Field of the Disclosure
The disclosure relates to apparatus, systems, and methods for making a flexible package.
Brief Description of Related Technology
Vertical form, fill, and seal (VFFS) packaging machines are commonly used in the snack food industry for forming, filling, and sealing bags of nuts, chips, crackers and other products. Such packaging machines take a packaging film or flexible material from a roll and form the flexible material into a vertical tube around a product delivery cylinder. One disadvantage of these packages is that the resulting filled package is not rigid enough to allow the stacking of one package on top of another in a display. Additionally, such conventional packages do not retain their shape, particularly after the package is opened and product is removed.
An apparatus for forming a flexible package includes a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends. One or more forming box actuators are operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package. A first flap folding bar is disposed upstream and adjacent the first end of the forming box. One or more first flap folding bar actuators are operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.
An apparatus for forming a flexible package includes a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends. The first portion includes a first surface defining the first wall, and the second portion includes second and third surfaces joined at a first corner, the second surface defining a portion of the fourth wall and the third surface defining the second wall. The third portion includes fourth and fifth surfaces joined at a second corner, the fourth surface defining a remaining portion of the fourth wall and the fifth surface defining the third wall. One or both of the third surface and the fifth surface includes at least one ejector extending from an end of the third surface or fifth surface disposed adjacent to the first surface. One or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package, the at least one ejector being configured to engage the package and force the package out of the forming box when the forming box is actuated to the third position. A first flap folding bar is disposed upstream and adjacent the first end of the forming box. In addition, one or more first flap folding bar actuators are operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.
Flexible stackable packages and equipment for making such packages having a generally cubed shape have been disclosed in, for example, U.S. Pat. No. 8,602,244, the disclosure of which is incorporated herein by reference. The apparatus, systems, and methods of various embodiments of the disclosure can advantageously allow for formation of such flexible stackable packages with improved rigidity and/or improved shape, for example, a cubed shaped.
As described in detail below, the apparatus, systems, and methods of the disclosure can produce a flexible package in which first and second seals (also referred to as leading and trailing seals) are folded over and disposed generally in the same plane of the panel of the package from which they extend. The disclosed apparatuses can also advantageously allow for significantly increased processing speeds in forming such products, as well as the ability to convert conventional packaging machines into machines capable of forming such flexible packages.
The apparatus 10 in accordance with an embodiment of the disclosure can be adapted to function with known packaging machines, including, but not limited to vertical form fill seal (VFFS) packaging machines, horizontal form, fill and seal (HFFS) machines, sequential assembly machines and the like. As used herein, the “transport path” refers to the path of the flexible material as it is transported through the conventional packaging machine during operation for making a flexible package. In various embodiments, the apparatus 10 can be provided on a frame assembly that is portable, allowing the apparatus 10 to be moved into and out of configuration with the conventional packaging machine. The frame assembly and/or components of the apparatus 10 can be adjustable to accommodate different packaging machine configurations and heights.
Referring to
Referring to
The forming box 12 can actuate between a first position for receiving a package (shown in
The forming box 12 has a first end and an oppositely disposed second end. The first end is disposed adjacent to the first flap folding bar 20. In an embodiment, the forming box 12 can be open at both the first and second ends. For example, the forming box 12 can be open at the second end and a conveyor 36 can be disposed beneath the second end. The package can reside on the conveyor when it is received in the forming box 12. In another embodiment, the forming box can be closed at the second end. For example, the forming box 12 can include a plate or other member forming a bottom surface of the forming box 12 at the second end. The bottom member can be, for example, an additional fourth portion of the forming box 12 that actuates into and out of position for receiving, retaining, and releasing a package. In an embodiment, the bottom member of the forming box 12 can be operatively coupled to an actuator that actuates the bottom member from a closed position in which the bottom surface forms a bottom surface of the forming box 12 and an open position in which the bottom surface is disposed away from the forming box 12, such that the second end is open.
In an embodiment, the forming box 12 comprises first and second portions defining four walls of the forming box 12 and a third portion defining a bottom wall of the forming box 12 at the second end. In operation, the forming box 12 can actuate from a first position in which the third portion defines a bottom wall of the forming box 12 and the first and second portions are separated to receive the package, a second position in which the first and second portions actuate towards each other to retain the package during flap folding, with the third portion maintaining a bottom surface, and a third position in which the first and second portions separate and the third portion 18 is disposed away from the second end to release the package.
Referring to
In accordance with an embodiment, the second portion 16 can include second and third surfaces 44, 46, which can be planar or substantially planar surfaces, joined by a corner 48. The second portion 16 can further include a mating surface 52 joined to the third surface 46 by a corner 50. Similarly, the third portion 18 can include fourth and fifth surfaces 56, 58, which can be planar or substantially planar surfaces, joined by a corner 60, and a mating surface 64 joined to the fifth surface 58 by a corner 62. The mating surfaces 52, 64 can have a shape complementary to a shape of the mating surfaces 40, 42, respectively, of the first portion 14. For example, the mating surfaces 52, 64 can be angled at an angle complementary to the angle of the first and second mating surface 40, 42, respectively, of the first portion 14, or be substantially planar to mate with the mating surfaces 40, 42 of the first portion 14. When the forming box 12 is in the second position, the mating surfaces 52, 64 contact the mating surface 40, 42 such that the first surface 38 of the first portion 14 and the mating surfaces 40, 42, 52, 64 define a wall of the forming box 12. For example, the complementary shape of the mating portions 40, 42, 52, 64, can allow the portions to cooperate to define a planar or substantially planar wall. The mating surfaces 52, 64 of the second and third portions 16, 18 being joined to the third and fifth surfaces 46, 58 by a corner can advantageously provide a package releasing aid when the forming box 12 is actuated to the third position. For example, the mating surfaces 52, 64 can contact the package when the second and third portions 16, 18 are actuated to the third position, forcing the package away from the first portion 14 and out of the forming box 12.
The second and fourth surfaces 44, 56 of the second and third portions 16, 18, respectively can each terminate in mating portions 54, 66 that can have complementary shapes such that the mating surfaces 54, 66 can contact each other to define a wall of the forming box 12 when the forming box 12 is in the second position. In alternative embodiments, the second and fourth surfaces 44, 56 of the forming box 12 can be sized such that a gap remains between the mating surfaces 54, 56 when the forming box 12 is in the second position.
Referring to
The third surface 46 and/or the fifth surface 58 can include one or more ejectors 102 extending perpendicularly from the surface. For example, the one or more ejectors 102 can extend from an end of the third surface 46 and/or fifth surface 58 that is adjacent to the first portion 14. Referring to
The one or more ejectors 102 can take a variety of forms and shapes, including, but not limited to, pins, pegs, posts, finger-like extensions, and combination thereof. The ejectors 102 can be permanently or removably attached to the second and/or fourth surface 44, 54 of the second and third portions 16, 18, respectively, or can be formed integral with the portion from which it extends. For example, the ejector 102 can include threads and be received in a threaded hole disposed in the portion, thereby providing an ejector that is removable. In various embodiments, the ejectors 102 extend from the third and/or fifth surface 46, 58 at an angle other than a 90° angle, for example, angled relative to the surface 46, 58 about 90° to about 135°. The ejectors 102 can have a length extending from the third and/or fifth surface 46, 58 of about 0.5 inches to about 4 inches, about 1 inch to about 2 inches, about 2 inches to about 4 inches, about 0.5 inches to about 1 inch. Other lengths are also contemplated herein. The length of the ejectors can depend on the package size to be formed using the forming box. For example, for smaller packages, the length of the ejectors can be less than about 1 inch and for larger packages the length of the ejectors can be greater than about 2 inches.
