Apparatus and method for maintaining controlled orientation of a roller lifter follower used in conjunction with a variable phased valve lifter

Information

  • Patent Grant
  • 6736097
  • Patent Number
    6,736,097
  • Date Filed
    Tuesday, October 8, 2002
    22 years ago
  • Date Issued
    Tuesday, May 18, 2004
    21 years ago
Abstract
In a variable phased valve lifter of an internal combustion engine, a roller lifter is allowed to move along a constraining member of a constraining mechanism, and the constraining mechanism is allowed to move freely in a direction substantially parallel to a line perpendicular to the flat surface machined onto the roller lifter. As the roller lifter moves through its arcuate path, the parallel flat surface(s) of the roller lifter will slide across the constraining member(s) of the constraining mechanism, and end members of the constraining mechanism slide fore-and-aft within stationary blocks. The roller lifter is thus prevented from rotating about its longitudinal axis as it moves in arcuate fashion in cooperation with the constraining mechanism, maintaining line contact between the roller and cam lobe of the camshaft.
Description




FIELD OF THE INVENTION




This invention relates to an internal combustion engine using poppet type valves to direct gases into and out of one or more cylinders. More particularly, the orientation of a roller lifter follower in a pushrod operated engine is to be kept constant during rotation of a rotatable element to alter the phasing of the valves in the engine.




BACKGROUND OF THE INVENTION




A description of a phasing system for roller lifter followers on a camshaft is given by Riley in U.S. Pat. No. 6,155,216, which is hereby incorporated by reference for all that is taught and disclosed therein.




As the rotatable element, such as an eccentric sleeve, is rotated to phase the roller lifter follower (hereinafter simply “roller lifter”), the roller lifter orientation must be controlled to allow the roller to follow the cam lobe on the camshaft. In fixed timing systems a simple pin or plate is usually sufficient to prevent the roller lifter from rotating around its longitudinal axis during operation. The arcuate path of the phased roller lifter requires an extra degree of freedom of movement. Therefore additional measures must be taken in order to maintain controlled orientation of the roller lifter.




SUMMARY OF THE INVENTION




The present invention describes a system for providing controlled orientation of a roller lifter in a pushrod engine using a phasing device to change the point of contact of the roller lifter on the cam. This system is applicable to single or multiple roller lifters. It also applies to roller lifters that may have curved surfaces for contacting the cam, but may not have rollers.




Roller lifters usually have either one or more flat surfaces machined into the outer body of the roller lifter. With the phasing mechanism described in U.S. Pat. No. 6,155,216, the arcuate motion of the roller lifter during phasing would result in excessive clearance at most positions if a fixed anti-rotation mechanism were attempted, and misalignment between cam and roller lifter could result. In the present invention the roller lifter is allowed to move along a constraining member of a constraining mechanism, and the constraining mechanism is allowed to move freely in a direction substantially parallel to a line perpendicular to the flat surface machined onto the roller lifter. As the roller lifter moves through its arcuate path, the flat surface(s) of the roller lifter will slide across the constraining member(s) of the constraining mechanism.




An alternative embodiment of this anti-rotation approach is to have locating pins extending from the side of the lifter, perpendicular to the roller lifter longitudinal axis. These locating pins would engage slots in a constraining mechanism and the constraining mechanism would be free to move in a direction substantially perpendicular to both the longitudinal axis of the roller lifter and the axis of the locating pins.




Another alternative embodiment of this anti-rotation approach is to machine one or more slots into the body of the roller lifter parallel to the longitudinal axis of the lifter. Engaging pins may be inserted into these slots, the engaging pins being attached to a constraining mechanism that may move substantially perpendicular to the engaging pins and the longitudinal axis of the lifter.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows the prior art of how the geometry of rotation of an eccentric sleeve achieves transverse travel of a roller lifter on a cam lobe of a camshaft.





FIG. 2

shows an isometric view of one roller lifter with parallel flat surfaces with one yoke-like constraining mechanism with two sides and stationary slots into which the constraining mechanism slides of the present invention.





FIG. 3A

shows the objects in

FIG. 2

viewed from above, looking down the longitudinal axis of the roller lifter, where the roller lifter is shown in a position near one extreme of travel.





