The present application is based on Japanese Patent Application No. 2004-313327 filed on Oct. 28, 2004, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an apparatus and a method for maintaining a recording head of a recording device that ejects, from a nozzle of the head, a droplet of ink toward a recording medium and thereby records an image on the medium, such that the recording head is separate from a remaining portion of the recording device.
2. Discussion of Related Art
When a recording head is not used, or before the recording head is attached to a recording device after the head is manufactured, the recording head may be maintained separate from the recording device. For instance, the recording head can be charged with ink or a suitable liquid. Drying or leakage of the ink or the liquid is prevented by air-tightly sealing, with a sealing member (e.g., a cap) formed of an elastic material such as rubber, a nozzle-defining surface of the recording head that defines one or more ink ejection nozzles, as taught by Japanese Patent No. 3,324,629 or its corresponding U.S. Pat. No. 5,805,181A.
More specifically described, the above-indicated document teaches selectively using a monochromatic-image recording head or a full-color-image recording head, mounting the recording head selected, on a carriage, and maintaining the recording head not selected, in a state in which the recording head is charged with one or more sorts of ink. Meanwhile, after a recording head is manufactured, the recording head may be subjected to an ejection test, and the head that has passed the test may be maintained in a state in which the head is charged with one or more sorts of ink, or a suitable liquid, before the head is attached to a remaining portion of a recording device.
A recording head cannot normally eject a droplet of ink unless a meniscus of the ink is normally formed, owing to its surface tension, in the vicinity of an open end of a nozzle. Thus, in the state in which the recording head is maintained, it is required that the meniscus of the ink be formed at the normal position and that the nozzle-defining surface of the recording head be air-tightly sealed.
However, when the nozzle-defining surface of the recording head is covered with a sealing member, the sealing member may be elastically deformed so that a space formed between the nozzle-defining surface and the sealing member may be compressed and accordingly an air pressure in the space may be increased, and accordingly the meniscus of the ink in the nozzle may be broken.
The above-indicated document proposes a sealing method in which the above-described air-tight space is communicated with the atmosphere via a flow-resisting passage. However, since the flow-resisting passage has a considerably great resistance for the purpose of preventing drying of the ink, the passage cannot follow the change of volume of the space when the sealing member is attached to the nozzle-defining surface. Thus, the meniscus of the ink may be subjected to a high air pressure, and accordingly it may be broken. In addition, since the space defined by the sealing member is always communicated with the atmosphere, the drying of the ink cannot be effectively prevented.
It is therefore an object of the present invention to solve at least one of the above-indicated problems. It is another object of the present invention to provide a recording-head maintaining apparatus and a recording-head maintaining method each of which can maintain a nozzle in an air-tight state and thereby prevent drying of an ink or a liquid in the nozzle, without breaking a meniscus of the ink.
The above objects may be achieved according to the present invention. According to a first aspect of the present invention, there is provided an apparatus for maintaining a recording head which has a nozzle opening in a nozzle-defining surface thereof, and ejects, from the nozzle, a droplet of an ink toward a recording medium, in a state in which the recording head is separate from a remaining portion of a recording device. The apparatus comprises a cover member which is adapted to air-tightly contact the recording head to cover the nozzle-defining surface of the recording head such that a space is formed between the cover member and nozzle-defining surface. The apparatus further comprises a selectively communicating means which can selectively take (a) a first state thereof in which the selectively communicating means allows the space to communicate with an atmosphere so that substantially no difference is produced between an air pressure in the space and an atmospheric pressure, when the cover member is air-tightly contacted with the recording head; and (b) a second state thereof in which the selectively communicating means shuts off a communication between the space and the atmosphere, and thereby air-tightly closes the space, after the cover member is air-tightly contacted with the recording head.
The present recording-head maintaining apparatus includes the selectively communicating means which allows the space formed between the cover member and the nozzle-defining surface when the cover member covers the nozzle-defining surface, to communicate with the atmosphere. Therefore, when the cover member covers the nozzle-defining surface, a certain amount of air is discharged from the space into the atmosphere. Thus, the air pressure in the space can be prevented from being excessively increased, and accordingly a meniscus of the ink present in the nozzle can be reliably prevented from being broken.
In addition, the selectively communicating means air-tightly closes the communication between the space and the atmosphere and thereby shuts off the space from the atmosphere. Thus, the nozzle can be kept in the air-tight state and accordingly drying of the ink (or a different liquid) present in the nozzle can be effectively prevented.