The forming box 12 can include any suitable number of ejectors 102. For example, the forming box 12 can include one ejector 102 extending from the third or fifth surface 46, 58. In yet another embodiment, the forming box 12 can include one ejector 102 extending from the third surface 46 and one ejector 102 extending from the fifth surface 58. In yet another embodiment, the forming box 12 can include two ejectors 102 extending from the third surface 46 and two ejectors 102 extending from the fifth surface 58. For example, one or both of the third and fifth surfaces 46, 58 can include 1 to 12 ejectors, 2 to 10 ejectors, 4 to 8 ejectors, 3 to 7 ejectors, 4 to 12 ejectors, and 6 to 10 ejectors. Other suitable numbers of ejectors include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 ejectors. Use of more than 12 ejectors is also contemplated herein. The selection of the suitable number of ejectors can depend, for example, on the package size. For example, it may be required to utilize a larger number of ejectors for wider packages so that the package is evenly engaged by the ejectors along the width of the package. In embodiments including ejectors 102 extending from the third surface 46 and the fifth surface 58, the surfaces can include the same or different numbers of ejectors.
Referring to
It is also contemplated herein that more complex systems such as an actuating plate disposed beneath the forming box can be used as opposed to a stationary plate. The plate may actuate in a direction transverse to the transport path such that it is disposed beneath the forming box when a package is to be received in the forming box and actuate away from the forming box once the package is released from the forming box. The plate may also or alternatively actuate in a direction parallel to the transport path, towards any away from the forming box second end, to provide improved pressure against the package when the package is retained in the forming box for flap folding, while allowing for release of the pressure during receipt of the package and ejection of the package from the forming box. One or more plate actuators may be coupled to the plate to actuate the plate in the various positions.
In some embodiments, the stationary plate 106 may include a forming member 250, as illustrated in
The perimeter portion 252 of the forming member 250 may include one or more segments that forms or cooperates to form a shape (or two or more shapes) that generally corresponds to a shape (or two or more shapes) of a perimeter of bottom portion of a package that is received in the forming box 12. For example, the perimeter portion 252 may include one segment that forms an oval or circular shape. In other embodiments, the perimeter portion 252 may include a plurality of segments that cooperate to form a polygonal shape, such as a rectangular shape or a square shape. The perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be positioned on the top surface 251 of the stationary plate 106 such that each of the segments of the perimeter portion 252 are disposed within (i.e., inside) a perimeter formed by the forming box 12 (e.g., the first, second and third portions 14, 16, 18 of the forming box 12) when the forming box 12 is in the second position (and when viewed normal to the top surface 251 of the stationary plate 106).
The perimeter portion 252 may have any suitable cross-sectional shape or combination of shapes. More specifically, the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be tapered and may gradually decrease in height (i.e., distance normal to the top surface 251 of the stationary plate 106) from the central portion 254 to the top surface 251 of the stationary plate 106. In some embodiments, the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be normal to the top surface 251 of the stationary plate 106. Any other shape or combination of shapes is contemplated. In some embodiments, a cross-sectional shape of the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be uniform (or substantially uniform) along the entire perimeter portion 252. In other embodiments, one or more portions of the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may have a cross-sectional shape that varies.
Still referring to
In some embodiments, such as that illustrated in
In use, when a package is received into the forming box 12, a surface of a bottom portion of a package may be at least partially engaged (or contacted) by the top surface 256 of the central portion 254 and a perimeter portion (that may surround the surface of the bottom portion) of the bottom portion of the package may be at least partially engaged or contacted by the segment(s) forming the perimeter portion 252. In embodiments in which the forming member 250 displaces relative to the stationary plate 106, this position of the top surface 256 corresponds to the first position 260 of
As with the embodiment described above, the forming box 12 can include one or more forming box actuators to actuate portions of the forming box to the various positions. In accordance with an embodiment, the actuators can be operatively coupled to one or more of the portions of the forming box. For example, in an embodiment, actuators are coupled to the second and third portions 16, 18 of the forming box 12 to actuate the second and third portions 16, 18 while the first portion 14 remains stationary. In yet another embodiment, only one of the portions may actuate or all three portions can be actuated.
In any of the embodiments of the forming box disclosed herein, the forming box actuators can be any known type of actuator. For example, in an embodiment, the forming box actuators are linear motors. Other types of actuators include, but are not limited to, air cylinders, linear servos, electric cylinders, hydraulic cams, hydraulic cylinders, and combinations thereof.
Any of the actuators describe herein can be any known type of actuator including, but not limited to, linear servos, air cylinders, linear motors, electric cylinders, hydraulic cams, hydraulic cylinders, and combinations thereof.
In operation, in any embodiment of the forming box described herein, a sealed package can be received into the forming box 12 when the forming box 12 is in the first position. In the first position, the first, second, and third portions 14, 16, 18 are separated slightly to allow the package to be received within the forming box 12 and accommodate any potential offset in the package path that may occur during the package transport process, but prevent the package from passing through the forming box 12. The forming box 12 then actuates to the second position in which the first, second, and third portions 14, 16, 18 close with the mating surface in contact or substantially in contact with one another, as described above. The forming box 12 is sized such that the package is retained within the first, second, and third portions 14, 16, 18 when the forming box 12 is in the second position. For example, in an embodiment, the forming box 12 can be sized such that the first, second, and third portions 14, 16, 18 apply a pressure to the panel of the package when the forming box 12 is in the second position.
In various embodiments, the package to be received in the forming box 12 is a sealed package having at least one seal that extends perpendicularly or substantially perpendicularly from a panel of the package. The package can be received in the forming box 12 such that at least one first seal extends perpendicularly or substantially perpendicularly from the first end of the forming box 12. Once the package is received in the forming box 12, the first flap folding bar 20 can be actuated to the second position in which the first flap folding bar 20 is shifted in a direction transverse to the transport path of the package (and flexible material in a packaging machine) across the first end of the forming box 12 and engages the at least one first seal to force the seal over towards the panel of the package. In various embodiments, the first flap folding bar 20 can actuate across the forming box 12 and down towards the forming box 12 to apply added pressure to fold the first seal against the panel of the package. In an embodiment, the first flap folding bar 20 can be actuated in a direction transverse to the transport path (across the forming box 12) and then in a direction parallel to the transport path (towards the forming box 12). In other embodiments, the first flap folding bar 20 can be actuated in a direction transverse to the transport path and in a direction parallel to the transport path substantially simultaneously.
In various embodiments, the first flap folding bar 20 and the forming box 12 can actuate. For example, the flap folding bar 20 can be operatively coupled to an actuator that actuates the first flap folding bar 20 in a direction transverse to the transport path and the forming box 12 can be operatively coupled to an actuator that actuates the forming box 12 (including the package retained therein) in a direction parallel to the transport path, towards the first flap folding bar 20. In other embodiments, the first flap folding bar 20 can be stationary and the forming box 12 can be operatively coupled to one or more actuators that actuate the forming box 12 in a direction transverse to the transport path and parallel to the transport path towards the first flap folding bar 20. In such embodiments, the first flap folding bar 20 can reside outside of the transport path and the forming box 12 can be actuated into engagement with the first flap folding bar 20 once the package is received to contact the flap of the at least one seal with the first flap folding bar 20 for folding.
In some embodiments, the seal can be attached to the panel of the package by the applied pressure from the first flap folding bar 20 and the residual heat remaining in the at least one first seal from the sealing operation. In other embodiments or additionally, the first flap folding bar 20 can be heated to apply both heat and pressure to attach the seal to the panel. Alternatively or additionally, the first flap folding bar 20 can be cooled or include cooling structures to cool the heated seal once it has been folded over towards the side of the package. For example, referring to
In an embodiment, during operation, a heating medium, for example, a heating gas can be directed to the package as the flap folding bar is actuated to engage and fold over the seal. The heating gas can aid in heating the flexible material forming the seal and/or the outer surface of the package to allow for or aid in formation of a heat seal between seal and the outer surface of the package.
In an embodiment, during operation, the cooling medium, for example a cooling gas, can be directed to the package after the flap folding bar has engaged and folded over the seal. For example, the flap folding bar can be actuated to engage and fold over the seal and then the cooling gas can be flowed through the vent holes to cool the flexible material while the flap folding bar is still engaged with the package. Alternatively, the cooling gas can be flowed through the vent holes and directed to the package concurrently or substantially concurrently with retracting the flap folding bar from engagement with the flap, after the flap folding operation. Cooling during or after the flap folding operation can advantageously aid in setting a hot tack seal to attach the flap to the outer surface of the package. Cooling can also aid in preventing wrinkling in the seal in downstream operations by cooling the seal in place prior to the downstream operations. Cooling can also aid in preventing the seal from detaching from the outer surface of the package in downstream operations by cooling the seal and setting the attachment of the seal to the outer surface, for example, a heat seal, before such downstream operations.
