Apparatus and method for making a flexible package

Information

  • Patent Grant
  • 10994882
  • Patent Number
    10,994,882
  • Date Filed
    Tuesday, May 19, 2015
    9 years ago
  • Date Issued
    Tuesday, May 4, 2021
    3 years ago
Abstract
An apparatus for forming a flexible package can include a forming box having a first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, and one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package. The apparatus can also include a first flap folding bar disposed upstream and adjacent a first end of the forming box, and one or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material.
Description
BACKGROUND

Field of the Disclosure


The disclosure relates to apparatus, systems, and methods for making a flexible package.


Brief Description of Related Technology


Vertical form, fill, and seal (VFFS) packaging machines are commonly used in the snack food industry for forming, filling, and sealing bags of nuts, chips, crackers and other products. Such packaging machines take a packaging film or flexible material from a roll and form the flexible material into a vertical tube around a product delivery cylinder. One disadvantage of these packages is that the resulting filled package is not rigid enough to allow the stacking of one package on top of another in a display. Additionally, such conventional packages do not retain their shape, particularly after the package is opened and product is removed.


BRIEF SUMMARY OF THE INVENTION

An apparatus for forming a flexible package includes a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends. One or more forming box actuators are operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package. A first flap folding bar is disposed upstream and adjacent the first end of the forming box. One or more first flap folding bar actuators are operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.


An apparatus for forming a flexible package includes a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends. The first portion includes a first surface defining the first wall, and the second portion includes second and third surfaces joined at a first corner, the second surface defining a portion of the fourth wall and the third surface defining the second wall. The third portion includes fourth and fifth surfaces joined at a second corner, the fourth surface defining a remaining portion of the fourth wall and the fifth surface defining the third wall. One or both of the third surface and the fifth surface includes at least one ejector extending from an end of the third surface or fifth surface disposed adjacent to the first surface. One or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining a package, and a third position for releasing the package, the at least one ejector being configured to engage the package and force the package out of the forming box when the forming box is actuated to the third position. A first flap folding bar is disposed upstream and adjacent the first end of the forming box. In addition, one or more first flap folding bar actuators are operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic illustration a system including an apparatus for forming a flexible package in accordance with an embodiment of the disclosure;



FIG. 1B is a close-up schematic illustration of the apparatus of FIG. 1A;



FIG. 2A is a schematic illustration of a system including an apparatus for forming a flexible package in accordance with another embodiment of the disclosure;



FIG. 2B is a close-up schematic illustration of the apparatus of FIG. 2A;



FIG. 3 is a top view of a forming box in accordance with an embodiment of the disclosure;



FIG. 4 is a top view of a forming box in accordance with an embodiment of the disclosure, shown in a first position for receiving a package;



FIG. 5 is a top view of a forming box in accordance with an embodiment of the disclosure, shown in a second position for retaining a package;



FIG. 6 is a top view of a forming box in accordance with an embodiment of the disclosure, shown in a third position for releasing a package;



FIG. 7A is a top view of a volume adjuster in accordance with an embodiment of the disclosure, showing the plate in a non-actuated position for receiving a package within the volume adjuster;



FIG. 7B is a top view of the volume adjuster of FIG. 7A, showing the plate in an actuated position for engaging a package received within the volume adjuster;



FIGS. 7C and 7D are perspective views of the volume adjuster of FIG. 7A, showing the plate in a non-actuated position for receiving a package within the volume adjuster;



FIGS. 7E and 7F are perspective views of the volume adjuster of FIG. 7B, showing the plate in an actuated position for engaging a package received within the volume adjuster;



FIGS. 8A-8G are schematic illustrations of a first portion of a forming box having heating/cooling in accordance with an embodiment of the disclosure;



FIGS. 9A-9H are schematic illustrations of a second portion of a forming box having heating/cooling in accordance with an embodiment of the disclosure;



FIGS. 10A-10H are schematic illustrations of a third portion of a forming box having heating/cooling in accordance with an embodiment of the disclosure;