FIG. 3B

shows the same view as

FIG. 3A

, but with the roller lifter now in a centered position.





FIG. 3C

shows the same view as

FIG. 3B

, but with the roller lifter moved near to the other extreme of travel.





FIG. 4

shows an isometric view of a roller lifter and a two-sided yoke-like constraining mechanism with the location of the flat surfaces on the roller lifter located essentially perpendicular to their position in

FIG. 2

, where the direction of movement of the constraining mechanism is also essentially perpendicular.





FIG. 5

shows an isometric view of multiple lifters with a common two-sided yoke-like constraining mechanism of the present invention.





FIG. 6

shows an isometric view of a single roller lifter with a one-sided yoke-like constraining mechanism of the present invention.





FIG. 7

shows an isometric view of a single roller lifter with locating pins and a two-sided, slotted yoke-like constraining mechanism of the present invention.





FIG. 8

shows an isometric view of a single roller lifter with grooves in the roller lifter for orientation and a yoke-like constraining mechanism with engaging pins of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the Figures, in which like reference numerals refer to like components thereof,

FIG. 1

shows the prior art of how the geometry of rotation of an eccentric sleeve achieves transverse travel of a roller lifter on a cam lobe of a camshaft. Referring now to

FIG. 1

, the geometry of an eccentric sleeve, in a view from the top of the roller lifter along the longitudinal axis of the roller lifter is shown. Circle


1


is the outside edge of the eccentric sleeve, with center


1




a


, and circle


2


is the inside edge of the eccentric sleeve, with center


2




a


, offset from the center


1




a


of the eccentric sleeve. Circle


3


represents the path of the center of the offset as the eccentric sleeve is rotated. Circle


4


with center


4




a


shows the position of the offset when the eccentric sleeve is rotated by some angle, here approximately 60° clockwise, around center


1




a


. Similarly, circle


5


with center


5




a


shows the position of the offset when rotated the same amount, approximately 60°, in the opposite direction around center


1




a


. Line


6


, between the centers


4




a


and


5




a


of circles


4


and


5


respectively, shows the distance that the center of the roller


11


moves transverse to the axis of the camshaft


9




a


, shown as arrow


7


. Line


8


, perpendicular to line


6


, is the farthermost distance to circle


3


. Circle


2


corresponds to the outer location of a roller lifter that would make contact with cam lobe


9


. Line


8


represents the maximum fore-and-aft movement of the roller lifter along the axial direction of camshaft


9




a


, parallel to arrow


7


.





FIG. 2

shows an isometric view of one roller lifter with parallel flat surfaces with one yoke-like constraining mechanism with two sides and stationary slots into which the constraining mechanism slides of the present invention. Referring now to

FIG. 2

, an isometric view of a single roller lifter


10


, with roller


11


and flat surfaces


12


which are parallel to each other, engaged by constraining mechanism


13


is shown. Constraining mechanism


13


is constrained by stationary blocks


14


, which are attached to the engine in any number of ways known in the art. Stationary blocks


14


have slots


14




a


which receive end members


13




a


of constraining mechanism


13


. This allows fore-and-aft movement only of constraining mechanism


13


, represented by arrow


25


, when actuated by movement of roller lifter


10


. Roller lifter


10


may also move within the constraints of constraining mechanism


13


perpendicular to arrow


25


, represented by arrow


26


, through the interaction of parallel flat surfaces


12


with interior members


13




b


, which are also parallel to each other, of constraining mechanism


13


. Allowable movement in the two perpendicular directions enables the arcuate travel path of roller lifter


10


as shown in FIG.