The flap folding bar can remain actuated over forming box for any suitable duration to allow for contact of the package with the heating or cooling medium. For example, the flap folding bar can remain in the actuated position while the package is ejected from the forming box. Alternatively, the flap folding bar can actuate to engage the package, and then retract prior to or substantially concurrently with the ejection of the package from the forming box. Heating and/or cooling by flowing a medium through the flap folder and out the vent holes can occur at any time during the flap folding process.
In various embodiments, any one or more of the features of heating and/or cooling described above with respect to the first flap folding bar can be incorporated into the second flap folding bar. In such embodiments, cooling and/or heating can be initiated during the flap folding operation while the package is retained above the second flap folding bar. The vents and/or vent channels can be incorporated into the second flap folding bar so as to direct the cooling or heating medium towards the package. For example, in various embodiments, the second flap folding bar actuates to engage a seal of the package while the package is disposed upstream of the second flap folding bar. In such embodiments, the vents and/or vent channels can be located on the upstream surface (top surface) of the second flap folding bar.
In other embodiments, the first seal can be folded by the actuation of the first flap folding bar 20, but not attached to the panel. In such embodiments, the at least one first seal can be retained in substantially the same plane as the panel by the fold imparted by the actuation of the first flap folding bar 20. In yet other embodiments, the first flap can be attached to the panel by application of an adhesive prior to or during the flap folding operation.
The first flap folding bar can further include a sealing structure extending from one or both ends of the flap folding bar. The sealing member can engage the edges of the packages as the flap folding bar is actuated to fold the flap, which can apply a pressure to the edges of the package for forming a seal at the edges of the package. The sealing member of the flap folding bar can be heated, for example, to impart a heat seal at the edges of the package when the flap folding bar is actuated to engage the flap. Alternatively or additionally, the forming box can be heated to heat the edges of the package, as described in detail below.
In an embodiment, the first flap folding member can be arranged with the heating and/or sealing member such that the heating and/or sealing member folds the flexible material into the forming box. In various embodiments, the heating and/or sealing member can be mounted to the flap folder and the forming box may be mounted in a position such that the heating and/or sealing member mounted to the flap folder clamps the flexible material against an edge of the forming box to form and/or seal the edge. The forming box and/or the heating and/or sealing member can be thermally insulated from the flap folder. The heating and/or sealing member can be attached to the flap folder with a spring bias. The heating and/or sealing member can be integrally formed into the flap folder.
Alternatively or additionally, similar to the first flap folding bar 20, the stationary plate 106 and/or the forming member 250 can be cooled or include cooling structures to cool the heated seal once it has been folded over towards the side of the package. For example, the stationary plate 106 may include the one or more vent holes 90 of
In an embodiment, during operation, a heating medium, for example, a heating gas can be directed to the package as the package is disposed on the stationary plate 106 and/or the forming member 250. The heating gas can aid in heating the flexible material forming the seal and/or the outer surface of the package to allow for or aid in formation of a heat seal between seal and the outer surface of the package. Heated gas can also help to define the shape of the package by preferentially creating shape memory in the edges. In an embodiment, during operation, the cooling medium, for example a cooling gas, can be directed to the package as the package is disposed on the stationary plate 106 and/or the forming member 250. For example, the cooling gas can be flowed through the vent holes 90 and directed to the package while the package is disposed on the stationary plate 106 and/or the forming member 250. Cooling can advantageously aid in preventing wrinkling of the seals along the bottom portion of the package. In downstream operations by cooling the seal in place prior to the downstream operations. Heating and/or cooling by flowing a medium through the stationary plate 106 and/or the forming member 250. and out the vent holes can occur at any time during the forming process while the package is in the forming box 12. The skilled person would also recognize that a first portion of the stationary plate 106 may be heated and a second portion of the stationary plate 106 may be cooled. The skilled person would also recognize that an actuating plate may be cooled in a manner identical to that described for the stationary plate 106.
In various embodiments, a plate, for example a stationary plate or actuating plate disposed below the forming box as described above can include a sealing structure to engage the edges of the package at the bottom of the forming box to impart a seal at the edges as described above with respect to the first flap folding bar. The sealing structure of the plate can be heated, for example, to impart a heat seal. Alternatively or additionally, the forming box can be heated to heat the edges. When the package is provided into the forming box, the edges of the package can align with the sealing structure of the plate and pressure applied by the first flap folding bar can force the package downward to apply pressure at the sealing structures of the plate. Alternatively or additionally, the plate can actuate upstream towards the package to apply pressure with the sealing structure at the edges of the package and form the seal.
In various embodiments, it can be desired to form a package having a contour shape as illustrated in
Referring to
Referring to
The contoured surfaces can be formed along any of the surfaces of the forming box 12, depending on the contours to be imparted to the package. For example, if contours are only desired on subset of the edges of the package, then contoured surfaces could be provided on only a subset of the portions and/or at a subset of the ends of the portions. For example, if it is desired to provide contours only on two edges of the package, the first portion may include only the contoured surfaces, or alternatively, the second and third portions 16, 18 can include the contoured surfaces with the first portion having substantially linear or non-contoured surfaces.
It is also contemplated herein that the contoured surfaces on the first, second, and third portions 14, 16, 18 can have the same contour or different contours shapes and/or dimensions. The contour provided on the surface of the portions can be determined by the desired package configuration and contours to be imparted therein. In various embodiments, the contour surfaces can have a size and shape corresponding to the contoured edges to be formed on the package. In other embodiments, the contour surfaces can have an exaggerated size and shape as compared to the contoured edges to be formed on the package to over-bend the contoured edges of the packages, which can aid in retaining the contoured shape in the package. It is also contemplated herein that the top and/or bottom edge of the first, second, and third portions can be extended into the interior of the forming box, without a contour provided thereon, which can beneficially over-bend the edges of the package. This is can aid in retaining well-defined and/or creased edges in the package even when a non-contoured or straight-line shape is desired.
In an embodiment, the forming box can be heated and/or chilled to aid in forming and defining the shape of the package. For example, the forming box 12 can include a heater to heat all or selected portions of the forming box. For example, portions of the forming box 12 contacting and/or adjacent to the fold lines of the package can be heated and/or cooled to aid in further defining the fold lines/edges of the package. The forming box 12 can additionally or alternatively include a chiller and/or cooling channels 72 to aid in rapidly setting seals and folds formed in prior package processing steps.
Referring to
In embodiments including a heater, the forming box 12 can further include fluid inlets, fluid channels 72, and fluid outlets 74 for flow of a chilling fluid to set the folds and edges after heating for example, by the cartridge heater. Additional components, such as thermocouples and temperature sensors can be included to regulate the temperature of the forming box 12.
In various embodiments, the forming box 12 can be heated to soften the material to aid in forming folds and/or seals in the package. The temperature will depend on the type of material, the speed of operation, and the product contained therein. Generally, the flexible material can be heated to a temperature greater than a heat deflection temperature of the flexible material, but less than a melting point and/or distortion point of the flexible material. For example, the forming box can be heated to a temperature of about 70° F. to about 350° F.
During cooling, the forming box 12 can be cooled to any desirable temperature, including room temperature or below room temperature. For example, the forming box can be cooled to a temperature of about 33° F. to about 77° F. Cooling temperatures to set a seal or a fold will depend on the type of material, the speed of operation, and the product contained therein.
The temperature of the forming box 12 can be heated and then cooled to set any folds or seals formed in the flexible material. Alternatively, the forming box 12 can be heated only and cooling can be achieved in a separate operation or by normal convention/radiative processes. For example, cooling fluid can be circulated about the package after it is released from the forming box 12, for example, by directing cooled gas towards the package as travels along the conveyor. In yet another embodiment, the forming box 12 can be cooled only. Cooling can be used to chill the residual heat in the package to set folds and seals formed in the flexible package and/or to aid in setting a seal attaching the at least one extending seal to the panel, for example, where the first flap folding bar 20 is heated.