According to a second aspect of the present invention, there is provided a method of maintaining a recording head which has a nozzle opening in a nozzle-defining surface thereof, and ejects, from the nozzle, a droplet of an ink toward a recording medium, in a state in which the recording head is separate from a remaining portion of a recording device and a cover member covers the nozzle-defining surface such that a space is formed between the cover member and the nozzle-defining surface. The method comprises keeping, when the cover member is air-tightly contacted with the recording head, a communication between the space and an atmosphere so that substantially no difference is produced between an air pressure in the space and an atmospheric pressure. The method further comprises shutting off, after the cover member is air-tightly contacted with the recording head, the communication between the space and the atmosphere, so that the space is air-tightly closed during a time period in which the cover member is air-tightly contacted with the recording head.
In the present recording-head maintaining method, the space formed between the cover member and the nozzle-defining surface is communicated with the atmosphere through the one or more through-holes, before the cover member is air-tightly contacted with the recording head. When the cover member covers the nozzle-defining surface, a certain amount of air is discharged from the space into the atmosphere through the through-hole or through-holes. Thus, the air pressure in the space can be prevented from being excessively increased, and accordingly a meniscus of the ink present in the nozzle can be reliably prevented from being broken.
In addition, after the cover member is air-tightly contacted with the recording head, the communication between the space and the atmosphere is shut off to keep the nozzle in the air-tight state. Thus, drying of the ink (or a different liquid) present in the nozzle can be effectively prevented.
The above and optional objects, features, and advantages of the present invention will be better understood by reading the following detailed description of the preferred embodiments of the invention when considered in conjunction with the accompanying drawings, in which:
Hereinafter, there will be described a first embodiment of the present invention by reference to
Construction of Inkjet Printer 1
In an inner space of the inkjet printer 1, two guide bars 6, 7 are provided, and a head holder 9 functioning as a carriage is supported by the two guide bars 6, 7. The head holder 9 holds the inkjet head 30 that ejects droplets of inks toward a recording sheet, P, as a sort of recording medium and records an image on the recording sheet P. The head holder 9 is secured to an endless belt 11 that is circulated by an electric motor 10 and, when the motor 10 is driven or operated, the head holder 9 is moved on the guide bars 6, 7. A known belt-like timing indicator, not shown, is provided along the guide bar 7. The timing indicator has a number of timing marks that are used to detect a current position of the head holder 9.
In addition, on a stationary member, not shown, provided in the inner space of the inkjet printer 1, there are provided four ink tanks 5, i.e., an ink tank 5a that stores a yellow ink (Y), an ink tank 5b that stores a magenta ink (M), an ink tank 5c that stores a cyan ink (C), and an ink tank 5d that stores a black ink (BK). The four ink tanks 5a, 5b, 5c, 5d are connected via respective flexible ink supply tubes 14a, 14b, 14c, 14d to a tube joint 20 (
In the vicinity of one of opposite ends of a movement range in which the head holder 9 can be moved, there is provided a flushing portion 12; and in the vicinity of the other end of the movement range of the head holder 9, there is provided a maintenance portion 4. The inkjet head 30 can be operated to eject bad inks containing air bubbles, toward the flushing portion 12, and thereby keep its own good ink-ejecting performance. The maintenance portion 4 can be operated to suck the bad inks from the inkjet head 30 and wipe a “nozzle” surface (i.e., a nozzle-defining surface) 31a (
Construction of Head Holder 9
Next, there will be described a construction of the head holder 9 that holds the inkjet head 30, by reference to
In a state in which the tube joint 20 is removed from the buffer tank 40, that is, in a recording-head maintaining state, described later, a protector member 21 (
As shown in
As shown in
As shown in
The head holder 9 has, in a space located above the bottom wall 9e thereof, i.e., above the inkjet head 30 that faces the recording sheet P in the downward direction, a buffer tank 40 that has four ink delivering portions 40a that correspond to the four color inks, respectively, and are separated from each other by partition walls, not shown. The four ink delivering portions 40a have, in a lower surface of the buffer tank 40, respective ink supply ports 40e that communicate with the four ink inlet ports 31b via the respective ink flow holes 33a.
Respective upper open ends of the four ink delivering portions 40a are closed by a flexible membrane member 41. More specifically described, the membrane member 41 is formed of a resin-based film, and is fixed, by adhesion or supersonic welding, to respective upper ends of the partition walls that separate the four ink delivering portions 40a from each other, and an upper end of an outer wall of the buffer tank 40. As known in the art, a predetermined amount of air is accumulated in an upper end portion of each of the four ink delivering portions 40a. The predetermined amount of air cooperates with the flexible membrane 41 to absorb changes of pressure of a corresponding one of the four color inks that are caused when the inkjet head 30 is moved with the head holder 9 as the movable carriage. An excessive amount of air over the predetermined amount of air accumulated in the upper end portion of each ink delivering portion 40a is discharged into an outside space by an air discharging device 45 (
A front end portion of the head holder 9 includes, as an integral portion thereof an arm portion 9a that extends horizontally in the frontward direction, and a front end portion of the buffer tank 40 includes an extension portion that extends parallel to the arm portion 9a such that the extension portion is superposed on the arm portion 9a. The tube joint 20 is connected to the extension portion of the buffer tank 40.
