The measurement of intima-media thickness (IMT) in a carotid artery can be useful in medical applications, for example by defining the extent and severity of carotid disease. It has been demonstrated that IMT measurements tend to correlate well with the extent and severity of carotid disease.
By acquiring and processing images of the wall of the common carotid artery, and measuring the thickness of the rear wall, useful information regarding possible indications of atherosclerotic cardiovascular disease can be obtained. Such a procedure has become known as an IMTHeartScan or an IMTHeakthScan. The images may be digitized before being interpreted. The measurements may indicate the minimal, maximal and the average thickness of the rear wall of the common carotid artery.
A known technique for measuring the thickness of the intima-media in the carotid artery involves the analysis of echo signals, i.e. the analysis of the ultrasonic signals that have been reflected from the tissue under examination. To accomplish this, one or more ultrasonic transducers may be placed on the surface of the skin of the neck about 0.25 cm below the location at which the carotid artery bifurcates into two smaller arteries, i.e. below the bifurcation or “Y-junction” of the carotid artery in the neck.
In order to carry out IMT measurements, therefore, a technician may need to position a probe just below a bifurcation in the carotid artery, so that the thickness of intima-media can be measured at this location in accordance with known techniques. Unfortunately, technicians may often have difficulty positioning the ultrasonic transducer at this exact location because the bifurcation in the carotid artery is usually not visible from the outside of the body.
One approach to overcoming this problem has been to use the same ultrasonic probe, used to make IMT measurements, to locate the bifurcation or “Y” junction. In this approach, the ultrasonic probe is switched into a different mode, in which the probe is operable to generate signaling information from which a two dimensional image of the tissue beneath the probe can be created. Unfortunately, it is often difficult for technicians to decipher the “Y” junction or bifurcation from this two-dimensional tissue image. Also, complex and costly image processing tools are necessary in order to generate these ultrasound images.
An apparatus and method are described for locating a bifurcation of an artery that has a single branch on one side of the bifurcation, and separates into at least a first branch and a second branch on another side the bifurcation. The artery may be the carotid artery, for example. The apparatus is inexpensive and easy to operate.
The apparatus includes an elongated probe having a plurality of ultrasound transducers, which generate ultrasound signals when provided with electric energy, and which transmit the ultrasound signals onto a medium, e.g. a tissue under examination. The transducers also receive reflected signals that have been reflected back from the medium, and convert the reflected signals into electric signals that can be analyzed by a signal analyzer.
The signal analyzer analyzes the reflected signals received by each transducer, so as to determine whether blood flow within the medium can be detected from the received signals. In one embodiment, blood flow may be detected using the continuous wave Doppler method, known in the art. In this embodiment, the signal analyzer includes a Doppler signal processor which determines the velocity of blood flow, if any, by measuring a difference in frequency between the reflected signals and the originally transmitted signals.
A binary mode indicator is associated with each transducer. Each indicator, when in an active mode, generates an output reference signal (for example, light or sound), and when in an inactive mode generates no output signal. Each indicator switches onto the active mode only if blood flow is detected from the reflected signals received by its associated transducer, and otherwise remains in the inactive mode. In one embodiment, an activator, such as an ON-OFF switch, may active each indicator if blood flow can be detected from the signals received by the associated transducer.
Instead of a plurality of indicators, the apparatus may include a single signaling device that generates output reference signals to alert the user that the desired bifurcation location has been reached. In this embodiment, the signal analyzer may be configured to vary the characteristics of the output reference signals generated by the signaling device, as a function of the distance between the probe to the bifurcation. For example, the frequency or intensity of light or sound signals, or the tone of a beep, or the color of a light signal, may be varied as a function of the distance between the probe and the bifurcation, thereby allowing the user or technician to easily locate the bifurcation.
In one embodiment, the apparatus may include a dual mode probe, which in a locating mode is operable to determine the location of the bifurcation, and in a measuring mode is operable to measure the thickness of intima media at the bifurcation. In this embodiment, the probe switches into the measuring mode upon determination of the location of the bifurcation, then measures the thickness of intima-media at the bifurcation, using known measurement techniques.
A method of locating a bifurcation of an artery includes moving an array of ultrasound transducers along the artery, while rapidly and sequentially energizing the transducers. Each transducer transmits ultrasound signals onto a portion of the anatomy underneath the transducer, and receives ultrasound signals reflected from the portion of the anatomy. Each transducer has an associated indicator disposed adjacent the transducer.