Referring to
The package can be received at the second flap folding bar 22 after the package is sealed and released from the sealing components. Alternatively, the second flap folding bar 22 can engage the package after the second seal is formed, but prior to or substantially simultaneously as the first seal is being formed.
In embodiments in which the apparatus 10 does not include a second flap folding bar 22, the second flap folding bar 22 can be a part of the packaging machine upstream of the apparatus 10, such that the apparatus 10 receives a seal package in which one seal is folded over and disposed in substantially the same plane as the panel from which is extends and optionally attached to the panel.
The apparatus 10 can include one or more additional components. Referring to
Referring to
An actuator can be operatively coupled to the one or more plates to actuate the plate 26 from a first position in which the plate 26 is disposed adjacent to an internal wall of the package transition box 28 to a second position in which the plate 26 is moved transverse to the transport path towards and opposed internal wall of the package transition box 28. In operation, the package is received in the package transition box 28 and the plate 26 is actuated to contact a panel of the package to apply a pressure to the package and release a portion of the air contained within the package. The plate 26 can be actuated substantially simultaneously with the sealing operation to seal the package or the plate 26 can be actuated before the sealing operation is performed to seal the package. In embodiments in which the plate 26 is actuated before the sealing operation is performed, the plate 26 can remain engaged with the package until sealing is complete. For example, the plate can be actuated about 100 ms before the sealing operation is performed. In other embodiments, the plate can be actuated substantially simultaneously with the start of the sealing operation, with the plate being actuated into position prior to complete sealing of the package.
The packaging machine can include a gas nozzle (not shown) disposed for example on or at the end of the forming tube 2 and configured to apply a gas for inflating the flexible material that is being configured into the package. The gas can also provide the package with a modified gas atmosphere depending on the product to be contained therein. Such gas inflation devices are well known in the art. Inflation of the package can be coordinated with the volume adjuster 24, such that the package can be inflated and then deflated to the desired volume by actuation of the plate 26 of the volume adjuster 24 just prior to or substantially simultaneously with sealing the package. Inflation and volume reduction by the volume adjusters can also aid in tucking the flexible material inwardly to form the leading and trailing seals.
In various embodiments, the volume adjuster 24 is separate from the apparatus 10. For example, the volume adjuster 24 can be attached to a frame member 34 that can be incorporated or attached to a conventional packaging machine. In such embodiments, the volume adjuster 24 can be disposed downstream of a seal bar station, which is conventionally disposed downstream of a forming tube 2. In other embodiments, the volume adjuster 24 is a component of the apparatus 10 and can be attached to the frame 32 of the apparatus 10.
Referring again to
Referring to
Referring to
Referring to
The first plate 78 and/or the second plate 80 are operatively coupled to an actuator. Any known actuators including, but not limited to, linear servos and air cylinders, can be used. The one or more actuator can actuate one or both of the plates into engagement with each other such that the flexible material is folded over the projections, defining a crease in the flexible material. The first and second plates 78, 80 and the projections/apertures contained thereon can be arranged such that a crease is defined in the flexible material at an edge of the package to be formed. Additionally, projections can be included on the plate disposed away from the forming tube 2, for example, in a region corresponding to a pull tab of a flap to form a crease in the pull tab to bias the pull tab away from the panel of flexible material. This can advantageously ease grasping of the pull tab when opening the package.
The pre-creasing device 76 can include a frame that is attachable to the frame of a packaging machine to place the pre-creasing device 76 in position along the forming tube 2.
In accordance with an embodiment, a system for making a flexible package from a flexible material can include a conventional packaging machine and an apparatus 10 in accordance with embodiments of the disclosure in which the second flap folding bar 22 is a part of the conventional packaging machine. In accordance with another embodiment, a system for making a flexible package from a flexible material can include a conventional packaging machine and the apparatus in accordance with embodiments of the disclosure in which the second flap folding bar 22 is part of the apparatus. The system of any of the embodiments herein can optionally include a volume adjuster 24, a guide box 30, a pre-creasing device 76, and other components, including but not limited to additional guides, pull belts, heaters, coolers, and conveyors.
Referring to
Referring to
It has been surprisingly and beneficially discovered that providing seal jaws with one or more compressive bands disposed on the sealing surface of at least one of the engagements bars can provide an effective seal without channel leaks, regardless of the width of the seal to be formed. Referring to
One or both of the engagement bars 302, 304 can include one or more compressive bands 306 disposed on the sealing surfaces of the engagement bars 302, 304. When one of the engagement bars includes a compressive band, the compressive band is aligned with the sealing surface of the other engagement bar, such that the compressive band of one engagement bar is aligned with the sealing surface of the opposed engagement bar during the sealing operation. The sealing surface of the engagement bar can be a flat sealing surface, a ribbed sealing surface, or other textured surface. For example, the sealing surface can be machined to include channels and projections. The channels and projections can provide a wavy surface, a zigzag surface, sinusoidal surface, or any other shaped/textured surface. During operation, the engagement bars are closed together such that the flexible material disposed between the engagement bars is engaged and compressed between the compressive band and the sealing surface of the other engagement bar. In embodiments in which the sealing surface of the other engagement bar includes channels and projections, the compressive band can be aligned, for example, with a single projection of the sealing surface. In other embodiments, the compressive band can have width such that it is aligned to be contacted, through the flexible material, by two or more projections of the sealing surface of the other engagement bar. In various embodiments, both the engagement bars can include compressive bands 306 disposed on the sealing surfaces thereof. In such embodiments, the compressive bands can be arranged such that upon closing of the engagement bars, the compressive bands of one engagement bar are not aligned with the compressive band of the opposed engagement bar. As described above, the sealing surfaces of the engagement bars can each include projections and channels. The compressive bands of one engagement bar can be aligned with one or more projections of the opposed engagement bar in various embodiments. In a thicker region of the seal zone, for example, the one or more compressive bands are locally compressed to provide an increased compressive force in this region. In the thinner region, the one or more compressive bands remain less compressed or uncompressed, which allows the seal jaw to maintain contact between the seal bars despite the presence of the thicker region. That's, local compressive of the compressive bands in the thicker region of the seal zone, while having the band in an uncompressed or less compressed stat in the thinner region, prevents a gap between the engagement bars at the transition between the thick and thin regions of the seal zone, which in turn can prevent channel leaks. Additionally, because sealing pressure can be locally increased by the compressive nature of the compressive bands, the overall seal pressure can be reduced, which can reduce wear on the seal jaws.