The four flexible tubes 14a through 14d (
In a state in which the tube joint 20 is removed from the buffer tank 40, that is, in a recording-head maintaining state, described later, a protector member 21
The tube joint 20 includes, as a front end portion thereof, a holding projection 29 having a slit 29a through which a flexible flat cable, not shown, is inserted. Thus, the holding projection 29 supports the flat cable. The flat cable electrically connects an electric-circuit substrate 84, described below, to a control device, not shown, that is provided on a stationary member provided in the inner space of the inkjet printer 1.
The circuit substrate 84 is a rigid member, and is provided on an upper open end of the head holder 9 such that the substrate 84 is opposite to the inkjet head 30 with respect to the buffer tank 40. More specifically described, the circuit substrate 84 is detachably attached to the holder 9 such that the substrate 84 is supported by the respective upper ends of the walls of the head holder 9.
A cover member 9d is provided over the circuit substrate 84. Since the cover member 9d has a box-like shape opening in the downward direction, the cover member 9d can externally cover the upper open end of the head holder 9.
Construction of Head Maintaining Apparatus 100
Next, there will be described a construction of the recording-head maintaining apparatus 100 that maintains the inkjet head 30, by reference to
The head maintaining apparatus 100 includes the sealing member 50 that air-tightly seals the nozzle surface 31a; the lower case 60 that holds the sealing member 50; the upper case 70 that cooperates with the lower case 60 to hold or accommodate the head holder 9 holding the inkjet head 30; and a sealing plug 80 that air-tightly closes a communication hole 50c of the sealing member 50.
The sealing member 50 is formed of an elastic material such as a rubber, and includes a plate-like base portion 50a and an annular lip portion 50b projecting from an upper surface of the base portion 50a. The lip portion 50b can air-tightly contact and cover the nozzle surface 31a such that the lip portion 50b surrounds all the nozzles 35, 36, 37, 38 (
The sealing plug 80 includes a plate-like head portion 80b that can be pushed with a finger of a person, and an insertion portion 80a that projects from a central portion of the head portion 80b and can be inserted into the communication hole 50c of the sealing member 50. The insertion portion 80a has a transverse cross section whose size is somewhat larger than that of the communication hole 50c, and has an axial length assuring that the insertion portion 80a can be inserted into the communication hole 50c via a bottom hole 60e of the lower case 60.
The lower case 60 has a box-like shape having an upper open end 60a, a bottom wall 60b, and a leg portion 60c that defines a prescribed space below the bottom wall 60b.
A holding portion 60d that holds the sealing member 50 at a prescribed position is provided on an upper surface of the bottom wall 60b, such that the holding portion 60d projects upward from the upper surface. The bottom hole 60e is formed through a thickness of a portion of the bottom wall 60b that corresponds to the communication hole 50c of the sealing member 50 in the state in which the sealing member 50 is held by the holding member 60d, so that the inner space 51 defined by the sealing member 50 communicates with an outer space located outside the lower case 60, i.e., the atmosphere. The lower case 60 has, in an inner space thereof, two plate-like guide members 60f that cooperate with each other to guide the head holder 9 to a prescribed position. In addition, the two guide members 60f cooperate with each other to support the head holder 9 such that the nozzle surface 31a keeps its horizontal posture, and position the holder 9 such that the nozzle surface 31a contacts the lip portion 50b of the sealing member 50.
The upper case 70 has a box-like shape having a lower open end that allows the upper case 70 to cover externally the upper open end 60a of the lower case 60. The upper case 70 has, on a lower surface of a top wall thereof, two pressing members 70a that project in the downward direction and that contact two portions of an upper surface of the cover member 9d of the head holder 9, respectively, and press the holder 9 in the downward direction, in the state in which the upper case 70 is engaged with the lower case 60. In the present embodiment, each of the two pressing members 70a has a plate-like shape.
Method of Maintaining Inkjet Head 30
Next, there will be described a method of maintaining the inkjet head 30 by using the head maintaining apparatus 100.
