Lubrication is an important aspect of maintaining machinery in proper operating condition. Machine elements such as bearings, journals, shafts, and joints require proper lubrication between their moving surfaces to decrease friction, prevent contamination, reduce wear and dissipate heat. Improper lubrication is likely to lead to premature component wear and component or system failure.
When determining the optimal lubrication between moving machine elements, many factors should be considered. These factors include the mode of operation of the machine, the type of machine element to be lubricated, the environment of the machine, the operating speed of the machine, the lubricant's viscosity, the lubricant's temperature, the lubricant's ingredients, and the lubricant's condition.
Prior art lubricators, such as the TRICO OptoMatic oiler, supply a constant level of lubricant within a lubricant reservoir to a machine element. The lubricant level is predetermined for the particular application and cannot be changed during the operating time of the machine to which the constant level lubricator is attached. Although this type of lubricator provides reasonable performance in many steady-state operations, multiple variables can create unacceptable operating conditions and lead to premature wear, or even failure, of machine elements. The variables include “on” and “off” operating modes (machine cycling), oil viscosity, machine speed, lubricant temperature, lubricant condition, and lubricant vessel pressure.
Other devices, such as the TRICO Hydrolert indicate by LED signals the status of the equipment's lubrication such as lubricant condition within acceptable levels, lubricant condition at the upper limit of acceptable levels, and lubricant condition immediate action required. This device is effective because an operator is signaled only when the lubricant condition is at the upper limit of acceptable levels or if immediate action is required. This reduces maintenance costs and productivity is enhanced.
With specific regard to lubricant relative humidity, or saturated relative humidity, one prior form of lubricant qualitative control utilized an in-line water removal filter. Another form of lubricant qualitative control is to dilute the existing amount of lubricant with a fresh supply of lubricant, reducing the overall lubricant moisture content by introducing a portion of lubricant with a lower moisture content. Still another form of moisture removal is to expose the air surrounding the lubricant to a desiccant material that removes humidity from the air.
The system of the present invention relates generally to the field of lubrication and specifically to the field of devices which deliver a lubricant to a machine element, such as a bearing in a pump.
The system of the present invention provides continual on-line monitoring that eliminates the need for expensive repetitive lubrication checking and time-consuming laboratory oil sampling. Designed for installation on rotating equipment or other lubricant reservoirs, the system of the present invention provides real time information on lubricant variables such as lubricant water content, with the added flexibility of providing real time information and control of other variables such as temperature, viscosity, and particulate matter.
The present invention is directed at lowering lubricant water content to acceptable levels. It has been discovered that moisture removal from oil is an important objective to achieve optimum lubricant condition. Lubricants such as oil have an initial moisture content, and often the initial moisture content is unacceptable. Additionally, harsh machine operating conditions such as pump wash-downs and condensation occurring during changing plant temperature and humidity conditions can contribute to potentially harmful lubricant moisture levels.
If the lubricant is not agitated such as during an off operating mode, a continuous oxygenated layer forms a barrier on top of the lubricant. This oxygenated layer prevents moisture from both entering and leaving the lubricant. When the lubricant is agitated, such as during an “on” equipment operating mode, the oxygenated layer is broken. “Dry” air, or air with moisture significantly removed, assists in withdrawing the moisture from the oil by a continuous moisture equilibrium interaction between the agitated lubricant and the dry air above the lubricant. It has also been found that an increase in dry air temperature increases the rate of moisture removal from the lubricant.
The present volumetric lubricant dispenser controls water content in a lubricant to provide optimum operating conditions and extend the useful life of lubricants. An automatically controlled system is adjusted by means of a microprocessor that receives input from various system sensors and adjusts the lubricant humidity level accordingly through an air drying process, that, in turn lowers the lubricant moisture level. In the automatic mode, the entire system is constantly monitored.