As illustrated in
The compressive band can be formed of any compressive material, for example, an elastomer such as silicon rubber. For example, the compressive band can be an o-ring. A commercially available elastomer that can be used can be Viton® Fluoroelastomer (DUPONT). Other elastomeric materials can also be used as the compressive bands. In various embodiments, the seal jaw seals the flexible material by a heat seal. The elastomeric material can be selected so as to withstand the temperature necessary for imparting the heat seal. The compressive band can have any suitable width and length. For example, the compressive band can extend long the length of the entire engagement bar or a portion of the engagement bar. The engagement bar can include any suitable number of compressive bands. For example, the engagement bar can each include 1 to 10 compressive bands, 1 to 8 compressive band, 2 to 6 compressive bands, 3 to 5 compressive bands, and 4 to 8 compressive bands. Other suitable numbers of bands can include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. When an engagement bar includes multiple compressive bands, the bands can be spaced across the sealing surface in any suitable manner. For example, in some embodiments, as illustrated in
While various embodiments have been described above, the disclosure is not intended to be limited thereto. Variations can be made to the disclosed embodiments that are still within the scope of the appended aspect
This application is a national stage application of International Patent Application No. PCT/US2015/031556, filed May 19, 2015, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application Nos. 62/000,510 filed May 19, 2014, 62/053,001 filed Sep. 19, 2014, and 62/073,760 filed Oct. 31, 2014. The respective disclosures of which are each incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/031556 | 5/19/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/179384 | 11/26/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
724316 | Staples | Mar 1903 | A |
1102750 | Hawkins | Jul 1914 | A |
1389197 | Kusterer | Aug 1921 | A |
1395229 | Inman et al. | Oct 1921 | A |
1747618 | Burns | Feb 1930 | A |
1930285 | Robinson | Oct 1933 | A |
2017176 | Andrews | Oct 1935 | A |
2041227 | Chalmers | May 1936 | A |
2048122 | Howard | Jul 1936 | A |
2092858 | Richard | Sep 1937 | A |
2106907 | Brunt et al. | Feb 1938 | A |
2113431 | Milliken | Apr 1938 | A |
2153310 | Newman | Apr 1939 | A |
2180841 | Vogt | Nov 1939 | A |
2239398 | Palmer | Apr 1941 | A |
2251283 | Johnson | Aug 1941 | A |
2259866 | Stokes | Oct 1941 | A |
2260064 | Stokes | Oct 1941 | A |
2291063 | Staude et al. | Jul 1942 | A |
2311857 | Noah | Feb 1943 | A |
2328579 | Pelosi | Sep 1943 | A |
2330015 | Stokes | Sep 1943 | A |
2339156 | Duane | Jan 1944 | A |
2352766 | Bogue | Jul 1944 | A |
2365159 | Walton | Dec 1944 | A |
2385898 | Waters | Oct 1945 | A |
2416332 | Lehman | Feb 1947 | A |
2495807 | Buttery | Jan 1950 | A |
2508962 | Moore | May 1950 | A |
2524766 | Carroll | Oct 1950 | A |
2619226 | Adams | Nov 1952 | A |
2684807 | Gerrish | Jul 1954 | A |
2695847 | Fisher | Nov 1954 | A |
2719663 | Meyer-Jagenberg | Oct 1955 | A |
2737338 | Moore | Mar 1956 | A |
2749245 | Peters | Jun 1956 | A |
2750093 | Moore | Jun 1956 | A |
2758775 | Moore | Aug 1956 | A |
2787410 | Moore | Apr 1957 | A |
2819831 | Polarek et al. | Jan 1958 | A |
2823795 | Moore | Feb 1958 | A |
2864710 | Pottle et al. | Dec 1958 | A |
2936940 | Berghgracht | May 1960 | A |
2970735 | Jacke | Feb 1961 | A |
3006257 | Orsini | Oct 1961 | A |
3054550 | Comstock | Sep 1962 | A |
3091902 | Grafingholt | Jun 1963 | A |
3111223 | Jacobi | Nov 1963 | A |
3116153 | Seiferth et al. | Dec 1963 | A |
3125275 | Ehe | Mar 1964 | A |
3127082 | Meyer-Jagenberg | Mar 1964 | A |
3143276 | Nichols | Aug 1964 | A |
3155304 | Beerend | Nov 1964 | A |
3172769 | Horan | Mar 1965 | A |
3185379 | Kohlhaas | May 1965 | A |
3206094 | Humphrey | Sep 1965 | A |
3228584 | Ashton | Jan 1966 | A |
3228587 | Segebrecht | Jan 1966 | A |
3235168 | Nichols | Feb 1966 | A |
3249286 | Palmer | May 1966 | A |
3259303 | Repko | Jul 1966 | A |
3259507 | Smith | Jul 1966 | A |
3272423 | Bjarno | Sep 1966 | A |
3275214 | Carangelo | Sep 1966 | A |
3299611 | Hendrick et al. | Jan 1967 | A |
3314591 | Cheeley | Apr 1967 | A |
3318204 | Crane | May 1967 | A |
3325077 | Boegershausen | Jun 1967 | A |
3326097 | Lokey | Jun 1967 | A |
3332198 | Thesing | Jul 1967 | A |
3339721 | Goldstein | Sep 1967 | A |
3349959 | Watkins | Oct 1967 | A |
3373917 | Cox | Mar 1968 | A |
3380646 | Doyen et al. | Apr 1968 | A |
3423007 | Christensson | Jan 1969 | A |
3426499 | Paige | Feb 1969 | A |
3434652 | Shore | Mar 1969 | A |
3437258 | Kugler | Apr 1969 | A |
3462067 | Shore | Aug 1969 | A |
3505779 | Kopp | Apr 1970 | A |
3515270 | Yang et al. | Jun 1970 | A |
3521807 | Weisberg | Jul 1970 | A |
3562392 | Mylius | Feb 1971 | A |
3599387 | James | Aug 1971 | A |
3604491 | Spiess | Sep 1971 | A |
3621637 | Sternau | Nov 1971 | A |
3738567 | Ruda | Jun 1973 | A |
3739977 | Shapiro et al. | Jun 1973 | A |
3785112 | Leasure et al. | Jan 1974 | A |
3838787 | McCloskey | Oct 1974 | A |
3917158 | Dorofachuk et al. | Nov 1975 | A |
3935993 | Doyen et al. | Feb 1976 | A |
3940054 | Goebel et al. | Feb 1976 | A |
3968921 | Jewell | Jul 1976 | A |
3980225 | Kan | Sep 1976 | A |
4004398 | Larsson | Jan 1977 | A |
4041851 | Jentsch | Aug 1977 | A |
4069348 | Bush | Jan 1978 | A |
4082214 | Baker | Apr 1978 | A |
4082216 | Clarke | Apr 1978 | A |
4101051 | Reil | Jul 1978 | A |
4129976 | Grundler et al. | Dec 1978 | A |
4185754 | Julius | Jan 1980 | A |
4192420 | Worrell, Sr. et al. | Mar 1980 | A |
4197949 | Carlsson | Apr 1980 | A |
4252052 | Meyers | Feb 1981 | A |
4260061 | Jacobs | Apr 1981 | A |
4265074 | Reuter | May 1981 | A |
4291826 | Swanson | Sep 1981 | A |
4308679 | Ray et al. | Jan 1982 | A |
4338766 | Hamilton | Jul 1982 | A |
D265777 | Elzea et al. | Aug 1982 | S |
4345133 | Cherney et al. | Aug 1982 | A |
4345393 | Price et al. | Aug 1982 | A |
D266049 | Conti | Sep 1982 | S |