1


. Roller lifter


10


also moves axially up-and-down along its longitudinal axis


27


as it engages with the cam (not shown). Thus, one skilled in the art will recognize that roller lifter


10


is prevented from rotating about its longitudinal axis


27


as it moves in arcuate fashion in cooperation with constraining mechanism


13


. In so doing, the orientation of roller lifter


10


in relation to cam lobe


9


of camshaft


9




a


is maintained such that the axis of roller


11


and the axis of camshaft


9




a


are parallel, ensuring line contact between roller lifter


10


and cam lobe


9


. The orientation of the stationary blocks


14


, which restrict movement of constraining mechanism


13


along arrow


25


, and the flat surfaces


12


of roller lifter


10


, which restricts movement of roller lifter


10


along arrow


26


, may be at some angle to each other besides perpendicular as long as any resulting movement allows the parallelism between the axis of roller


11


and the axis of camshaft


9




a


to be preserved.




For simplicity one stationary block


14


is omitted from this view. Having all four stationary blocks


14


provides more constraint than is absolutely necessary. Only two stationary blocks


14


are necessary to provide a minimum amount of constraint for roller lifter


10


. Two stationary blocks


14


may be located one on each end of the same side of constraining mechanism


13


, or located diagonally from each other on opposite ends of constraining mechanism


13


, or located on the same end of constraining mechanism


13


.




Various methods may be employed to ensure that constraining mechanism


13


remains operatively engaged within slots


14




a


of stationary blocks


14


which are well known in the art. Though slots


14




a


are shown as open channels in stationary blocks


14


, slots


14




a


may also be fully contained within stationary blocks


14


in a hole-like fashion. In addition, though the end members


13




a


and interior members


13




b


of constraining mechanism


13


are shown as being square or rectangular in cross section, some or all of end members


13




a


and interior members


13




b


of constraining mechanism


13


may also be round in cross section or some other shape, or a combination of round, square, rectangular, or some other shape.





FIG. 3A

shows the objects in

FIG. 2

viewed from above, looking down the longitudinal axis of the roller lifter, where the roller lifter is shown in a position near one extreme of travel. Referring now to

FIG. 3A

, the eccentric sleeve (not shown) is rotated approximately 60° counterclockwise from a centered position, displacing roller lifter


10


, whose center position is shown as center


10




a


. The center of the roller lifter


10


will follow the arc on which center


10




a


lies as the eccentric sleeve is rotated. This eccentric sleeve rotation results in phasing of the roller


11


(not shown) on cam lobe


9


differently from the centered position. Two end members


13




a


of constraining mechanism


13


have moved more fully into slots


14




a


of stationary blocks


14


at the top of the diagram, and the other two end members


13




a


have moved more out of slots


14




a


of stationary blocks


14


at the bottom of the diagram. Flat surfaces


12


on the roller lifter


10


(appearing as edges in this view) maintain the orientation of roller


11


on roller lifter


10


with cam lobe


9


.





FIG. 3B

shows the same view as

FIG. 3A

, but with the roller lifter now in a centered position. Referring now to

FIG. 3B

, the eccentric sleeve (not shown) is in approximately its centered position, approximately 60° clockwise from its position in FIG.


3


A. The position of the center of roller lifter


10


is center


10




b.







FIG. 3C

shows the same view as

FIG. 3B

, but with the roller lifter moved near to the other extreme of travel. Referring now to

FIG. 3C

, the eccentric sleeve (not shown) is rotated approximately a further 60° clockwise from the centered position shown in FIG.


3


B. The movement of constraining mechanism


13


towards the bottom of the diagram is obvious. The position of the center of roller lifter


10


is shown as center


10




c.







FIG. 4

shows an isometric view of a roller lifter and a two-sided yoke-like constraining mechanism with the location of the flat surfaces on the roller lifter located essentially perpendicular to their position in

FIG. 2

, where the direction of movement of the constraining mechanism is also essentially perpendicular. Referring now to

FIG. 4

, this embodiment of the invention is intended to show that the direction of motion of the constraining mechanism


13


, shown by arrow


25


, should be parallel, or somewhat close thereto, to a line perpendicular to the parallel flat surfaces


12


on the roller lifter


10


, shown by arrow


26


. As in

FIG. 2

, for simplicity one stationary block


14


is also omitted from this view.