The present volumetric lubricant dispenser is designed to control the water content of lubricant to a rotating element or machine part or other lubricant reservoir. The rotating element may include a bearing or a journal or the combination of the two. In a typical application, a bearing includes an inner and an outer race. Between the races a plurality of rolling elements are positioned, usually balls. If the outer race is attached to the bearing housing, the inner race and the rolling elements are rotated into and out of a lubricant reservoir. The reservoir is maintained within the bearing housing.
For the purpose of qualitative lubricant control, the present invention may be described as a system intended for controlling lubricants, both mineral (natural) and synthetic based, by measuring the condition characteristics of the lubricant, including water or moisture content.
Accordingly, an apparatus for qualitative lubricant condition control and monitoring may include but not be limited to the following illustrative description. The apparatus comprises at least one lubricant condition-sensing module. The module may be of any suitable type for sensing a desired lubricant characteristic; in this case water or moisture content. The lubricant sensing module is communicatively coupled to a qualitative control mechanism. For example, the qualitative control mechanism could be a microprocessor. The qualitative control mechanism is also communicatively coupled to at least one response mechanism, e.g., an air pump or compressor. The qualitative control mechanism is capable of actuating at least one response mechanism in response to a signal received from at least one lubricant condition-sensing module and interpreted by the qualitative control mechanism.
A method of reducing moisture content of a lubricant contained in an enclosed space is also disclosed and is performed by agitating the lubricant, providing a humidity sensor in fluid communication with the enclosed space, measuring the humidity of the enclosed space and comparing the humidity measurement with a pre-selected humidity level, introducing dry air into the enclosed space if the humidity level equals or exceeds the pre-selected humidity level, until the saturated humidity level is less than the pre-selected humidity level.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
The present invention in one form comprises a qualitative lubricant condition sensing and control apparatus. The invention is intended to allow flexibility of components based on user preference. For instance, a user may have particular concern for one or more lubricant conditions, such as the lubricant's viscosity, the lubricant's temperature, the lubricant's ingredients, and the lubricant's condition (purity), in addition to the lubricant water saturation or saturated relative humidity (“SRH”). In this sense, the invention is a modular system of interrelated components that are usable together or tailored for specific applications.
For the purpose of the present invention, air drying, oil drying, and lubricant drying are used interchangeably to describe the nature of the desired process and result, because air drying in an enclosed space results in oil or lubricant drying for lubricants in the enclosed space. Also for the purpose of defining the present invention, an agitated lubricant is desired to encourage the lubricant/air moisture equilibrium interaction by preventing formation of the oxygenated barrier on top of the lubricant Two types of humidity readings are relevant to the present invention. The first is “saturated relative humidity” used to describe the water content present in a lubricant. The second is “relative humidity” used to describe the water content present in air contained in an enclosed space containing air and the lubricant.
The lubricant is “agitated” during routine machine operating conditions, such as when the machine is running. Additionally, some machines such as centrifugal pumps may contain internal components such as a “slinger disc” or a “flinger ring” that contribute to or enhance lubricant agitation.
Also for the purpose of defining the invention, a void space in a sump is referred to as an enclosed volume. The enclosed volume is enclosed with respect to the workpiece to define a system that minimizes the introduction of air from the workpiece operating environment such as a pump farm. The enclosed volume, is however, coupled with external elements to which the invention is directed, i.e., an oil drying module and related components.
The workpiece to which the invention is directed is best shown in
To achieve proper lubrication, bearing housing or reservoir 60 is filled with a predetermined amount of lubricant 12. When the machine, of which bearing 20 is a component, is in a static state, the amount of lubricant 12 within the housing 60, the pressure of the lubricant 12, the distribution of the lubricant 12 within the housing 60, and the temperature of the lubricant 12 are constant.
It has been discovered that moisture removal from oil is an important objective to achieve optimum lubricant condition. Lubricants such as oil have an initial moisture content. If the lubricant 12 is not agitated and is in a static state, such as during an off operating mode, a continuous oxygenated layer forms a barrier on top of the lubricant 12. This oxygenated layer prevents moisture from both entering and leaving the lubricant 12.