4353497 | Bustin | Oct 1982 | A |
4361266 | Killy | Nov 1982 | A |
4367842 | Rausing | Jan 1983 | A |
4420080 | Nakamura | Dec 1983 | A |
4441648 | Portsmouth | Apr 1984 | A |
4442656 | Wylie, Sr. | Apr 1984 | A |
4512138 | Greenawalt | Apr 1985 | A |
4531668 | Forbes, Jr. | Jul 1985 | A |
4552269 | Chang | Nov 1985 | A |
4554190 | McHenry et al. | Nov 1985 | A |
4576309 | Tzifkansky et al. | Mar 1986 | A |
4589145 | Van Erden et al. | May 1986 | A |
D286745 | Forbes, Jr. | Nov 1986 | S |
4621000 | Frick | Nov 1986 | A |
4651874 | Nakamura | Mar 1987 | A |
4663915 | Van Erden et al. | May 1987 | A |
4674129 | Janhonen | Jun 1987 | A |
4679693 | Forman | Jul 1987 | A |
4679701 | Ackermann et al. | Jul 1987 | A |
4687104 | Lelmini | Aug 1987 | A |
4696404 | Corella | Sep 1987 | A |
4738365 | Prater | Apr 1988 | A |
D297214 | Forbes, Jr. | Aug 1988 | S |
4786192 | Graves et al. | Nov 1988 | A |
4790436 | Nakamura | Dec 1988 | A |
4798295 | Rausing | Jan 1989 | A |
4804137 | Harby | Feb 1989 | A |
4808421 | Mendenhall et al. | Feb 1989 | A |
4811848 | Jud | Mar 1989 | A |
4837849 | Erickson et al. | Jun 1989 | A |
4840270 | Caputo et al. | Jun 1989 | A |
4848575 | Nakamura et al. | Jul 1989 | A |
4851246 | Maxwell et al. | Jul 1989 | A |
4861328 | Franke | Aug 1989 | A |
D304016 | Forbes, Jr. | Oct 1989 | S |
4881360 | Konzal et al. | Nov 1989 | A |
4886373 | Corella | Dec 1989 | A |
4909017 | McMahon et al. | Mar 1990 | A |
4954124 | Erickson et al. | Sep 1990 | A |
4986054 | McMahon | Jan 1991 | A |
D315099 | Alizard | Mar 1991 | S |
4997416 | Mitchell et al. | Mar 1991 | A |
5031826 | Seufert | Jul 1991 | A |
5036997 | May et al. | Aug 1991 | A |
5044777 | Watkins et al. | Sep 1991 | A |
5046300 | Custer et al. | Sep 1991 | A |
5059036 | Richison et al. | Oct 1991 | A |
5062527 | Westerman | Nov 1991 | A |
5065887 | Schuh et al. | Nov 1991 | A |
5078509 | Center et al. | Jan 1992 | A |
5080643 | Mitchell et al. | Jan 1992 | A |
5092831 | James et al. | Mar 1992 | A |
5127208 | Custer et al. | Jul 1992 | A |
5158371 | Moravek | Oct 1992 | A |
5158499 | Guckenberger | Oct 1992 | A |
D332399 | Neff | Jan 1993 | S |
5195829 | Watkins et al. | Mar 1993 | A |
5205651 | Decottignies et al. | Apr 1993 | A |
5215380 | Custer et al. | Jun 1993 | A |
5251809 | Drummond et al. | Oct 1993 | A |
5254073 | Richison et al. | Oct 1993 | A |
5255497 | Zoromski et al. | Oct 1993 | A |
5350240 | Billman et al. | Sep 1994 | A |
D351090 | Narsutis | Oct 1994 | S |
5352466 | Delonis | Oct 1994 | A |
5353946 | Behrend | Oct 1994 | A |
5356069 | Bochet et al. | Oct 1994 | A |
5366104 | Armstrong | Nov 1994 | A |
D354436 | Krupa | Jan 1995 | S |
5417035 | English | May 1995 | A |
D364563 | Miller et al. | Nov 1995 | S |
5463851 | Nagai | Nov 1995 | A |
5484101 | Hedberg | Jan 1996 | A |
5498080 | Dalea et al. | Mar 1996 | A |
5505040 | Janssen et al. | Apr 1996 | A |
5505305 | Scholz et al. | Apr 1996 | A |
5542902 | Richison et al. | Aug 1996 | A |
5545420 | Lipinski et al. | Aug 1996 | A |
5556026 | Blankitny | Sep 1996 | A |
D374774 | Cassel | Oct 1996 | S |
5561966 | English | Oct 1996 | A |
5577612 | Chesson et al. | Nov 1996 | A |
5611452 | Bonora et al. | Mar 1997 | A |
5613608 | Tronchetti et al. | Mar 1997 | A |
5655706 | Vandiver | Aug 1997 | A |
D386001 | Saffran | Nov 1997 | S |
5687848 | Scholz et al. | Nov 1997 | A |
5704480 | Scholz et al. | Jan 1998 | A |
5704541 | Mogard | Jan 1998 | A |
D394606 | Zorn et al. | May 1998 | S |
5749512 | Gingras-Taylor | May 1998 | A |
5770839 | Ruebush et al. | Jun 1998 | A |
5772332 | Geller | Jun 1998 | A |
D395952 | Buczwinski et al. | Jul 1998 | S |
5785179 | Buczwinski et al. | Jul 1998 | A |
5788121 | Sasaki et al. | Aug 1998 | A |
5788378 | Thomas | Aug 1998 | A |
5789049 | Randles | Aug 1998 | A |
5791465 | Niki et al. | Aug 1998 | A |
D398526 | Schwarz et al. | Sep 1998 | S |
D398844 | Oberloier | Sep 1998 | S |
5799863 | Capy et al. | Sep 1998 | A |
5818016 | Lorence et al. | Oct 1998 | A |
5820017 | Eliovson et al. | Oct 1998 | A |
5826401 | Bois | Oct 1998 | A |
5832701 | Hauers et al. | Nov 1998 | A |
5842790 | Imer | Dec 1998 | A |
5852919 | Matsuda | Dec 1998 | A |
5857613 | Drummond et al. | Jan 1999 | A |
5858543 | Futter et al. | Jan 1999 | A |
5862652 | Schoeler | Jan 1999 | A |
5882749 | Jones et al. | Mar 1999 | A |
5882789 | Jones et al. | Mar 1999 | A |
5897050 | Barnes | Apr 1999 | A |
D409484 | Tasker | May 1999 | S |
5908246 | Arimura et al. | Jun 1999 | A |
D412439 | Cormack | Aug 1999 | S |
5937615 | Forman | Aug 1999 | A |
5944425 | Forman | Aug 1999 | A |
5970687 | Katayama | Oct 1999 | A |
5972396 | Jurgovan et al. | Oct 1999 | A |
5983594 | Forman | Nov 1999 | A |
5993593 | Swartz et al. | Nov 1999 | A |
6005234 | Moseley et al. | Dec 1999 | A |
6021624 | Richison et al. | Feb 2000 | A |
6023914 | Richison et al. | Feb 2000 | A |
6026953 | Nakamura et al. | Feb 2000 | A |
D421901 | Hill | Mar 2000 | S |
D421902 | Hill | Mar 2000 | S |
6036365 | Imer | Mar 2000 | A |
6038839 | Linkiewicz | Mar 2000 | A |
6056141 | Navarini et al. | May 2000 | A |
6060096 | Hanson et al. | May 2000 | A |
D427056 | Irace et al. | Jun 2000 | S |
6088998 | Malin et al. | Jul 2000 | A |
6113271 | Scott et al. | Sep 2000 | A |
6120183 | Buchanan et al. | Sep 2000 | A |
D431464 | Collins et al. | Oct 2000 | S |
6132351 | Lotto et al. | Oct 2000 | A |
6137098 | Moseley et al. | Oct 2000 | A |
6139662 | Forman | Oct 2000 | A |
6149304 | Hamilton et al. | Nov 2000 | A |
D437686 | Balzar et al. | Feb 2001 | S |
6182887 | Ljunstrom et al. | Feb 2001 | B1 |
6195965 | Tobolka | Mar 2001 | B1 |
6229061 | Dragoo et al. | May 2001 | B1 |
6231237 | Geller | May 2001 | B1 |
6234676 | Galomb et al. | May 2001 | B1 |
6245367 | Galomb | Jun 2001 | B1 |
6250048 | Linkiewicz | Jun 2001 | B1 |
6253993 | Lloyd et al. | Jul 2001 | B1 |
6254907 | Galomb | Jul 2001 | B1 |
6261215 | Imer | Jul 2001 | B1 |
D446014 | Adkins | Aug 2001 | S |
6273610 | Koyama et al. | Aug 2001 | B1 |
6274181 | Richison et al. | Aug 2001 | B1 |
6309105 | Palumbo | Oct 2001 | B1 |
D450960 | Boyea et al. | Nov 2001 | S |
