Cigarettes and other smoking articles commonly include filter portions (universally known as filter segments) intended to remove some impurities and toxins from the cigarette smoke as it is inhaled. In certain cases, cigarette manufacturers may wish to impart flavor to the cigarette smoke as it is inhaled by the smoker.
One method of imparting flavor to a cigarette may be to include a flavor capsule within the filter portion of a cigarette. When the capsule is ruptured, it releases flavorings or aromatic material into the air stream passing through the filter. These capsules may also alter other chemical or physical characteristics of the inhaled smoke, such as, for example, cooling or moistening the smoke such that the smoker is provided with an enhanced smoking experience.
An apparatus for insertion of capsules into cigarette filter tows, including a tow processing unit coupled to a capsule insertion unit and a filter rod making unit coupled to the capsule insertion unit, the tow processing unit including a tow bale, a plurality of rollers, a plurality of banding jets and a plasticizer chamber, and the rod making unit including a garniture bed, a sensor and a knife carrier. The capsule insertion unit including a hopper, an in-line presorting device, an inlet pipe, a feeder wheel rotating about an axis of rotation, the feeder wheel including a circular cavity in communication with said inlet pipe, an in-line sensor continuously controlling the quality of the capsules, an insertion wheel in operative communication with the feeder wheel and a tow gathering funnel configured to receive an edge of the insertion wheel.
The feeder wheel includes a plurality of radial channels in communication with the circular cavity of the wheel, each radial channel configured to receive a plurality of capsules and terminating at the outer edge of the feeder wheel, and a stationary cam having a lower edge and a variable height such that the lower edge selectively blocks the apertures along a portion of the circumferential edge of the feeder wheel.
a is a view of an exemplary embodiment of a capsule insertion unit.
b is a view of an exemplary embodiment of a capsule presorting device.
a is a cross-section of an exemplary embodiment of a capsule insertion unit.
b is a diagram of an exemplary embodiment of a feeder wheel and a distribution disk of a capsule insertion unit.
Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the spirit or the scope of the invention. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention. Further, to facilitate an understanding of the description discussion of several terms used herein follows.
As used herein, the word “exemplary” means “serving as an example, instance or illustration.” The embodiments described herein are not limiting, but rather are exemplary only. It should be understood that the described embodiment are not necessarily to be construed as preferred or advantageous over other embodiments. Moreover, the terms “embodiments of the invention”, “embodiments” or “invention” do not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
Turning to
Turning now to
Some embodiments of capsule insertion unit 200 may include at least one transfer wheel (not shown) disposed between feeder wheel 220 and insertion wheel 250. The transfer wheels may serve to transfer capsules from feeder wheel 220 to insertion wheel 250 in embodiments of unit 200 where the distance between presorting device 230 and tow gathering funnel 216 is greater than the sum of the radius of feeder wheel 220 and the diameter of insertion wheel 250. In such embodiments, any desired number of transfer wheels may be used; capsule insertion unit 200 may thus be adaptable for apparatuses of having diverse sizes and configurations. The configuration and structure of the transfer wheel may be substantially similar to the configuration and structure of insertion wheel 200. The interactions between the transfer wheel and the insertion wheel, the transfer wheel and the feeder wheel, and any two transfer wheels may be substantially similar to the interactions between the feeder wheel and the insertion wheel, as described herein.
Turning to
Turning to
Disposed substantially horizontally within circular cavity 214 of, and concentric to feeder wheel 220 may be distribution disk 310. Distribution disk 310 may include an axle 216. Axle 216 may be positioned substantially coaxial to axis of rotation 212 and may include a spring 218 disposed therein. Capsules 150 exiting from inlet pipe 210 may collect within circular cavity 214 and on the top surface of distribution disk 310. The elevation of distribution disk 310 within circular cavity 214 may be automatically adjusted depending on the quantity of capsules 150 present on the top surface of distribution disk 310 to facilitate smooth transfer of capsules from distribution disk 310 to feeder wheel 220. Distribution disk 310 may oscillate around axis of rotation 212, and may have an oscillation range of approximately ±180°. The top surface of distribution disk 310 may be flat or may have grooves 312 defined therein. The oscillating action and grooves 312 of distribution disk 310 may likewise facilitate supplying capsules 150 to feeder wheel 220.