The method includes analyzing the received ultrasound signals to determine whether blood flow can be detected from the received signals. The method includes causing each indicator to generate an output reference signal only if blood flow is detected from the ultrasound signals received by the associated transducer. The method includes observing the reference signals from the indicators to determine where two reference signals that were initially physically separated from each other merge into a single output signal, or where two physically separated groups of reference signals merge into a single group of output signals, in order to locate the bifurcation.
An apparatus and method for locating a bifurcation of an artery are described. The bifurcation is located by detecting the flow of blood beneath ultrasonic transducers. The apparatus may include an elongated probe, and a signal analyzer. The apparatus is cost efficient, simple to operate, and requires no complex image processing.
In one embodiment, the transducers 120-1, . . . , 120-N are ultrasound crystals that generate ultrasonic frequency vibratory signals, upon receipt of electric energy from an electric signal source 122, and transmit these ultrasonic signals onto a medium, e.g. onto anatomical tissue under examination. In particular, each transducer transmits the ultrasound signals that it generates onto a portion of the anatomy located directly underneath the transducer. In the illustrated embodiment, the transducers are also operable in a receiving mode, in which each transducer receives “echo” signals, i.e. signals that have been reflected from the tissue or other medium.
In the illustrated embodiment, the indicators 130-1, . . . , 130-N are binary mode indicators, having an active mode and an inactive mode. Each indicator is switched into the active mode only if the reflected echo signals show the presence of blood flow within the medium from which they were reflected. In the active mode, the indicator generates one or more output reference signals, alerting the user that blood flow has been detected from the echo signals received by the transducer associated with the indicator. In the inactive mode, no output signal is generated by the indicator.
The echo signals received by the transducers are converted into electric signals by the transducers 120, and then sent to the signal analyzer 112 to be processed and analyzed. In one embodiment, the signal analyzer 112 includes signal processing circuitry which processes the echo signals to determine whether any blood flow can be detected within the tissue from which the echo signals have been reflected. Detecting blood flow within a medium by analyzing ultrasound signals that have been reflected from the medium is a process well known in the art. Any known technique may be used by the signal analyzer 112 to determine whether blood flow is present. These techniques include, but are not limited to, continuous wave Doppler method, or de-correlation analysis between temporal adjacent echoes, which is based on the theory that echoes from blood show little correlation among themselves.
In the embodiment illustrated in
In this embodiment, the Doppler signal processing circuit 114 extracts Doppler frequency shift components, if any, from the electric signals that were sent by the transducers 130-1, . . . , 130-N and that are representative of the reflected echo signals. In particular, the Doppler signal processing circuit 114 measures the frequency of the echo signal, and computes the difference, if any, between the frequency of the echo signal and the known frequency of the original ultrasonic signals transmitted by the transducers onto the medium. If any such Doppler frequency shift is detected, a control signal may be sent by the Doppler signal processing circuit 114 to the indicator associated with the transducer that received the echo signals, so that the indicator is activated, i.e. is switched into the active mode. The Doppler signal processing circuit 114 may also compute the velocity of blood flow detected by the echo signals, using an appropriate arithmetic circuit and/or divider circuit.
In the illustrated embodiment, the transducers 120 are arranged within the probe 110 so as to form an array of transducers. A seven-transducer array is shown for illustrative purposes, i.e. N=7 in the illustrated embodiment; however different embodiments may use different numbers of transducers. Typically, the total number of transducers may vary from about 6 to about 10, although a probe having a number of transducers that is outside a 6 to 10 range is also within the scope of the present invention.