6319184 | DeMatteis et al. | Nov 2001 | B1 |
D452374 | Kim | Dec 2001 | S |
6325239 | Randall et al. | Dec 2001 | B2 |
6350057 | Forman | Feb 2002 | B1 |
6354062 | Haughton et al. | Mar 2002 | B1 |
6361212 | Sprehe et al. | Mar 2002 | B1 |
6412634 | Telesca et al. | Jul 2002 | B1 |
6420006 | Scott | Jul 2002 | B1 |
6423356 | Richison et al. | Jul 2002 | B2 |
D461403 | Chomik et al. | Aug 2002 | S |
6428867 | Scott et al. | Aug 2002 | B1 |
6430899 | Cicha | Aug 2002 | B1 |
6431434 | Haughton et al. | Aug 2002 | B1 |
D463276 | Piscopo et al. | Sep 2002 | S |
6446796 | Schmidt | Sep 2002 | B1 |
D464884 | Sumpmann et al. | Oct 2002 | S |
D464894 | Mittersinker et al. | Oct 2002 | S |
6481183 | Schmidt | Nov 2002 | B1 |
D466807 | Buck et al. | Dec 2002 | S |
6488556 | Galomb | Dec 2002 | B2 |
6502986 | Bensur et al. | Jan 2003 | B1 |
6510673 | Visona′ et al. | Jan 2003 | B1 |
6513308 | Meeuwesen | Feb 2003 | B1 |
D471804 | Staples | Mar 2003 | S |
6533456 | Buchman | Mar 2003 | B1 |
D473461 | Joubert | Apr 2003 | S |
6568150 | Forman | May 2003 | B2 |
6589622 | Scott | Jul 2003 | B1 |
6615567 | Kuhn et al. | Sep 2003 | B2 |
6659645 | Schulz | Dec 2003 | B1 |
D485461 | Sams et al. | Jan 2004 | S |
6679034 | Kohl et al. | Jan 2004 | B2 |
6695757 | Edwards et al. | Feb 2004 | B2 |
D487192 | Farnham et al. | Mar 2004 | S |
6702109 | Tabuchi | Mar 2004 | B1 |
6719140 | Rinsler | Apr 2004 | B1 |
6719678 | Stern | Apr 2004 | B1 |
D489530 | Lindsay | May 2004 | S |
6729112 | Kuss et al. | May 2004 | B2 |
6736309 | Westerman et al. | May 2004 | B1 |
6746388 | Edwards et al. | Jun 2004 | B2 |
6755927 | Forman | Jun 2004 | B2 |
6761279 | Martin et al. | Jul 2004 | B1 |
6783277 | Edwards et al. | Aug 2004 | B2 |
6817160 | Schmidt | Nov 2004 | B2 |
6820391 | Barmore et al. | Nov 2004 | B2 |
D501134 | Takahashi et al. | Jan 2005 | S |
6845602 | Drut | Jan 2005 | B2 |
D502095 | Tucker et al. | Feb 2005 | S |
D503336 | Tucker et al. | Mar 2005 | S |
D504622 | Takahashi et al. | May 2005 | S |
6886313 | Knoerzer et al. | May 2005 | B2 |
6913389 | Kannankeril et al. | Jul 2005 | B2 |
6918532 | Sierra-Gomez et al. | Jul 2005 | B2 |
6935086 | Brenkus et al. | Aug 2005 | B2 |
6953069 | Galomb | Oct 2005 | B2 |
D513870 | Rosine et al. | Jan 2006 | S |
6986920 | Forman et al. | Jan 2006 | B2 |
D514439 | Snedden et al. | Feb 2006 | S |
7051877 | Lin | May 2006 | B2 |
7059466 | Lees et al. | Jun 2006 | B2 |
7077259 | Breidenbach | Jul 2006 | B2 |
7080726 | Breidenbach et al. | Jul 2006 | B2 |
D528010 | Yashima et al. | Sep 2006 | S |
7108441 | Altonen et al. | Sep 2006 | B2 |
7128200 | Lees et al. | Oct 2006 | B2 |
D531894 | Ramirez et al. | Nov 2006 | S |
7153026 | Galomb | Dec 2006 | B2 |
7156556 | Takahashi et al. | Jan 2007 | B2 |
D536608 | Arkins | Feb 2007 | S |
RE39505 | Thomas et al. | Mar 2007 | E |
7205016 | Garwood | Apr 2007 | B2 |
7207717 | Steele | Apr 2007 | B2 |
7213710 | Cotert | May 2007 | B2 |
D544762 | Zimmerman | Jun 2007 | S |
D545186 | Liebe et al. | Jun 2007 | S |
D548080 | Brown et al. | Aug 2007 | S |
D551508 | Friedland et al. | Sep 2007 | S |
D552468 | Seum et al. | Oct 2007 | S |
7299608 | Kohl et al. | Nov 2007 | B2 |
7350688 | Sierra-Gomez et al. | Apr 2008 | B2 |
D569719 | Ross | May 2008 | S |
7371008 | Bonenfant | May 2008 | B2 |
D571146 | Sanfilippo et al. | Jun 2008 | S |
D571197 | Sanfilippo et al. | Jun 2008 | S |
7475781 | Kobayashi et al. | Jan 2009 | B2 |
D591555 | Sanfilippo et al. | May 2009 | S |
D593369 | Green et al. | Jun 2009 | S |
D608193 | Sanfilippo et al. | Jan 2010 | S |
7665629 | Julius et al. | Feb 2010 | B2 |
7665895 | Takita et al. | Feb 2010 | B2 |
7717620 | Hebert et al. | May 2010 | B2 |
7744517 | Bonenfant | Jun 2010 | B2 |
7780006 | Clark, Jr. et al. | Aug 2010 | B2 |
D629296 | De Muynck | Dec 2010 | S |
D637577 | Han et al. | May 2011 | S |
7993256 | Takita et al. | Aug 2011 | B2 |
8006833 | Clark, Jr. et al. | Aug 2011 | B2 |
8038349 | Andersson et al. | Oct 2011 | B2 |
D648302 | Park et al. | Nov 2011 | S |
8066137 | Sanfilippo et al. | Nov 2011 | B2 |
8074803 | Motsch et al. | Dec 2011 | B2 |
8114451 | Sierra-Gomez et al. | Feb 2012 | B2 |
8132395 | Gehring et al. | Mar 2012 | B2 |
8182891 | Scott et al. | May 2012 | B2 |
8231024 | Sanfilippo et al. | Jul 2012 | B2 |
8245865 | Damaghi et al. | Aug 2012 | B2 |
8276353 | Reaves et al. | Oct 2012 | B2 |
D671000 | O'Neill et al. | Nov 2012 | S |
8308363 | Vogt et al. | Nov 2012 | B2 |
D676014 | Chung | Feb 2013 | S |
8407974 | Fontanazzi | Apr 2013 | B2 |
D682244 | Park et al. | May 2013 | S |
D686181 | Jeong | Jul 2013 | S |
D689767 | Clark et al. | Sep 2013 | S |
8523441 | Goglio et al. | Sep 2013 | B2 |
D696107 | Kimple et al. | Dec 2013 | S |
8602242 | Sanfilippo et al. | Dec 2013 | B2 |
8602244 | Sanfilippo et al. | Dec 2013 | B2 |
8656690 | Bierschenk | Feb 2014 | B2 |
8746483 | Sierra-Gomez et al. | Jun 2014 | B2 |
8951591 | Vogt et al. | Feb 2015 | B2 |
10029814 | Galata' | Jul 2018 | B2 |
20010005979 | Kuss et al. | Jul 2001 | A1 |
20010010253 | Forman | Aug 2001 | A1 |
20020009575 | DeMatteis | Jan 2002 | A1 |
20020090879 | Galomb | Jul 2002 | A1 |
20020094922 | Edwards et al. | Jul 2002 | A1 |
20020112982 | Stagray et al. | Aug 2002 | A1 |
20020118896 | Forman | Aug 2002 | A1 |
20020144998 | Lees et al. | Oct 2002 | A1 |
20020147088 | Edwards | Oct 2002 | A1 |
20030001002 | Haughton et al. | Jan 2003 | A1 |
20030041564 | Schmidt | Mar 2003 | A1 |
20030054929 | Post et al. | Mar 2003 | A1 |
20030059130 | Yoneyama et al. | Mar 2003 | A1 |
20030063820 | Buchman | Apr 2003 | A1 |
20030100424 | Barmore et al. | May 2003 | A1 |
20030111523 | Haugan | Jun 2003 | A1 |
20030113042 | Yeager | Jun 2003 | A1 |
20030152679 | Garwood | Aug 2003 | A1 |
20030165602 | Garwood | Sep 2003 | A1 |
20030170357 | Garwood | Sep 2003 | A1 |
20030170359 | Garwood | Sep 2003 | A1 |
20030175392 | Garwood | Sep 2003 | A1 |
20030185937 | Garwood | Oct 2003 | A1 |
20030185948 | Garwood | Oct 2003 | A1 |
20030230504 | Hamming | Dec 2003 | A1 |
20040025476 | Oliverio et al. | Feb 2004 | A1 |
20040031244 | Steele | Feb 2004 | A1 |
20040040261 | Troyer et al. | Mar 2004 | A1 |