The oscillation of distribution disk 310 may be facilitated by spring 218. The rotation of feeder wheel 220 around axis of rotation 212 may impart rotational motion to distribution disk 310 via frictional contact between feeder wheel 220 and distribution disk 310. As distribution disk 310 begins to rotate with feeder wheel 220, spring 218 may be imparted with increasing tension. As spring 218 reaches its limit of tension, it may decompress, thereby returning distribution disk 310 to its original position. The repetition of this motion may thus cause distribution disk to oscillate, thereby facilitating the movement of capsules 150 towards the edges of distribution disk 310 and into feeder wheel 220.
Feeder wheel 220 may include radial channels 314 defined in the interior thereof. Radial channels 314 may extend from circular cavity 214 towards the periphery of feeder wheel 220. Radial channels 314 may have a linear or arcuate profile; the particular profile may be chosen depending on the shape of capsules 150 used in a particular application and the speed with which capsules 150 pass through radial channels 314. Capsules 150 may pass from distribution disk 310 into radial channels 314 of feeder wheel 220. The rotation of feeder wheel 220 around axis of rotation 212 provides centrifugal force to facilitate maintenance of capsules 150 within radial channels 314 as well as the movement of capsules 150 from circular cavity 214 to the outer edge of feeder wheel 220 via radial channels 314.
Insertion wheel 250 may include a rotating portion 410 and an inner portion 420. Rotating portion 410 may include thin disc 253, which may have a circumferential edge 254 with a plurality of recesses 256 defined therein. Thin disc 253 may further have a plurality of vacuum channels 412 defined therein, each vacuum channel 412 extending from the inner edge of rotating portion 410 to a corresponding recess 256 on the circumferential edge of thin disc 253 such that each vacuum channel 412 is in communication with a corresponding recess 256. Inner portion 420 may have a vacuum chamber 422 denied therein, the vacuum chamber 422 being in communication with vacuum channels 412. Thus, as negative air pressure is applied to vacuum chamber 422, the negative air pressure may likewise applied to recesses 256. At interface locus 402, such negative air pressure may facilitate transferring a capsule 150 from an aperture 314 to a recess 256. Subsequently, such negative air pressure may facilitate maintaining capsule 150 within recess 256 while rotating portion 410 of insertion wheel 250 is in motion.
Turning to
The thickness of thin disc 253 may be adjusted as desired based on the desired size of capsules 150. The thickness of thin disc 253 may be similar to or less than the diameter of a capsule 150. The operator may replace a particular thin disc 253 with a thin disc 253 having a different thickness, depending on the size of the capsule that is to be used with capsule insertion unit 200. For example, for capsules having a diameter of approximately 3.5 millimeters (mm), a thin disk having a thickness of approximately 3.00 mm may be used. For capsules having a diameter of approximately 3.7 mm, a thin disk having a thickness of approximately 3.05 mm may be used. Other thicknesses of thin disk 253 may be used or contemplated as desired.
The low thickness of thin disc 253 and the shape of tongues 215 may facilitate the precise positioning of capsules 150 in filter tow 120 substantially proximate to the point where filter tow 120 is shaped into the final rod-like shape and wrapped by a tow net. The proximity of the point where the capsules are inserted into tow 120 and the point where tow 120 is shaped into the final rod like shape may reduce the necessity for any additional structure that facilitate positioning of capsules 150 within tow 120, thereby simplifying the configuration of insertion unit 200 and reducing the amount of components therein.
The motion of tow 120 and the rotation of insertion wheel 250 may be synchronized such that the linear speed of tow 120 may be substantially equal to the tangential speed of insertion wheel 250. Such synchronization facilitates the insertion of capsules 150 into tow 120 at equal intervals, thereby allowing capsules 150 to be equally spaced relative to each other. The tow may be simultaneously shaped into a substantially rod-like configuration by tongues 215. Consequently, when tow 120 exits through tow outlet aperture 508, capsules 150 are embedded at the desired regular intervals within tow 120.
Turning to
In operation, capsules 150 may be stored in hopper 202 and be withdrawn there from by presorting device 230, as shown in
At interface locus 402, a capsule may be transferred from aperture 315 into a recess 256 that is disposed on circumferential edge 254 of thin disc 253 of insertion wheel 250. Negative air pressure applied to aperture 315 via vacuum channel 412 may facilitate the transfer of capsule 150 from aperture 315 into recess 256. As an recess 256 departs from interface locus 402, the negative pressure applied thereto may facilitate maintaining capsule 150 within recess 256. Capsule 150 may then be carried by insertion wheel 250 towards tow gathering funnel 216. When a particular recess 256 is disposed within slit 218 of tow gathering funnel 216, a capsule 150 may pass from recess 256 into tow 120, as shown in
Turning back to
The foregoing description and accompanying figures illustrate the principles, preferred embodiments and modes of operation of the invention. However, the invention should not be construed as being limited to the particular embodiments discussed above. Additional variations of the embodiments discussed above will be appreciated by those skilled in the art.
Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive. Accordingly, it should be appreciated that variations to those embodiments can be made by those skilled in the art without departing from the scope of the invention as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3297038 | Homburger | Jan 1967 | A |
3308600 | Erdmann et al. | Mar 1967 | A |
3339557 | Karalus | Sep 1967 | A |
3339558 | Waterbury | Sep 1967 | A |
3366121 | Carty | Jan 1968 | A |
3390686 | Irby, Jr. et al. | Jul 1968 | A |
3420242 | Boukair | Jan 1969 | A |
3424172 | Neurath et al. | Jan 1969 | A |
3428049 | Leake et al. | Feb 1969 | A |
3508558 | Seyburn | Apr 1970 | A |
3513859 | Carty | May 1970 | A |
3547130 | Harlow et al. | Dec 1970 | A |
3550750 | Jackson | Dec 1970 | A |
3575180 | Carty | Apr 1971 | A |
3596665 | Lindgard | Aug 1971 | A |
3602231 | Dock | Aug 1971 | A |
3625228 | Dock | Dec 1971 | A |
3635226 | Horsewell et al. | Jan 1972 | A |
3669128 | Cohen | Jun 1972 | A |
3685521 | Dock | Aug 1972 | A |
3797644 | Shaw | Mar 1974 | A |
3818223 | Gibson et al. | Jun 1974 | A |
3915176 | Heitmann et al. | Oct 1975 | A |
3916914 | Brooks et al. | Nov 1975 | A |
3972335 | Tiggelbeck et al. | Aug 1976 | A |
3991773 | Walker | Nov 1976 | A |
4003387 | Goldstein | Jan 1977 | A |
4033387 | Nijs et al. | Jul 1977 | A |
4046153 | Kaye | Sep 1977 | A |
4082098 | Owens, Jr. | Apr 1978 | A |
4126141 | Grossman | Nov 1978 | A |
4238993 | Brand et al. | Dec 1980 | A |
4280187 | Reuland et al. | Jul 1981 | A |
4281670 | Heitmann et al. | Aug 1981 | A |
4281671 | Bynre et al. | Aug 1981 | A |
4284088 | Brand et al. | Aug 1981 | A |
4291713 | Frank | Sep 1981 | A |
4474190 | Brand | Oct 1984 | A |
4574816 | Rudszinat | Mar 1986 | A |
4593706 | Preston et al. | Jun 1986 | A |
4677995 | Kallianos et al. | Jul 1987 | A |
4723559 | Labbe | Feb 1988 | A |
4729391 | Woods et al. | Mar 1988 | A |
4736754 | Heitmann et al. | Apr 1988 | A |
4781203 | La Hue | Nov 1988 | A |
4807809 | Pryor et al. | Feb 1989 | A |
4811745 | Cohen et al. | Mar 1989 | A |
4844100 | Holznagel | Jul 1989 | A |
4848375 | Patron et al. | Jul 1989 | A |
4850301 | Greene, Jr. et al. | Jul 1989 | A |
4862905 | Green, Jr. et al. | Sep 1989 | A |
4865056 | Tamaoki et al. | Sep 1989 | A |
4878506 | Pinck et al. | Nov 1989 | A |
4889144 | Tateno et al. | Dec 1989 | A |
4925602 | Hill et al. | May 1990 | A |
4941486 | Dube et al. | Jul 1990 | A |
5012823 | Keritsis et al. | May 1991 | A |
5012829 | Thesing et al. | May 1991 | A |
5025814 | Raker | Jun 1991 | A |
5060664 | Siems et al. | Oct 1991 | A |
5060665 | Heitmann | Oct 1991 | A |
5156169 | Holmes et al. | Oct 1992 | A |
5191906 | Myracle et al. | Mar 1993 | A |
5220930 | Gentry | Jun 1993 | A |
5223185 | Takei et al. | Jun 1993 | A |
5225277 | Takegawa et al. | Jul 1993 | A |
5271419 | Arzonico et al. | Dec 1993 | A |
5331981 | Tamaoki et al. | Jul 1994 | A |
5387093 | Takei | Feb 1995 | A |
5387285 | Rivers | Feb 1995 | A |
5476108 | Dominguez et al. | Dec 1995 | A |