First, the sealing member 50 whose communication hole 50c is kept open is held by the holding portion 60d of the lower case 60 and, in this state, the head holder 9 to which the protector 21 is attached is guided by the two guide members 60f, so that the nozzle surface 31a of the holder 9 is held in contact with the lip portion 50b of the sealing member 50. Thus, the sealing member 50 and the nozzle surface 31a cooperate with each other to define the inner space 51 inside the lip portion 50b. The inner space 51 communicates with the atmosphere via the communication hole 50c of the sealing member 50 and the bottom hole 60e of the bottom wall 60b of the lower case 60.
In this state, the tube joint 20 has not been attached to the head holder 9 yet, that is, the protector 21 remains attached to the head holder 9. As shown in
Meanwhile, when the head holder 9 is attached to the inkjet printer 1, the protector 21 is detached from the holder 9 by operating the two operable portions 21a and disengaging the two engaging portions 21b from the arm portion 9a, and then the tube joint 20 is attached to the arm portion 9a.
Subsequently, the upper case 70 is placed on the upper open end 60a of the lower case 60, so that the pressing members 70a contact the upper surface of the cover member 9d. Then, if the upper case 70 is pressed against the lower case 60, two fixing portions 70b that are provided on two opposite side surfaces of the upper case 70, as shown in FIGS. 5A and 5B,affix the upper and lower cases 70, 60 to each other, so that the nozzle surface 31a is pressed against the sealing member 50. More specifically described, the upper and lower cases 70, 60 are fixed to each other such that respective upper surfaces of the two first engaging portions 70c projecting inward from respective lower ends of the two fix portions 70b are engaged with respective lower surfaces of the two second engaging portions 60h projecting outward from two side walls 60g of the lower case 60. On the other hand, if two releasing portions 70d extending outward and upward from the respective lower ends of the two fixing portions 70b are pressed with fingers of a person, the two first engaging portions 70c are disengaged or released from the two second engaging portions 60h, so that the upper case 70 can be disengaged or separated from the lower case 60.
When the upper case 70 and the lower case 60 are engaged with each other, the sealing member 50 is pressed and the lip portion 50b thereof is deformed or compressed and is held in pressed contact with the nozzle surface 31a. Thus, a volume of the inner space 51 is decreased. Since, however, the inner space 51 communicates with the atmosphere via the communication hole 50c and the bottom hole 60e, an air pressure in the inner space 51 is not increased. Thus, a meniscus of the ink present in each of the nozzles 35 through 38 is not broken.
Then, the insertion portion 80a of the sealing plug 80 is inserted into the communication hole 50c via the bottom hole 60e. Since the size of the insertion portion 80a is somewhat larger than that of the communication hole 50c, an outer surface of the insertion portion 80a and an inner surface of the communication hole 50c are held in pressed contact with each other, owing to an elasticity of the sealing member 50. Thus, the communication hole 50c is closed by the sealing member 80 such that the inner space 51 is air-tightly isolated from the atmosphere.
The first embodiment relates to the inkjet printer 1. However, the principle of the present invention is applicable to other sorts of inkjet recording devices such as a facsimile machine.
Before the head holder 9 holding the inkjet head 30 is packaged in the head maintaining apparatus 100, the head holder 9 is subjected to an ejecting test, in a state in which the buffer tank 40 of the head holder 9 accommodates the four color inks, or a different liquid analogous with the inks. If each of the nozzles 35 through 38 of the inkjet head 30 normally ejects a droplet of ink, it can be said that a meniscus of the ink present in the each nozzle is formed at an appropriate position. Therefore, if the head holder 9 including the inkjet head 30 in this state is packaged in the head maintaining apparatus 100 and then is attached to the inkjet printer 1, the inkjet head 30 can normally start its ink ejecting operation in the inkjet printer 1.
(1) In the above-described head maintaining apparatus 100 and the above-described head maintaining method, the sealing member 50 has the communication hole 50c that communicates, on one hand, with the inner space 61 defined between the sealing member 50 and the nozzle surface 31a when the sealing member 50 covers the nozzle surface 31a, and communicates, on the other hand, with the atmosphere. Thus, when the sealing member 50 covers the nozzle surface 31a, a certain amount of air present in the inner space 51 can be released into the atmosphere via the communication hole 50c, and accordingly the air pressure in the inner space 51 can be prevented from being excessively increased. Therefore, the meniscus of the ink present in each of the nozzles 86 through 38 can be reliably prevented from being broken.
In addition, since the communication hole 50c can be closed with the sealing plug 80, the inner space 51 can be air-tightly isolated from the atmosphere. Therefore, each of the nozzles 35 through 38 can be isolated from the atmosphere and the ink present in the each nozzle can be effectively prevented from being dried up.