20040058103 | Anderson et al. | Mar 2004 | A1 |
20040081729 | Garwood | Apr 2004 | A1 |
20040089578 | Lin | May 2004 | A1 |
20040099570 | Cargile | May 2004 | A1 |
20040105600 | Floyd | Jun 2004 | A1 |
20040114838 | McGregor | Jun 2004 | A1 |
20040120611 | Kannankeril et al. | Jun 2004 | A1 |
20040141664 | Olsen et al. | Jul 2004 | A1 |
20040146602 | Garwood et al. | Jul 2004 | A1 |
20040185154 | Garwood | Sep 2004 | A1 |
20040185155 | Garwood | Sep 2004 | A1 |
20040185156 | Garwood | Sep 2004 | A1 |
20040188457 | Galomb | Sep 2004 | A1 |
20040226625 | Galomb | Nov 2004 | A1 |
20040226849 | Brenkus et al. | Nov 2004 | A1 |
20040232029 | Cotert | Nov 2004 | A1 |
20040244338 | Nievergeld | Dec 2004 | A1 |
20040251163 | Conde et al. | Dec 2004 | A1 |
20040262322 | Middleton et al. | Dec 2004 | A1 |
20050011906 | Buck et al. | Jan 2005 | A1 |
20050031233 | Varanese et al. | Feb 2005 | A1 |
20050053315 | Aasen | Mar 2005 | A1 |
20050069227 | Steele | Mar 2005 | A1 |
20050069230 | Takahashi et al. | Mar 2005 | A1 |
20050084186 | Caris | Apr 2005 | A1 |
20050139645 | Shean et al. | Jun 2005 | A1 |
20050150785 | Julius et al. | Jul 2005 | A1 |
20050189367 | Chasid et al. | Sep 2005 | A1 |
20050208188 | Garwood | Sep 2005 | A1 |
20050238766 | Henderson et al. | Oct 2005 | A1 |
20050265636 | Michalsky | Dec 2005 | A1 |
20050276525 | Hebert et al. | Dec 2005 | A1 |
20050284776 | Kobayashi et al. | Dec 2005 | A1 |
20060006049 | Breidenbach et al. | Jan 2006 | A1 |
20060016865 | Berglin et al. | Jan 2006 | A1 |
20060076352 | Peterson et al. | Apr 2006 | A1 |
20060080944 | Annehed et al. | Apr 2006 | A1 |
20060113212 | Steele | Jun 2006 | A1 |
20060126970 | Perell | Jun 2006 | A1 |
20060169691 | Rothschild et al. | Aug 2006 | A1 |
20060210202 | Plourde | Sep 2006 | A1 |
20060283750 | Villars et al. | Dec 2006 | A1 |
20060285777 | Howell et al. | Dec 2006 | A1 |
20070080078 | Hansen et al. | Apr 2007 | A1 |
20070082096 | Dougherty et al. | Apr 2007 | A1 |
20070084142 | Matthews | Apr 2007 | A1 |
20070151887 | Clark et al. | Jul 2007 | A1 |
20080053860 | McDonald | Mar 2008 | A1 |
20080274686 | Kupferberg et al. | Nov 2008 | A1 |
20090039078 | Sanfilippo et al. | Feb 2009 | A1 |
20090113848 | Santi | May 2009 | A1 |
20090120828 | Sanfilippo et al. | May 2009 | A1 |
20090193763 | Fontanazzi | Aug 2009 | A1 |
20090232425 | Tai et al. | Sep 2009 | A1 |
20090273179 | Scott et al. | Nov 2009 | A1 |
20100002963 | Holbert et al. | Jan 2010 | A1 |
20100040311 | Plate | Feb 2010 | A1 |
20100092112 | Goglio et al. | Apr 2010 | A1 |
20100113240 | Takita et al. | May 2010 | A1 |
20100140129 | Sanfilippo et al. | Jun 2010 | A1 |
20100154264 | Scott et al. | Jun 2010 | A1 |
20100278454 | Huffer | Nov 2010 | A1 |
20110058755 | Guibert | Mar 2011 | A1 |
20110297690 | Teys et al. | Dec 2011 | A1 |
20120008884 | Murray | Jan 2012 | A1 |
20120125937 | Ahlstrom et al. | May 2012 | A1 |
20120177307 | Duan et al. | Jul 2012 | A1 |
20120275727 | Chang | Nov 2012 | A1 |
20120321229 | Surdziel et al. | Dec 2012 | A1 |
20130004626 | Renders et al. | Jan 2013 | A1 |
20130011527 | Renders et al. | Jan 2013 | A1 |
20130114918 | Lyzenga et al. | May 2013 | A1 |
20130227918 | Paradisi | Sep 2013 | A1 |
20130266244 | Doll et al. | Oct 2013 | A1 |
20140083897 | Sanfilippo et al. | Mar 2014 | A1 |
20140102936 | Sanfilippo et al. | Apr 2014 | A1 |
20140109522 | Sanfilippo et al. | Apr 2014 | A1 |
20140185962 | Sanfilippo et al. | Jul 2014 | A1 |
20140196406 | Sanfilippo et al. | Jul 2014 | A1 |
20140301674 | Sanfilippo et al. | Oct 2014 | A1 |
20140307985 | Sanfilippo et al. | Oct 2014 | A1 |
20140328552 | Sanfilippo et al. | Nov 2014 | A1 |
20140371046 | Catellani | Dec 2014 | A1 |
20150001234 | Sanfilippo et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
102010019867 | Sep 2011 | DE |
0085349 | Aug 1983 | EP |
0879767 | Nov 1998 | EP |
1106508 | Jun 2001 | EP |
1508531 | Feb 2005 | EP |
1637472 | Mar 2006 | EP |
2347971 | Jul 2011 | EP |
2468634 | Jun 2012 | EP |
2586718 | May 2013 | EP |
2766794 | Feb 1999 | FR |
1274100 | Jul 1997 | IT |
01167084 | Jun 1989 | JP |
01226579 | Sep 1989 | JP |
01267182 | Oct 1989 | JP |
09142551 | Jun 1997 | JP |
10-203560 | Aug 1998 | JP |
11077857 | Mar 1999 | JP |
2005320032 | Nov 2005 | JP |
WO-8606344 | Nov 1986 | WO |
WO-9411270 | May 1994 | WO |
WO-0012407 | Mar 2000 | WO |
WO-02085726 | Oct 2002 | WO |
WO-2004024588 | Mar 2004 | WO |
WO-2004110885 | Dec 2004 | WO |
WO-2006091821 | Aug 2006 | WO |
WO-2007058689 | May 2007 | WO |
WO-2009061959 | May 2009 | WO |
WO-2012098085 | Jul 2012 | WO |
WO-2012098085 | Jul 2012 | WO |
WO-2013064290 | May 2013 | WO |
Entry |
---|
Brody et al., Encyclopedia of Packaging Technology, 2nd ed., New York, NY: John Wiley & Sons (1993). |
Photographs of flexible container packaging, “Minibrick Pack”, from Sonoco (Hartsville, South Carolina, USA) (became aware of in Dec. 2007). |
SBS Special Top Design Machine, product sheet from Rovema Packaging Machines L.P. (Lawrenceville, Georgia, USA) (1 pg.) (2005). |
International Search Report and Written Opinion from corresponding International Application No. PCT/US2013/066985, dated Jan. 29, 2014. |
International Search Report and Written Opinion for counterpart International Application No. PCT/US08/072554, dated Feb. 23, 2009. |
International Search Report and Written Opinion for International Application No. PCT/US2009/063591, dated Jun. 18, 2010. |
International Search Report and Written Opinion for International Application No. PCT/US2008/082689, dated Mar. 24, 2009. |
Extended European Search Report, European application No. EP 09825498.0, dated Nov. 22, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2015/022859, dated Oct. 12, 2015. |
International Search Report and Written Opinion, International Application No. PCT/US2015/031556, dated Sep. 15, 2015. |
International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/031556 dated Nov. 22, 2016. |
Number | Date | Country | |
---|---|---|---|
20170096248 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
62073760 | Oct 2014 | US | |
62053001 | Sep 2014 | US | |
62000510 | May 2014 | US |