5724997 | Smith et al. | Mar 1998 | A |
6229115 | Voss et al. | May 2001 | B1 |
6360751 | Fagg et al. | Mar 2002 | B1 |
6384359 | Belcastro et al. | May 2002 | B1 |
6385333 | Puckett et al. | May 2002 | B1 |
6647870 | Kohno | Nov 2003 | B2 |
6779530 | Kraker | Aug 2004 | B2 |
6848449 | Kitao et al. | Feb 2005 | B2 |
6904917 | Kitao et al. | Jun 2005 | B2 |
7074170 | Lanier, Jr. et al. | Jul 2006 | B2 |
7115085 | Deal | Oct 2006 | B2 |
8186359 | Ademe et al. | May 2012 | B2 |
8303474 | Iliev et al. | Nov 2012 | B2 |
20020020420 | Xue et al. | Feb 2002 | A1 |
20020166563 | Jupe et al. | Nov 2002 | A1 |
20030098033 | Macadam et al. | May 2003 | A1 |
20030136419 | Muller | Jul 2003 | A1 |
20030145866 | Hartmann | Aug 2003 | A1 |
20030178036 | Demmer et al. | Sep 2003 | A1 |
20040129281 | Hancock et al. | Jul 2004 | A1 |
20040261807 | Dube et al. | Dec 2004 | A1 |
20050016556 | Ashcraft et al. | Jan 2005 | A1 |
20050039764 | Barnes et al. | Feb 2005 | A1 |
20050054501 | Schroder | Mar 2005 | A1 |
20050066986 | Nestor et al. | Mar 2005 | A1 |
20050070409 | Deal | Mar 2005 | A1 |
20050076929 | Fitzgerald et al. | Apr 2005 | A1 |
20050103355 | Holmes | May 2005 | A1 |
20050133051 | Luan et al. | Jun 2005 | A1 |
20050194014 | Read, Jr. | Sep 2005 | A1 |
20060112964 | Jupe et al. | Jun 2006 | A1 |
20060144412 | Mishra et al. | Jul 2006 | A1 |
20060174901 | Karles et al. | Aug 2006 | A1 |
20060207616 | Hapke et al. | Sep 2006 | A1 |
20060272655 | Thomas et al. | Dec 2006 | A1 |
20060272663 | Dube et al. | Dec 2006 | A1 |
20060293157 | Deal | Dec 2006 | A1 |
20070012327 | Karles et al. | Jan 2007 | A1 |
20070068540 | Thomas et al. | Mar 2007 | A1 |
20070095357 | Besso et al. | May 2007 | A1 |
20070117700 | Kushihashi et al. | May 2007 | A1 |
20070246055 | Oglesby | Oct 2007 | A1 |
20080029118 | Nelson et al. | Feb 2008 | A1 |
20090039102 | Garthaffner | Feb 2009 | A1 |
20090090372 | Thomas et al. | Apr 2009 | A1 |
20090120449 | Tindall | May 2009 | A1 |
20090145449 | Cieslikowski et al. | Jun 2009 | A1 |
20100099543 | Deal | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1702524 | Sep 2006 | EP |
1767107 | Mar 2007 | EP |
709203 | May 1954 | GB |
737329 | Sep 1955 | GB |
778044 | Jul 1957 | GB |
807404 | Jan 1959 | GB |
WO 03009711 | Feb 2003 | WO |
WO 03055338 | Jul 2003 | WO |
WO 2004047572 | Jun 2004 | WO |
WO 2004057986 | Jul 2004 | WO |
WO 2006064371 | Jun 2006 | WO |
WO 2006136196 | Dec 2006 | WO |
WO 2006136197 | Dec 2006 | WO |
WO 2006136198 | Dec 2006 | WO |
WO 2006136199 | Dec 2006 | WO |
WO 2007010407 | Jan 2007 | WO |
WO 2007012981 | Feb 2007 | WO |
WO 2007012981 | Feb 2007 | WO |
2007038053 | Apr 2007 | WO |
WO 2007038053 | Apr 2007 | WO |
WO 2007060543 | May 2007 | WO |
WO 2008012329 | Jan 2008 | WO |
2009071272 | Jun 2009 | WO |
2011083405 | Jul 2011 | WO |
Entry |
---|
International Search Report corresponding to International Patent Application No. PCT/IB2011/002245 issued Jan. 30, 2012, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20120077658 A1 | Mar 2012 | US |