FIG. 5

shows an isometric view of multiple-lifters with a common two-sided constraining mechanism of the present invention. Referring now to

FIG. 5

, an isometric view of multiple lifters with a common two-sided constraining mechanism


15


ensuring controlled orientation of roller lifters


10


is shown. As with the change in orientation of the constraining mechanism


13


and parallel flat surfaces


12


in

FIG. 4

, these may be oriented substantially perpendicular to the directions shown without altering the operation of the orientation of the roller lifters


10


. As in

FIG. 2

, only three stationary blocks


14


are shown, although adequate constraint, as discussed above, requires a minimum of two stationary blocks


14


, with sufficient spacing to ensure alignment. End members


15




a


are engaged within slots


14




a


of stationary blocks


14


, and each pair of parallel interior members


15




b


each engage the parallel flat surfaces


12


of a roller lifter


10


. One skilled in the art will recognize that additional pairs of parallel interior members


15




b


may be added for each additional roller lifter


10


so aligned in the engine.





FIG. 6

shows an isometric view of a single roller lifter with a one-sided yoke-like constraining mechanism of the present invention. Referring now to

FIG. 6

, an isometric view of a single roller lifter


10


with a one-sided constraining mechanism


16


is shown. Spring


17


pushes an interior member


16




b


of one-sided constraining mechanism


16


against a flat surface


12


of roller lifter


10


to ensure controlled orientation of roller lifter


10


, constraining movement of roller lifter


10


in the directions represented by arrows


25


and


26


. As in

FIG. 2

, for simplicity one stationary block


14


is also omitted from this view. End members


16




a


are engaged within slots


14




a


of stationary blocks


14


. One skilled in the art will recognize that additional roller lifters


10


could be added along with additional interior members


16




b


similar to that shown in FIG.


5


.





FIG. 7

shows an isometric view of a single roller lifter with locating pins and a two-sided, slotted yoke-like constraining mechanism of the present invention. Referring now to

FIG. 7

, an isometric view of a single roller lifter


19


with attached or integral locating pins


20


perpendicular to longitudinal axis


27


of single roller lifter


19


is shown. Two-sided, slotted constraining mechanism


18


has interior members


18




b


, each having a slot


18




c


which engage each locating pin


20


. As single roller lifter


19


is moved through its arc, locating pins


20


slide in and out of slot


18




c


of interior members


18




b


of slotted constraining mechanism


18


, in a direction indicated by arrow


26


, while the end members


18




a


of slotted constraining mechanism


18


slide fore-and-aft in slots


14




a


of stationary blocks


14


, substantially perpendicular to the direction of movement of single roller lifter


19


relative to slotted constraining mechanism


18


, indicated by arrow


25


. These two constraints maintain controlled orientation of single roller lifter


19


as it moves through its arcuate path, preventing rotation of roller lifter


19


about its longitudinal axis


27


.





FIG. 8

shows an isometric view of a single roller lifter with grooves in the roller lifter for orientation and a yoke-like constraining mechanism with engaging pins of the present invention. Referring now to

FIG. 8

, an isometric view of a single roller lifter


21


, with grooves


22


machined along its length parallel to its longitudinal axis


27


and located on opposite sides of roller lifter


21


is shown. Engaging pins


23


attached or integral to internal members


24




b


of constraining mechanism


24


and aligned with grooves


22


maintain controlled orientation of single roller lifter


21


as it moves through its arc. Single roller lifter


21


slides back and forth against engaging pins


23


on internal members


24




b


of constraining mechanism


24


in a direction indicated by arrow


26


, while the end members


24




a


of constraining mechanism


24


slide fore-and-aft in slots


14




a


of stationary blocks


14


, substantially perpendicular to the direction of movement of single roller lifter


21


relative to engaging pins


23


on constraining mechanism


24


, indicated by arrow


25


. These two constraints maintain controlled orientation of single roller lifter


21


as it moves through its arcuate path, preventing rotation of single roller lifter


21


about its longitudinal axis


27


.




Having described the present invention, it will be understood by those skilled in the art that many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the present invention.