Once the machine is set in motion and journal 14 begins to rotate, the lubricant's characteristics begin to change. These characteristics can continue to change during the run cycle of the machine. When the lubricant 12 is agitated, such as during an on operating mode, the oxygenated layer is broken, facilitating and allowing the removal of moisture from the lubricant 12, in addition to allowing the introduction of moisture to the lubricant 12 from air contained in the enclosed void space V.
Referring now to
Removed air enters the oil dryer module 150 from an air intake line 48 coupled with an air intake coupling 48C. The oil dryer module 150 then compresses the air with an air compressor 25 as shown on
Referring to
In the embodiment shown in
Referring now to
Although the system depicted in
Referring now to
Referring now to
The RH sensor 42 measures the relative humidity of the air at predetermined intervals utilizing a timer (not shown). While it is presently believed best to measure humidity at predetermined intervals, humidity could be measured continuously in a stream of data, e.g., in an analog type system.
One RH sensor 42 that has been found to perform suitably is a Model EMD 2000 humidity sensor of the type sold by General Eastern, a Banthorpe PLC Company, located at 20 Commerce Way, Woburn, Mass. 01801-1057.
In its commercially preferred form the RH sensor 42, through the microprocessor 32 is capable of turning on or off indicating mechanism 55, e.g., a light or LED, when a predetermined safe level of humidity is present. The sensing mechanism 55 is also capable of switching the monitored equipment on or off at a predetermined control point or other set condition indicating acceptable humidity condition.
Alarm operating mode is indicated by a red light. This indicates the lubricant is at high moisture levels for optimum lubricant performance and protection. During this mode the oil humidity is greater than or equal to the pre-selected humidity reference.
Again comparing
Referring now to
Referring now to
In this embodiment, the transducer T is coupled with the CE control module CM. The CE control module CM is supplied with a network communications port CP for connection to a remote network (not shown). A dryer driver cable 59 communicatively couples the CE control module CM with the oil dryer module 150.
Referring now to a third alternate embodiment as shown in
A preferable communication would be through the internet as shown in
As shown in
Further, although the embodiment shown in
This embodiment also adds flexibility to the oil drying system to allow monitoring and control of additional lubricant variables such as viscosity, power, and vibration. With the additional viscosity, power, and vibration, the user can then operate the remote computer to provide valuable lubricant information and correlation for prediction for multiple devices, such as in a pump farm. The remote computer can be used for data storage, trending, and oil dryer module 150 control. The user can analyze this information to detect trouble machinery or machinery in need of repair or replacement, and to predict maintenance. For instance, if a particular piece of machinery within a larger pump farm is requiring more frequent lubricant control, that piece of machinery, the data trending could indicate possible trouble machinery.
Additionally, the use of indicator module I can facilitate indication and control for a plurality of oil dryer modules 150 deployed on a plurality of workpieces. For instance, as shown in
If a temperature sensor is deployed, the sensor monitors the temperature of the lubricant. A bearing operating in an poorly lubricated environment will dissipate excess heat generated by the bearing into the lubricant. If the lubricant begins to break down, it cannot properly perform its function of providing a reduced friction substrate between the bearing components and dissipating heat away from the bearing. If the lubricant temperature exceeds a known level, the microprocessor 32 signals drive motor 100 to add more lubricant to the bearing housing 60. The additional lubricant 12 helps to rejuvenate the present lubricant and helps to dissipate excess heat.
If a vibration sensor is employed, the vibration sensor monitors the vibration of bearing housing 60. Again, improper lubrication of bearing 20 may result in a vibration in excess of a preset maximum vibration level. When the maximum vibration level is exceeded, sensor 140 sends a signal to the microprocessor 32 whereby additional lubricant 12 is again added to the bearing housing 60. The additional lubricant 12 dissipates the vibrational energy through a larger volume of lubricant 12.
If a pressure sensor is employed, the pressure sensor constantly monitors the lubricant pressure within bearing housing 60. If the pressure falls below a predetermined setting, improper lubrication of bearing 20 is likely to occur. In this situation, the microprocessor 32 would send a signal to the drive motor thereby adding more lubricant 10 to the bearing housing 60, increasing the lubricant level, and increasing the lubricant pressure above the required minimum.