In one embodiment, the output reference signals may be visual signals, for example light signals, and the indicators are indicator lights that become illuminated when switched into the “ON” mode. In this embodiment, each indicator becomes illuminated when the echo signals from its associated transducer, when analyzed, show the presence of blood flow. The indicators may be LCDs, for example, or any other type of light emitters known in the art. Other embodiments may use different types of reference signals that alert the user that blood flow has been detected from the echo signals received by its associated transducer and analyzed by the signal analyzer 112. These different types of reference signals may include, but are not limited to, acoustic signals. Preferably, each indicator is disposed adjacent its associated transducer. Each indicator may be disposed just above its associated transducer, as shown in
In one embodiment, the apparatus 100 may include an activator (not shown in
The apparatus 100 is not limited, of course, for use only with an artery (illustrated in
The probe 110 may be moved either up or down the artery 115, which in the embodiment illustrated in
The transducers are positioned and arranged so that when the probe 110 is positioned above the bifurcation 125 (as illustrated in
The transducers are positioned and arranged so that when the probe 110 is positioned below the bifurcation 125, only a single output signal, or a single group of output signals are generated. A single output signal is generated, when only one transducer receives echo signals reflected from the single branch 116 below the bifurcation. A single group of output signals is generated, when more than one transducer receives echo signals reflected from the branch 116, as illustrated in
As illustrated in
When the probe is initially disposed at a location above the bifurcation 125 and is relatively far from the bifurcation, as illustrated in
As the probe 110 is moved downward toward the bifurcation and approaches the bifurcation 125, however, the two-group pattern gradually becomes narrower, as illustrated in
Eventually, the two-group pattern merges into a one-group pattern, as shown in
By analogy, when the probe starts at a location below the bifurcation 125, and is moved upward, the lighted indicators show a one-group pattern since there is blood flow under the transducers located at or near the center of the array. As the probe approaches the bifurcation 125, the one-group pattern gradually becomes wider, and eventually divides into a two-group pattern that shows that the probe is located above the bifurcation. The direction of movement can then is reversed, so as to position the probe at the point where single flow pattern first appeared.
The probe 110 therefore permits an operator or technician to easily locate the bifurcation of an artery (such as the carotid artery), simply by moving the probe 110 up or down the carotid. As the probe 110 is moved, the indicator attached to each transducer will become illuminated, when blood flow is detected beneath the transducer associated with the illuminated indicator. Above the bifurcation, the lighted indicators show a two-group pattern. Below the bifurcation, the lighted indicators show a one-group pattern. The probe 110 costs a lot less than probes that use ultrasound imaging, because no complex image processing circuitry is required. Also, the probe 110 is simple and easy to use, requiring no skilled or trained technicians for its use.
This alerting is accomplished by causing a change in the characteristics or type of output signals that are emitted by the signaling device, as the probe approaches the desired location. In this embodiment, the signal analyzer 112 causes the signaling device 140 to vary one or more characteristics of the output reference signals as a function of the proximity of the probe to the bifurcation, i.e. as a function of the distance between the probe and the bifurcation. For example, the frequency of flashes or beeps, the intensity of light or sound, the tone of a beep, or the color of light may be varied as a function of the proximity of the probe to the “Y” junction, thus allowing the technician to quickly zero in on the correct location.
In the embodiment illustrated in
In one embodiment, the probe may be a dual mode probe. In this embodiment, the probe can determine the location of the bifurcation when operated in a locating mode, and can measure the thickness of intima media at the bifurcation, when operated in a measuring mode. In this embodiment, once the desired location is reached, the mode of the probe may be switched to the measuring mode, in which the probe measures the thickness of the intima-media, in accordance with existing prior art techniques.
D=T·c/2, (1)
where c denotes the speed of sound in the tissue or other medium from which the echo was reflected.
As shown in
To locate the echo in the echo line, it can be expedient to first locate the echo from blood. This can be achieved by using the pulsed Doppler mode. By changing the depth of the sampling volume and searching the peak flow, the center of the artery can be determined, as known in the art. Alternatively, the transducer may work at an M-mode, transmitting the ultrasound pulse repeatedly, and determining the center of the blood vessel by de-correlation analysis of the adjacent echoes. Once the vessel center is found, the element can then be switched to pulse-echo mode, and the rear wall of the carotid artery can be located by performing a search from the center of the artery. Previous studies have shown that this approach is workable, since the echo from the intima is quite different from that of the blood.
While the ultrasound probe has been described and shown with reference to specific embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein. Many other embodiments are possible.
Other embodiments are within the following claims.
This application claims the benefit of priority under 35 U.S.C. §119(e) from co-pending, commonly owned U.S. provisional patent application, Ser. No. 60/486,545, filed on Jul. 10, 2003, entitled “An Ultrasound Method For Carotid Intima-Media Thickness Measurement.” The entire content of this provisional application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60486545 | Jul 2003 | US |