) is located between the first and second document insertion apparatuses 12, 12′. This conveyor segment 28-5 is required, in order to be able to provide the spatial space for the paper storage 16 of the second document insertion apparatus 12′ (accessibility for the purpose of filling). If the paper storage 16 of the second document insertion apparatus 12′ were arranged on the right-hand side relative to the printer 14, the first and second document insertion apparatuses 12 and 12′ could also adjoin each other directly, for example adjacent to the conveyor segments 28-4 and 28-5. Alternatively, the second (or a third) document insertion apparatus 12′ could also be arranged on the opposite side of the conveyor 26, if a direct subsequent arrangement of the document insertion apparatus is desired. In this case, the system would, however, be somehow broader as it is the case with the solution of
The container identification sensor 34 is arranged about the length of two conveyor segments 28 upstream relative to the first document insertion apparatus 12, in order to allow signalling to the document insertion apparatus 12, 12′ the container 30, which just arrives.
It is clear that even a so-called accumulation conveyor can be used as the conveyor segments 28 so that the length of one conveyor segment 28 along the streaming direction is also designated as an accumulation length in an equivalent manner.
In this manner, respectively one container 30 can be identified immediately in front of the document insertion apparatuses 12, 12′ for each of the document insertion apparatus 12 and 12′ by means of the container identification sensor 34. The first container 30, which passes the sensor 34, is fed to the second document insertion apparatus 12′ by travelling through the first document insertion apparatus 12. The second container 30, which passes the sensor 34, is fed to the first document insertion apparatus 12, and therefore stops briefly at the first document insertion apparatus 12, in order to allow receipt of the document 32.
With reference to
A comparison of the solid lines reveals that the invention is more efficient at an average number of 3.5 for each container, if compared to a single conventional document printer. However, if a conventional single document printer is compared to a double document insertion apparatus (cf.
The acquisition costs for the starting up of a double system in accordance with the present invention are slightly beneath the costs of a single prior art system. Although two printers 14 are required with the double system of the present invention, these additional costs are almost compensated by much lower costs for the document guiding devices 40 of the present invention. Additionally, considering that the present invention does not require an preparation line, i.e. does not require several conveyor segments in front of the printers, one arrives with the present invention including a double printer equipment at overall costs which are slightly lower than a prior art single equipment. Then, if one considers the much higher performance (curve 104) it is clear that the system and method of the present invention are significantly better.
Another advantage, at almost the same investment costs, is to be seen in that redundancy is achieved due to the two printers of the present invention which is not possible with a prior art magazine being adapted to receive 8 sheets being only provided one time. Another advantage is to be seen in the space saving since the present invention no longer requires a preparation line. The containers are identified directly in front of the printers 14. In particular, the present invention is significantly better than the prior art if the number of sheets for each container is greater than 2.
With reference to
With the exception of the last container 30 of a container series, which in this case actually receives the documents, all of the preceding containers 30 of the series are discharged at a discharging point 95, for example, by means of a pusher (not shown) to the second conveyor 94. For this purpose another sensor 96 for identifying the containers is provided one accumulation length in front of the discharging point 95.
The throughput in turn can be increased strongly in the entire system by only guiding “last” containers 30 of the series past the document insertion apparatus 12.
Also, of course only the last container could be discharged because the number of the “last” containers is low, as expected.
In another inquiry A3 it is checked whether all of the sheets or pages of the document 32 are printed. If not yet all of the sheets are printed, it is waited for in step S5. If all of the pages are printed, it is checked in an inquiry A4 whether the document 32 is complete. In the inquiry A4 once again each information being relevant to the document can be checked such as the document number, container number, number of sheets and similar. If the document 32 is not complete, the document insertion is interrupted or can be initiated once again beginning at the step S1.
However, if the document 32 is complete, then it can be checked in another inquiry A5 whether the identified container 30 is in the insertion position, i.e. if it is located on the conveyor segment directly following the document insertion apparatus 12. Since the document identification happens immediately in front of the document insertion, one needs to wait for one of the containers 30 very rarely (step S6).
If one of the containers 32 is in its document insertion position the document 32 can be delivered by the document insertion apparatus 12 or 12′ to the container 30 in a step S7. Subsequently, it can be checked in another inquiry A6 whether additional containers 30 need to be provided with documents 32. If no additional containers 30 are to be provided with documents 32 the method in accordance with the present invention ends. Otherwise, one returns to the step S1.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 004 640 | Jan 2009 | DE | national |
This is a continuation application of the co-pending International application WO 2010/078947 A1 (PCT/EP2009/009274) filed on 24 Dec. 2009 which claims priority of the German patent application DE 10 2009 004 640.2 filed on 1 Jan. 2009 which is fully incorporated here by reference.
Number | Name | Date | Kind |
---|---|---|---|
3205794 | Califano et al. | Sep 1965 | A |
4627222 | Cantile | Dec 1986 | A |
5803704 | Lazzarotti | Sep 1998 | A |
7600751 | Rozenfeld | Oct 2009 | B2 |
20080289301 | Gallimore | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1792 862 | Jun 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20110288678 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/009274 | Dec 2009 | US |
Child | 13177994 | US |