Additionally, any level sensor, such as an elastohydrodynamic (EHD) sensor may be added to the present invention to provide a signal to indicate if lubricant should be added or subtracted from the bearing housing 60.
The relevant aspects of sensing and control are fully described in co-pending application Ser. No. 09/457,026 now Pat. No. 6,447,573 and incorporated herein by reference. One skilled in the art will readily appreciate that the air purging cycle of the present invention can be controlled through the alarm sequence of co-pending application Ser. No. 09/457,026 now U.S. Pat. No. 6,447,573.
Referring now to a fourth alternate embodiment as shown in
The mechanisms described herein allow for the collection of data and the storage of that data in a memory system for future reference. Also, the stored data can be used to identify situations that are not desirable when data is indicating a trend toward undesirable conditions so those problems may be identified before they occur. The data may be made available for use by algorithms (computer programs) programmed into the microprocessor. The data may also be provided to a user via means of a read out structure so that the user may use a look-up table or other predetermined reference material and then make an appropriate condition monitoring decision regarding the lubricant.
The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
This application claims the benefit of and is a continuation-in-part of application Ser. No. 09/670,852 now U.S. Pat. No. 6,447,573 filed on 27 Sep. 2000, which is a continuation-in-part of Ser. No. 09/457,026 filed on 8 Dec. 1999.
Number | Name | Date | Kind |
---|---|---|---|
539117 | Busch | May 1895 | A |
779357 | Gardner | Jan 1905 | A |
992503 | Howard | May 1911 | A |
1113276 | Woodmausee | Oct 1914 | A |
1571495 | Smith | Feb 1926 | A |
1600262 | Wickham | Sep 1926 | A |
1610283 | Hill | Dec 1926 | A |
1688279 | Loeke | Oct 1928 | A |
1864195 | Hall | Jun 1932 | A |
2227646 | Hillman | Jan 1941 | A |
2340455 | Davis | Feb 1944 | A |
2376623 | Romberg | May 1945 | A |
2589081 | Hertz | Mar 1952 | A |
2608993 | Andrews | Sep 1952 | A |
2930432 | Engstrom | Mar 1960 | A |
2995213 | Gross | Aug 1961 | A |
3338262 | Chopelin | Aug 1967 | A |
3447562 | Hoffman | Jun 1969 | A |
4105092 | Zeidler et al. | Aug 1978 | A |
4345668 | Gaunt | Aug 1982 | A |
4445168 | Petryszyn | Apr 1984 | A |
4681189 | Krisiloff | Jul 1987 | A |
4738336 | Smith et al. | Apr 1988 | A |
4990057 | Rollins | Feb 1991 | A |
5060760 | Long et al. | Oct 1991 | A |
5080195 | Mizumoto et al. | Jan 1992 | A |
5101936 | Paredes et al. | Apr 1992 | A |
5125480 | Gregory et al. | Jun 1992 | A |
5197569 | Roessler et al. | Mar 1993 | A |
5203680 | Waldrop | Apr 1993 | A |
5271528 | Chien | Dec 1993 | A |
5273134 | Hegemier et al. | Dec 1993 | A |
5318152 | Ehlert | Jun 1994 | A |
5332064 | Liu | Jul 1994 | A |
5381874 | Hadank et al. | Jan 1995 | A |
5542499 | Westermeyer | Aug 1996 | A |
5568842 | Otani | Oct 1996 | A |
5634531 | Graf et al. | Jun 1997 | A |
5671825 | Wong et al. | Sep 1997 | A |
5806630 | Bernal | Sep 1998 | A |
5816212 | Lindquist et al. | Oct 1998 | A |
6273031 | Verdegan et al. | Aug 2001 | B1 |
6447573 | Rake | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030075043 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09670852 | Sep 2000 | US |
Child | 10197642 | US | |
Parent | 09457026 | Dec 1999 | US |
Child | 09670852 | US |