Claims
  • 1. An apparatus in an internal combustion engine having a rotatable element that eccentrically moves at least one roller lifter to alter the phasing of at least one valve that is activated by the at least one roller lifter engaging with a cam, the apparatus comprising:a constraining mechanism having at least two end members and at least two interior members connected to said at least two end members; and at least two stationary blocks which each slidably receives a one of said at least two end members allowing fore-and-aft movement of said constraining mechanism in cooperation with a first roller lifter in a first direction; wherein said at least two interior members engage said first roller lifter to allow movement of said first roller lifter in a second direction that is substantially perpendicular to said first direction such that when the rotatable element eccentrically moves said first roller lifter, said first roller lifter is prevented from rotating about a longitudinal axis of said first roller lifter.
  • 2. The apparatus according to claim 1 wherein said at least two interior members each engage a one of two flat surfaces of said first roller lifter to allow said movement in said second direction.
  • 3. The apparatus according to claim 2 wherein said at least two interior members are parallel to each other, and said two flat surfaces of said first roller lifter are parallel to each other.
  • 4. The apparatus according to claim 1 further comprising:a second roller lifter aligned with said first roller lifter; and an additional pair of interior members connected to said at first two end members, wherein said additional pair of interior members each engage a one of two flat surfaces of said second roller lifter to allow movement of said first roller lifter in said second direction, and said second roller lifter is prevented from rotating about a longitudinal axis of said second roller lifter.
  • 5. The apparatus according to claim 4 wherein said additional pair of interior members are parallel to each other, and said two flat surfaces of said second roller lifter are parallel to each other.
  • 6. The apparatus according to claim 1 wherein said at least two interior members each have a slot, and further wherein said first roller lifter has two locating pins extending from opposite sides of said first roller lifter and perpendicular to said longitudinal axis of said first roller lifter, wherein each of said two locating pins engages with a one of said slots of said at least two interior members to allow said movement of said first roller lifter in said second direction.
  • 7. The apparatus according to claim 1 wherein each of said at least two interior members have an engaging pin, and further wherein said first roller lifter has a first groove and a second groove located on opposite sides of said first roller lifter from each other and parallel to said longitudinal axis of said first roller lifter, wherein one of said engaging pins of said at least two interior members engages with said first groove and an other of said engaging pins of said at least two interior members engages with said second groove in said first roller lifter to allow said movement of said first roller lifter in said second direction.
  • 8. An apparatus in an internal combustion engine having a rotatable element that eccentrically moves at least one roller lifter to alter the phasing of at least one valve that is activated by the at least one roller lifter engaging with a cam, the apparatus comprising:a constraining mechanism having at least two end members and at least one interior member connected to said at least two end members; at least two stationary blocks which each slidably receives a one of said at least two end members allowing fore-and-aft movement of said constraining mechanism in cooperation with a first roller lifter in a first direction; and a spring biased against said at least one interior member; wherein said spring and said at least one interior member engage said first roller lifter to allow movement in a second direction that is substantially perpendicular to said first direction such that when the rotatable element eccentrically moves said first roller lifter, said first roller lifter is prevented from rotating about a longitudinal axis of said first roller lifter.
  • 9. The apparatus according to claim 8 wherein said at least one interior member engages at least one flat surface of said first roller lifter to allow movement in said second direction.
  • 10. The apparatus according to claim 8 further comprising:a second roller lifter aligned with said first roller lifter; and an additional interior member connected to said at least two end members, wherein said additional interior member engages a flat surface of said second roller lifter to allow movement in said second direction, and said second roller lifter is prevented from rotating about a longitudinal axis of said second roller lifter.
  • 11. A method for controlling the orientation of at least one roller lifter in an internal combustion engine having a rotatable element that eccentrically moves the at least one roller lifter to alter the phasing of at least one valve that is activated by the at least one roller lifter engaging with a cam, the method comprising:(a) slidably receiving a constraining mechanism in at least two stationary blocks, wherein said constraining mechanism in cooperation with a first roller lifter is only allowed to move fore-and-aft in a first direction; (b) engaging at least two interior members of said constraining mechanism with said first roller lifter, wherein said first roller lifter is allowed to move in cooperation with said constraining mechanism in a second direction substantially perpendicular to said first direction; (c) eccentrically moving in said first and second directions said first roller lifter with the rotatable element engaged with said first roller lifter; and (d) preventing said first roller lifter from rotating about a longitudinal axis of said first roller lifter through the cooperation of said first roller lifter with said restraining mechanism.