(2) In the simple operation in which the inkjet head 30 is placed between the upper and lower cases 70, 60 and the upper case 70 is pressed against the lower case 60, the sealing member 50 is held in pressed contact with the nozzle surface 31a. Thus, the nozzle surface 31a can be air-tightly sealed with an improved efficiency.
In addition, since the inkjet head 30 is placed between the upper and lower cases 70, 60, the head 30 can be effectively prevented from colliding with something else. That is, the recording head 30 can be effectively protected, i.e., the head 30 cannot be broken.
(3) The communication hole 50c can be air-tightly closed with the sealing plug 80, through the bottom hole 60e formed in the bottom wall 60b of the lower case 60. Therefore, after the inkjet head 30 is placed between the upper and lower cases 70, 60, the nozzle surface 31a can be sealed.
(4) The communication hole 50c can be closed with the sealing plug 80, i.e., a simple member. Thus, the head maintaining apparatus 100 can be easily used and can be produced at low cost.
(5) Since the sealing member 60 is an elastic member, the sealing member 50 can air-tightly contact the nozzle surface 31a and accordingly can reliably seal the nozzle surface 31a. In addition, the insertion portion 80b of the sealing plug 80 can air-tightly contact the communication hole 50c, owing to an elastic restoring force of the sealing member 50. Thus, the nozzle surface 31a can be reliably isolated from the atmosphere.
(6) The sealing member 50 includes the annular lip portion 50b that surrounds the nozzles 35 through 38 and defines the inner space 51. Since the sealing member 60 does not contact the nozzles 35 through 38, the meniscus of the ink present in each of the nozzles can be effectively prevented from being contacted with, or broken by, the sealing member 50. In addition, the nozzles 35 through 38 are not damaged.
(7) In the recording-head maintaining apparatus100, the lower and upper cases 60, 70 cooperate with each other to hold the sealing member 50, and additionally holds the inkjet head 30 such that the head 30 is separable therefrom and the sealing member 50 is kept in pressed contact with the nozzle surface 31a of the head 30. Thus, an extra step of covering the nozzle surface 31a with the sealing member 50 can be omitted, which leads to improving the operation efficiency. In addition, since the sealing member 50 is held by the two cases 60, 70 and is effectively prevented from being moved out of position, the nozzle surface 31a can be reliably sealed by the sealing member 50.
Hereinafter, there will be described a second embodiment of the present invention by reference to
Construction of Head Maintaining Apparatus
In the second embodiment, five arrays of nozzles 85, 36, 37, 38 (
Each of the two needle-like members 94 is a hollow member, and includes a sharp end portion 94a to penetrate the sealing member 53, and a side open hole 94b that is located near the end portion 94a and communicates with a rear open end 94c via a communication passage, not shown, formed in the each needle-like member 94.
The operation table 92 is for a person to perform an operation on the lower case 60 in a state in which the lower case 60 is held in position. More specifically described, the operation table 92 includes a positioning portion 92a that positions the lower case 60 at an appropriate position, and has two through-holes 92b, 92b that are formed through a thickness of the table 92 and into which the two needle-like members 94 are inserted.
Each of the two, penetration jigs 93 includes the guide portion 93a that guides the corresponding needle-like member 94 so that the needle-like member 94 may penetrate the corresponding guide hole 53c of the sealing member 63; and the bar-like pusher portion 93b that pushes the rear open end 94c of the needle-like member 94 so that the needle-like member 94 may penetrate the sealing member 53, and the through-hole forming device further includes a base member 93d that supports the guide portion 93a above the sealing member 53.
More specifically described, the guide portion 93a is fixed to a recessed portion 93f of the base portion 93d that has, in a bottom thereof, a through-hole 93g. The guide portion 93a has a guide passage 93e formed therethrough in an axial direction thereof, and the guide passage 93e holds the corresponding needle-like member 94 in a vertical direction. The through-hole 93g and the guide passage 93e communicate with each other, and are located at a position right above the corresponding guide hole 53c of the sealing member 53.
The base member 93d is guided by the two guide members 60f of the lower case 60, so that a lower surface of the base member 93d is contacted with the sealing member 53.
Each of the two penetration jigs 93 has, in an upper end portion thereof, the stopper portion 93c that limits an amount of movement of the pusher portion 93b to push the corresponding needle-like member 94 into the sealing member 53.
