The present invention relates to an apparatus and method for inspection of tubes in a boiler. More particularly, the invention relates to an apparatus and method for guided-wave inspection of reheater tubes in a boiler.
To prevent reheater tube failures during plant operation, tubes in the reheater banks need to be inspected. If defects are determined to be large enough to cause failure, the damaged sections need to be replaced during planned outages. In a reheater, there are hundreds of tubes arranged in multiple loops in meandering fashion. Not only are the total length of tubes to inspect miles long, most of the tubes are difficult to access for inspection due to the close packed configuration of the reheater tube banks. Because of the cost and time it would take to inspect them comprehensively, the thermal power generating industries rely primarily on visual inspections and limited inspection of sampled areas on the periphery of the bundles for maintenance decisions. The reliability of a boiler reheater would be improved if the maintenance decisions were made based on more comprehensive tube condition data.
Long-range guided wave technique is a recently introduced inspection method for rapidly surveying a long length of pipe or tube for flaws from a single test position without scanning. Now widely used for examining pipelines in processing plants, this technique provides a 100% volumetric inspection of a long length of pipeline—typically more than 100 ft (30 m) in one direction—for inside and outside surface corrosion/erosion defects and circumferential cracks. In general, guided waves can detect 2% to 3% corrosion metal loss areas and circumferential cracks (here % refers to the circumferential cross-section of a flaw relative to the total pipe wall cross-section) and deep (70% through wall or larger) axial cracks. Accordingly, this technique may be useful as an inspection tool to compile comprehensive information on reheater tubes for maintenance decisions.
Accordingly, there is a need for an improved inspection technique that allows tubes of a reheater to be inspected.
This need is addressed by providing a method for guided-wave inspection of tubes deep within a reheater tube bank from its accessible side without having to spread tubes to gain access.
The subject matter that is regarded as the invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
Referring to the drawings, an exemplary apparatus for boiler tube inspection is illustrated in
The sensor 11 includes two semi-circular guided-wave probes 20 and 21. Each of the probes 20 and 21 are placed and secured in a respective section 22, 23 of the housing 13. The semi-circular guided-wave probes 20 and 21 are made to operate in torsional (T) wave mode based on the methods previously disclosed in U.S. Pat. Nos. 7,821,258 and 7,913,562, both of which utilize magnetostrictive sensor (MsS) technology, and are included herein by reference. It should be appreciated that the apparatus 10 may also be made to operate in other guided-wave modes, such as longitudinal wave mode. However, operating the apparatus 10 in the torsional guided-wave mode is preferred because of dispersion-free characteristics of the torsional mode.
The air cylinder 14 is used to open and close the two probe housing sections 22 and 23. The air cylinder is actuated using pneumatic pressure. The housing 13 is fastened to the spline 16 to assure only linear motion and alignment when the guided-wave apparatus 10 is clamped on a tube with no rotation and bending. The air cylinder 14 is mechanically joined to a long handle 24,
Referring to
The minimum clearance required for placement of the apparatus 10 on a tube is approximately 90% of the tube diameter used in the reheater (for example, approximately 1.75 inches for 2-inch OD tubes). Also, while the apparatus 10 is being described in relation to reheater boiler tubes, it should be appreciated that the apparatus may be used in any application that requires inspection of tubes, such as superheater tubes.
The foregoing has described an apparatus and method for inspection of tubes in a boiler. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3289468 | Van Der Veer et al. | Dec 1966 | A |
RE26537 | Tompkins | Mar 1969 | E |
3555887 | Wood | Jan 1971 | A |
3561258 | Ashford et al. | Feb 1971 | A |
4108004 | Murakami | Aug 1978 | A |
4312230 | Bricker et al. | Jan 1982 | A |
4744251 | Shirasu | May 1988 | A |
4757258 | Kelly, Jr. et al. | Jul 1988 | A |
4893512 | Tanimoto et al. | Jan 1990 | A |
5456113 | Kwun et al. | Oct 1995 | A |
5457994 | Kwun et al. | Oct 1995 | A |
5504788 | Brooks et al. | Apr 1996 | A |
5549004 | Nugent | Aug 1996 | A |
5581037 | Kwun et al. | Dec 1996 | A |
5767766 | Kwun | Jun 1998 | A |
5821430 | Kwun et al. | Oct 1998 | A |
6164137 | Hancock et al. | Dec 2000 | A |
6212944 | Kwun et al. | Apr 2001 | B1 |
6294911 | Shimazawa et al. | Sep 2001 | B1 |
6396262 | Light et al. | May 2002 | B2 |
6404189 | Kwun et al. | Jun 2002 | B2 |
6429650 | Kwun et al. | Aug 2002 | B1 |
6550334 | Kodama | Apr 2003 | B2 |
7019520 | Kwun et al. | Mar 2006 | B2 |
7821258 | Vinogradov | Oct 2010 | B2 |
7913562 | Kwun et al. | Mar 2011 | B2 |
8301401 | Morrison, Jr. et al. | Oct 2012 | B2 |
8521453 | Silverman et al. | Aug 2013 | B1 |
8907665 | Rose et al. | Dec 2014 | B2 |
20090038398 | Lavoie | Feb 2009 | A1 |
20100052670 | Kwun et al. | Mar 2010 | A1 |
20100259252 | Kim | Oct 2010 | A1 |
20140278193 | Breon et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
297541 | Jan 1989 | EP |
59128448 | Jul 1984 | JP |
01088006 | Apr 1989 | JP |
03060506 | Jul 2003 | WO |
2007011269 | Jan 2007 | WO |
2007125308 | Nov 2007 | WO |
2011002139 | Jan 2011 | WO |
Entry |
---|
Filipas, Alin, European Search Report for EP Patent Application No. EP2574917, dated Jan. 21, 2013, Munich. |
H. Kwun, S.Y. Kim, and G.M. Light, “The Magnetostrictive Sensor Technology for Long-Range Guided-Wave Testing and Monitoring of Structures”, Material Evaluation (2003) 61, pp. 80-84. |
D.N. Alleyne, B. Pavlakovic, M.J.S. Lowe, and P.Cawley, Rapid Long-Range Inspection of Chemical Plant Pipework Using Guided Waves, Insight (2001) 43, pp. 93-96, and 101. (from Review of Progress in Quantitative Nondestructive Examination, vol. 20, pp. 180-187, ed. by D.O. Thompson et al. (2001). |
H. Kwun, S.Y. Kim, H. Matsumoto, and S. Vinogradov, “Detection of Axial Cracks in Tube and Pipe Using Torional Guided Waves,” Review of Progress in Quantitative Nondestructive Evaluation, American Institute of Physics, (2008) vol. 27A, pp. 193-199. |
Number | Date | Country | |
---|---|---|---|
20150285768 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61540922 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13621923 | Sep 2012 | US |
Child | 14743228 | US |