APPARATUS AND METHOD FOR INSPECTION OF TUBES IN A BOILER

Information

  • Patent Application
  • 20150285768
  • Publication Number
    20150285768
  • Date Filed
    June 18, 2015
    9 years ago
  • Date Published
    October 08, 2015
    9 years ago
Abstract
A method for inspection of tubes in a boiler is disclosed. The method of inspecting includes the steps of providing an apparatus having a sensor and a housing adapted to contain the sensor. The method further including the steps of extending the apparatus into a tube bundle until a desired tube for inspection is reached; rotating the apparatus until the sensor is positioned over the tube to be inspected; clamping the housing around the tube to be inspected, thereby clamping the sensor around the tube; transmitting a pulse of guided waves into the tube to be inspected and detecting reflected signals; and acquiring data from the reflected signals and determining the condition of the tube.
Description
BACKGROUND OF THE INVENTION

The present invention relates to an apparatus and method for inspection of tubes in a boiler. More particularly, the invention relates to an apparatus and method for guided-wave inspection of reheater tubes in a boiler.


To prevent reheater tube failures during plant operation, tubes in the reheater banks need to be inspected. If defects are determined to be large enough to cause failure, the damaged sections need to be replaced during planned outages. In a reheater, there are hundreds of tubes arranged in multiple loops in meandering fashion. Not only are the total length of tubes to inspect miles long, most of the tubes are difficult to access for inspection due to the close packed configuration of the reheater tube banks. Because of the cost and time it would take to inspect them comprehensively, the thermal power generating industries rely primarily on visual inspections and limited inspection of sampled areas on the periphery of the bundles for maintenance decisions. The reliability of a boiler reheater would be improved if the maintenance decisions were made based on more comprehensive tube condition data.


Long-range guided wave technique is a recently introduced inspection method for rapidly surveying a long length of pipe or tube for flaws from a single test position without scanning. Now widely used for examining pipelines in processing plants, this technique provides a 100% volumetric inspection of a long length of pipeline—typically more than 100 ft (30 m) in one direction—for inside and outside surface corrosion/erosion defects and circumferential cracks. In general, guided waves can detect 2% to 3% corrosion metal loss areas and circumferential cracks (here % refers to the circumferential cross-section of a flaw relative to the total pipe wall cross-section) and deep (70% through wall or larger) axial cracks. Accordingly, this technique may be useful as an inspection tool to compile comprehensive information on reheater tubes for maintenance decisions.


Accordingly, there is a need for an improved inspection technique that allows tubes of a reheater to be inspected.


BRIEF SUMMARY OF THE INVENTION

This need is addressed by providing a method for guided-wave inspection of tubes deep within a reheater tube bank from its accessible side without having to spread tubes to gain access.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that is regarded as the invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:



FIG. 1 shows an inspection apparatus for use with reheater tube banks; and



FIGS. 2A-2C illustrate a sequence of testing using the apparatus of FIG. 1.





DETAILED DESCRIPTION OF THE INVENTION

Referring to the drawings, an exemplary apparatus for boiler tube inspection is illustrated in FIG. 1 and shown generally at reference numeral 10. The apparatus 10 is composed of two main components. The first component is a sensor 11 that generates and detects guided-waves. The second component is a mechanical device 12 that is capable of reaching into the tube bundle and clamps the sensor 11 onto an interior tube for transmission and reception of guided-waves. As shown, the mechanical device 12 includes a guided wave probe housing 13 for containing the sensor 11 and clamping to the tubes, an air cylinder 14 for actuating the housing 13, a spline 16, and a spline bushing 17. Omitted in the illustration are a long handle, made of cylindrical tube or rod, mechanically fastened to the air cylinder 14 and lead electrical wires to the sensor 11.


The sensor 11 includes two semi-circular guided-wave probes 20 and 21. Each of the probes 20 and 21 are placed and secured in a respective section 22, 23 of the housing 13. The semi-circular guided-wave probes 20 and 21 are made to operate in torsional (T) wave mode based on the methods previously disclosed in U.S. Pat. Nos. 7,821,258 and 7,913,562, both of which utilize magnetostrictive sensor (MsS) technology, and are included herein by reference. It should be appreciated that the apparatus 10 may also be made to operate in other guided-wave modes, such as longitudinal wave mode. However, operating the apparatus 10 in the torsional guided-wave mode is preferred because of dispersion-free characteristics of the torsional mode.


The air cylinder 14 is used to open and close the two probe housing sections 22 and 23. The air cylinder is actuated using pneumatic pressure. The housing 13 is fastened to the spline 16 to assure only linear motion and alignment when the guided-wave apparatus 10 is clamped on a tube with no rotation and bending. The air cylinder 14 is mechanically joined to a long handle 24, FIGS. 2A-2C, for reaching into the tube bundle.


Referring to FIGS. 2A-2C, when inspecting reheater boiler tubes, the apparatus 10 is extended into the bundle to a tube to be tested with the probe housing 13 opened. When the housing 13 part of the apparatus 10 reaches the right depth in the tube bank, the apparatus 10 is rotated by 90° and the semi-circular guided-wave probes 20 and 21 are positioned over the tube. Then the housing 13 is closed to clamp the guided-waves probes 20 and 21 onto the tube. The guided-wave probes 20 and 21 are operated to transmit a pulse of guided waves and detect the signals reflected back in the pulse-echo inspection mode. When data acquisition is completed from the tube, the apparatus 10 is moved to another test location for another measurement.


The minimum clearance required for placement of the apparatus 10 on a tube is approximately 90% of the tube diameter used in the reheater (for example, approximately 1.75 inches for 2-inch OD tubes). Also, while the apparatus 10 is being described in relation to reheater boiler tubes, it should be appreciated that the apparatus may be used in any application that requires inspection of tubes, such as superheater tubes.


The foregoing has described an apparatus and method for inspection of tubes in a boiler. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation.

Claims
  • 1. A method of inspecting tubes contained in a tube bundle, comprising the steps of: (a) providing an apparatus having: (i) a sensor; and(ii) a housing adapted to contain the sensor;(b) extending the apparatus into a tube bundle until a desired tube for inspection is reached;(c) rotating the apparatus until the sensor is positioned over the tube to be inspected;(d) clamping the housing around the tube to be inspected, thereby clamping the sensor around the tube;(e) transmitting a pulse of guided waves into the tube to be inspected and detecting reflected signals; and(f) acquiring data from the reflected signals and determining the condition of the tube.
  • 2. The method according to claim 1, wherein the housing includes first and second sections to allow the housing to move between open and closed positions.
  • 3. The method according to claim 2, wherein the apparatus is extended into the tube bundle with the housing in the open position.
  • 4. The method according to claim 1, wherein the apparatus is rotated approximately ninety degrees (90°) to position the sensor over the tube to be inspected.
  • 5. The method according to claim 1, further including the step of moving the apparatus to another tube to be inspected.
  • 6. The method according to claim 5, wherein the step of moving the apparatus includes the steps of: (a) disengaging the housing from around the tube; and(b) rotating the apparatus until the sensor is clear of the tube being inspected.
  • 7. The method according to claim 1, wherein the sensor comprises a pair of semi-circular guided-wave probes.
  • 8. The method according to claim 2, wherein the sensor comprises a pair of semi-circular guided-wave probes, each of the guided-wave probes being secured to one of the sections of the housing and arranged such that the guided-wave probes define a cylindrical passage in the closed position.
Provisional Applications (1)
Number Date Country
61540922 Sep 2011 US
Divisions (1)
Number Date Country
Parent 13621923 Sep 2012 US
Child 14743228 US