Method of Penetrating Sealing Member 53
Next, a method of penetrating, using the two needle-like members 94, will be described, the sealing member 53 so as to form two communication passages each of which communicates, at one end thereof, with a corresponding one of two inner spaces 51 corresponding to the above-described two nozzle groups, respectively, and communicates, at the other end thereof, with an atmosphere. First, the lower case 60 holding the sealing member 53 is placed on the operation table 92, and then the two penetration jigs 93 and the base member 93d are placed on the upper surface of the sealing member 53. In this state, the two through-holes 92b of the operation table 92 are aligned with the two guide holes 53c of the sealing member 53 via the two bottom holes 60e of the lower case 60, respectively.
Subsequently, the two needle-like members 94 are inserted in the respective guide portions 53a of the two penetration jigs 93, and the respective pusher portions 93b of the two jigs 93 are operated to push the respective rear open ends 94c of the two needle-like members 94 in a downward direction.
Then, the two needle-like members 94 are caused to penetrate the sealing member 53, till respective lower surfaces of the two stopper portions 93c,but on respective upper surfaces of the two guide portions 93a. Thus, as shown in
Method of Maintaining Inkjet Head 30
Next, there will be described a method of maintaining, using the head maintaining apparatus 100, the inkjet head 30.
First, the two penetration jigs 93 and the base member 93d, shown in
Next, the upper case (
Since the sealing member 53 is compressed, the lip portion 53b is elastically deformed and is held in pressed contact with the nozzle surface 31a. Thus, the respective volumes of the two inner spaces 51 are decreased by the elastic deformation of the lip portion 53b. Since, however, the two inner spaces 51 communicate with the outer atmosphere via the two needle-like members 94, respectively, respective air pressures in the two inner spaces 51 are not increased. Thus, respective meniscuses of the inks present in the nozzles 35 through 38 (
Then, as shown in
(1) In the above-described head maintaining apparatus 100 and the above-described head maintaining method, the inner spaces 51 formed between the sealing member 63 and the nozzle surface 31a when the sealing member 53 covers the nozzle surface 31a, are communicated with the atmosphere via the needle-like members 94 penetrating the sealing member 63, when the sealing member 53 is closely contacted with the nozzle surface 31a. Thus, the air present in the inner spaces 51 is discharged into the atmosphere via the needle-like members 94, and accordingly the inner pressure in the spaces 51 is prevented from being increased. Therefore, the respective meniscuses of the inks present in the nozzles 35 through 38 are not broken.
In addition, after the sealing member 53 is closely contacted with the nozzle surface 31a, the air communication between the two inner spaces 51 and the atmosphere is shut off. Therefore, the nozzles 35 through 38 are kept in an air-tight condition and accordingly the inks present in the nozzles are prevented from being dried up.
(2) The sealing member 53 formed of the elastic material is penetrated by the hollow, needle-like members 94, so that the inner spaces 51 formed between the sealing member 53 and the nozzle surface 31a are communicated with the atmosphere via the needle-like members 94. In addition, when the needle-like members 94 are pulled out of the sealing member 53, the through-holes formed by the penetration of the needle-like members 94 through the sealing member 53 are closed by the elastic restoring deformation of the sealing member 53 itself Thus, the nozzle surface 30a can be reliably sealed without using any exclusive members, like the sealing plug 80, for closing those through-holes.
In addition, since the through-holes formed in the sealing member 53 are automatically closed by the elasticity of the sealing member 53, the through-holes can be reliably closed.
(3) In the simple operation in which the inkjet head 30 is placed between the upper and lower cases 70, 60 and the upper case 70 is attached to the lower case 60, the sealing member 53 is held in pressed contact with the nozzle surface 31a. Thus, the nozzle surface 31a can be air-tightly sealed with an improved efficiency.
In addition, since the inkjet head 30 is held by, and between, the upper and lower cases 70, 60, the head 30 can be effectively prevented from colliding with other members. Thus, the inkjet head 30 can be effectively protected and accordingly it cannot be broken.
Hereinafter, there will be described a third embodiment of the present invention by reference to
Construction of Device for Penetrating Sealing
Member 53 with Needle-like Members 96
As shown in
Each of the two needle-like members 96 includes a sharp end portion 96a to penetrate the sealing member 53, and a side open hole 96b that is located near the end portion 96a and communicates with a rear open end 96c via a communication passage, not shown, formed in the each needle-like member 96.