  • 12. A method according to claim 11 wherein step (a) further comprises:slidably receiving a first end member of said constraining mechanism in a first of said two stationary blocks; and slidably receiving a second end member of said constraining mechanism in a second of said two stationary blocks.
  • 13. A method according to claim 11 wherein step (b) further comprises:engaging a first of said at least two interior members of said constraining mechanism with a first flat surface of said first roller lifter; and engaging a second of said at least two interior members of said constraining mechanism with a second flat surface of said first roller lifter; wherein said first flat surface and said second flat surface are parallel to each other.
  • 14. A method according to claim 11 further comprising:engaging at least two additional interior members of said constraining mechanism with a second roller lifter aligned with said first roller lifter, wherein said second roller lifter is allowed to move in said second direction; eccentrically moving in said first and second directions said second roller lifter with the rotatable element engaged with said second roller lifter; and preventing said second roller lifter from rotating about a longitudinal axis of said second roller lifter through the cooperation of said second roller lifter with said at least two additional interior members of said restraining mechanism.
  • 15. A method according to claim 11 wherein step (b) further comprises:engaging a slot within a first of said at least two interior members of said constraining mechanism with a first locating pin on said first roller lifter; and engaging a slot within a second of said at least two interior members of said constraining mechanism with a second locating pin on said first roller lifter; wherein said first locating pin and said second locating pin extend from opposite sides of said first roller lifter.
  • 16. A method according to claim 11 wherein step (b) further comprises:engaging an engaging pin within a first of said at least two interior members of said constraining mechanism with a first groove on said first roller lifter; and engaging an engaging pin within a second of said at least two interior members of said constraining mechanism with a second groove on said first roller lifter; wherein said first groove and said second groove are located on opposite sides of said first roller lifter and parallel to said longitudinal axis of said first roller lifter.
  • 17. A method for controlling the orientation of at least one roller lifter in an internal combustion engine having a rotatable element that eccentrically moves the at least one roller lifter to alter the phasing of at least one valve that is activated by the at least one roller lifter engaging with a cam, the method comprising:(a) slidably receiving a constraining mechanism in at least two stationary blocks, wherein said constraining mechanism in cooperation with a first roller lifter is only allowed to move fore-and-aft in a first direction; (b) engaging at least one interior member of said constraining mechanism with said first roller lifter; (c) biasing a spring against said at least one interior member, wherein said first roller lifter is allowed to move in cooperation with said constraining mechanism in a second direction substantially perpendicular to said first direction; (d) eccentrically moving in said first and second direction said first roller lifter with a rotatable element engaged with said first roller lifter; and (e) preventing said first roller lifter from rotating about a longitudinal axis of said first roller lifter through the cooperation of said first roller lifter with said restraining mechanism.
  • 18. A method according to claim 17 wherein step (a) further comprises:slidably receiving a first end member of said constraining mechanism in a first of said two stationary blocks; and slidably receiving a second end member of said constraining mechanism in a second of said two stationary blocks.
  • 19. A method according to claim 17 wherein step (b) further comprises:engaging said at least one interior member of said constraining mechanism with a flat surface of said first roller lifter.
  • 20. A method according to claim 17 further comprising:engaging at least one additional interior member of said constraining mechanism with a second roller lifter aligned with said first roller lifter, wherein said second roller lifter is allowed to move in said second direction; eccentrically moving in said first and second directions said second roller lifter with the rotatable element engaged with said second roller lifter; and preventing said second roller lifter from rotating about a longitudinal axis of said second roller lifter through the cooperation of said second roller lifter with said at least one additional interior member of said restraining mechanism.
US Referenced Citations (8)
Number Name Date Kind
4089234 Henson et al. May 1978 A
5022356 Morel, Jr. et al. Jun 1991 A
5263386 Campbell et al. Nov 1993 A
5546899 Sperling et al. Aug 1996 A
5934232 Greene et al. Aug 1999 A
5947069 Koerner Sep 1999 A
6257189 Moretz et al. Jul 2001 B1
6357407 Brothers Mar 2002 B2