The penetration device additionally includes a pushing jig 97 having a shape similar to that of the head holder 9(
Method of Penetrating Sealing Member 53
Next, there will be descried a method of penetrating, using the two needle-like members 96 fixed to the penetration table 95, the sealing member 53 so as to form two communication passages each of which communicates, at one end thereof, with a corresponding one of two inner spaces 51 corresponding to the above-described two nozzle groups, respectively, and communicates, at the other end thereof, with the atmosphere. First, the pushing jig 97 is attached to the lower case 60 through the upper open end 60a thereof. The pushing jig 97 is guided by two guide members 60f of the lower case 60, so that the pushing portion 97a is held in contact with the upper surface of the sealing member 53. In this state, the engaging portion 97b of the pushing jig 97 is engaged with the upper open end 60a of the lower case 60. Thus, when an upper surface of the pushing jig 97 is pushed by a person, the lower case 60 is pressed against the penetration table 95 while the sealing member 53 is prevented from being moved relative to the lower case 60.
Subsequently, the pushing jig 97 is pushed downward against the lower case 60, so that the lower case 60 is pushed against the penetration table 95. Thus, the two needle-like members 96 are caused to pass through the two bottom holes 60e of the lower case 60, respectively, and the respective upper end portions 96a of the two needle-like members 96 penetrate the two guide holes 53c of the sealing member 53, respectively, from the lower surface of the sealing member 53. When a leg portion 60c of the lower case 60 is contacted with the upper surface of the penetration table 92 and the pushing of the lower case 60 is finished, the respective side open holes 96b of the two needle-like members 96 are exposed in the two guide holes 53c of the sealing member 53, without projecting upward beyond the upper surface of the plate-like base portion 53a of the sealing member 53. Thus, the two inner spaces 51 are communicated with the atmosphere under the penetration table 95.
Method of Maintaining Inkjet Head 30
Next, there will be described a method of maintaining, using the head maintaining apparatus 100, the inkjet head 30.
First, the pushing jig 97, shown in
Next, the upper case (
Since the sealing member 53 is compressed, the lip portion 53b is elastically deformed and is held in pressed contact with the nozzle surface 31a. Thus, the respective volumes of the two inner spaces 51 are decreased by the elastic deformation of the lip portion 63b. Since, however, the two inner spaces 51 communicate with the atmosphere via the two needle-like members 96, respectively, respective air pressures in the two inner spaces 51 are not increased. Thus, respective meniscuses of the inks present in the nozzles 36 through 38 (
Then, the head maintaining apparatus 100 holding the head holder 9 is removed from the penetration table 95, so that the two needle-like members 96 penetrating the sealing member 53 are pulled out of the sealing member 53. Consequently, the two through-holes formed by the penetration of the two needle-like members 96 are closed by the elastic restoring deformation of respective portions of the sealing member 53 that define the two through-holes. Thus, the two inner spaces 51 are air-tightly closed and accordingly the nozzle surface 31a is air-tightly sealed.
(1) In the above-described head maintaining apparatus 100 and the above-described head maintaining method, the two inner spaces 51 formed between the sealing member 53 and the nozzle surface 31a when the sealing member 53 covers the nozzle surface 31a, are communicated with the atmosphere via the needle-like members 96 penetrating the sealing member 53, when the sealing member 53 is air-tightly contacted with the nozzle surface 31a. Thus, the air present in the inner spaces 61 is discharged into the atmosphere via the needle-like members 96, and accordingly the inner pressure in the spaces 51 is prevented from being increased. Therefore, the respective meniscuses of the inks present in the nozzles 35 through 38 are not broken.
In addition, after the sealing member 53 is closely contacted with the nozzle surface 31a, the air communication between the two inner spaces 51 and the atmosphere is shut off. Therefore, the nozzles 35 through 38 are kept in an air-tight condition and accordingly the inks present in the nozzles are prevented from being dried up.
(2) The sealing member 53 formed of the elastic material is penetrated by the hollow, needle-like members 96, so that the inner spaces 51 formed between the sealing member 53 and the nozzle surface 31a are communicated with the atmosphere via the needle-like members 96. In addition, when the needle-like members 96 are pulled out of the sealing member 53, the through-holes formed by the penetration of the needle-like members 96 through the sealing member 53 are closed by the elastic restoring deformation of the sealing member 53 itself. Thus, the nozzle surface 30a can be reliably sealed without using any exclusive members,. like the sealing plug 80, for closing those through-holes.
In addition, since the through-holes formed in the sealing member 53 are automatically closed by the elasticity of the sealing member 53, those through-holes can be reliably closed.
Moreover, since the needle-like members 96 are fixed to the penetration table 95, the needle-like members 96 can be pulled out of the sealing member 53, by removing the head maintaining apparatus 100 from the penetration table 95. Thus, a step of pulling the needle-like members 96 only from the sealing member 63 is not needed, which leads to improving an operation efficiency.
(3) In the simple operation in which the inkjet head 30 is placed between the upper and lower cases 70, 60 and the upper case 70 is attached to the lower case 60, the sealing member 53 is held in pressed contact with the nozzle surface 31a. Thus, the nozzle surface 31a can be air-tightly sealed with an improved efficiency.
In addition, since the inkjet head 30 is held by, and between, the upper and lower cases 70, 60, the head 30 can be effectively prevented from colliding with other members, Thus, the inkjet head 30 can be effectively protected and accordingly it cannot be broken.
(1) The sealing plug 80 employed in the first embodiment may be replaced with a sealing plug that is integral with a lower case 60, as shown in
(2) The sealing plug 80 employed in the first embodiment may be replaced with a sealing plug that is integral with a sealing member 50, as shown in
(3) The sealing plug 80, 62, 52 as a closing member that closes the communication hole 50c of the sealing member 50 may be replaced by a packing material 71 such as an adhesive or a putty, as shown in
(4) The sealing member 50, 58 may be pressed against the nozzle surface 31a of the inkjet head 30, by fixing the head holder 9 and the lower case 60 to each other. For example, an outer surface of the head holder 9 and an upper end of the lower case 60 are provided with respective hooks, and the head holder 9 and the lower case 60 are fixed to each other, by causing those hooks to be engaged with each other, such that the nozzle surface 31a of the head holder 9 is pressed against the sealing member 50, 53. This embodiment can also enjoy the same advantages as those of the head maintaining apparatus 100 as each of the first to third embodiments.
In each of the illustrated embodiments, the recording sheet P corresponds to a recording medium; the inkjet head 30 corresponds to a recording head; the inkjet printer 1 corresponds to a recording device; a portion of the inkjet printer 1 that excludes the head holder 9 corresponds to a remaining portion of the recording device; and the sealing plug 80, 62, 52, the elasticity of the sealing member 53, or the packing material 71 corresponds to air-tightly closing means.
In addition, at least one of the lower case 60 and the upper case 70 corresponds to at least one holding member; the bottom hole 60e corresponds to an opening; and the bottom wall 60b corresponds to the wall that covers one of two opposite surfaces of the sealing member 50, 53 that is opposite to the other opposite surface thereof that is opposed to the nozzle surface 31a of the inkjet head 30 as the recording head.
The sealing plug 80 (or the insertion portion 80a thereof), the sealing plug 52 (or the insertion portion 52b thereof), or the sealing plug 62 (or the insertion portion 62b thereof) corresponds to a plug.
At least one of the needle-like members 94, 96 corresponds to at least one tubular member.
It is to be understood that the present invention may be embodied with other changes and improvements that may occur to a person skilled in the art, without departing from the spirit and scope of the invention defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-313327 | Oct 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4707714 | Rosenthal et al. | Nov 1987 | A |
5018884 | Hirano et al. | May 1991 | A |
5424768 | Dudek et al. | Jun 1995 | A |
5621441 | Waschhauser et al. | Apr 1997 | A |
5805181 | Tanaka et al. | Sep 1998 | A |
6039432 | Fukuoka | Mar 2000 | A |
6068364 | Kusumi et al. | May 2000 | A |
6074037 | Nakahara et al. | Jun 2000 | A |
6081282 | Saijo | Jun 2000 | A |
6102533 | Nozawa et al. | Aug 2000 | A |
6179404 | Kawarama et al. | Jan 2001 | B1 |
6247598 | Hosaka et al. | Jun 2001 | B1 |
6264315 | Nozawa et al. | Jul 2001 | B1 |
6390593 | DeRoos et al. | May 2002 | B1 |
6412905 | Lin | Jul 2002 | B1 |
6561637 | Hino | May 2003 | B2 |
7021741 | Aldrich et al. | Apr 2006 | B2 |
7033006 | Ebisawa et al. | Apr 2006 | B2 |
7101018 | Yun | Sep 2006 | B2 |
7232205 | Nakajima | Jun 2007 | B2 |
7311375 | Suzuki et al. | Dec 2007 | B2 |
7338146 | Morikoshi | Mar 2008 | B2 |
20020075348 | Shindo et al. | Jun 2002 | A1 |
20020130917 | Mitsui et al. | Sep 2002 | A1 |
20030189616 | Yamada | Oct 2003 | A1 |
20060082621 | Tsukada et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
0 726 153 | Aug 1996 | EP |
61297150 | Dec 1986 | JP |
09-254401 | Sep 1997 | JP |
2002-210990 | Jul 2002 | JP |
3324629 | Sep 2002 | JP |
2004-160969 | Jun 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20060092213 A1 | May 2006 | US |