FIG. 11 is a schematic illustration of a packaging machine having a pre-creasing device in accordance with an embodiment of the disclosure;



FIGS. 12A-12E are various views of the pre-creasing device of FIG. 11;



FIGS. 13A-13E are various views of a first plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing both a fold line which defines an edge of the package and a pull tab;



FIGS. 14A-14E are various views of a second plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing both a fold line which defines an edge of the package and a pull tab;



FIGS. 15A-15D are various views of a first plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing a fold line which defines an edge of the package;



FIGS. 16A-16D are various views of a second plate of a pre-creasing device in accordance with an embodiment of the disclosure for creasing a fold line which defines an edge of the package;



FIG. 17A is a schematic illustration of a seal packaged that can be processed by the apparatus in accordance with an embodiment of the disclosure, illustrating opposed first and second seals extending substantially perpendicularly to a panel of the package;



FIG. 17B is a schematic illustration of the sealed package of FIG. 17A in which the seals have been folded over to be disposed in substantially the same plane as the panel;



FIG. 18A is a perspective view of a forming box assembly in accordance with an embodiment of the disclosure;



FIG. 18B is a front view of the forming box assembly of FIG. 18A;



FIG. 18C is a top view of the forming box assembly of FIG. 18A;



FIG. 18D is side view of the forming box assembly of FIG. 18A;



FIGS. 19A-19D are top views of a forming box in accordance with an embodiment of the disclosure, in (A) the package receiving position, (B) the package retaining position, (C) the package ejecting position, and (D), the package ejected position;



FIGS. 20A-20D are perspective views of the forming box of FIGS. 19A-19D, in (A) the package receiving position, (B) the package retaining position, (C) the package ejecting position, and (D), the package ejected position;



FIG. 21 is a schematic drawing of a contoured package;



FIGS. 22A-22E are schematic drawings of a first portion of a forming box having contoured surfaces in accordance with an embodiments of the disclosure;



FIGS. 23A-23D are schematic drawings of a second portion of a forming box having contoured surfaces in accordance with an embodiment of the disclosure;



FIGS. 24A-24D are schematic drawings of a third portion of the a forming box having contoured surfaces in accordance with an embodiment of the disclosure;



FIGS. 25A-C are various views of an articulating tucker in a non-articulated position in accordance with an embodiment of the disclosure;



FIGS. 25D-F are various views of the articulating tucker in an articulated position in accordance with an embodiment of the disclosure; and



FIG. 26A is a schematic drawing of a seal jaw in accordance with an embodiment of the disclosure;



FIG. 26B is a schematic drawing of an engagement bar showing the sealing surface of the seal jaw of FIG. 26A;



FIG. 26C is a side view of the seal jaw of FIG. 26A, showing the engagement bars in the open position;



FIG. 26D is a side view of the seal jaw of FIG. 26A, showing the engagement bars in the closed position with the sealing surfaces in contact;



FIG. 26E is a side view of the seal jaw of FIG. 26A, showing the engagement bars in the closed position with additional force applied to compress the compressive bands on the sealing surface;



FIGS. 27A and 27B are schematic drawings of a packaging machine in accordance with an embodiment of the disclosure;



FIGS. 28A and 28B are schematic drawings of a packaging machine in accordance with an embodiment of the disclosure;



FIG. 29A is a top perspective view of a cubing apparatus in accordance with an embodiment of the disclosure;



FIG. 29B is a bottom view of the cubing apparatus of FIG. 29A;



FIG. 29C is a zoomed-in image of vent holes on the flap folding bar of the cubing apparatus of FIG. 29B;



FIG. 30A is a bottom view of a cubing apparatus in accordance with another embodiment of the disclosure;



FIG. 30B is a bottom perspective view of the cubing apparatus of FIG. 30A;



FIG. 30C is a zoomed-in image of vent holes and venting channels on the flap folding bar of the cubing apparatus of FIG. 30A;



FIG. 30D is a front view of the cubing apparatus of FIG. 30A;



FIG. 30E is a side view of the cubing apparatus of FIG. 30A;



FIGS. 31A to 31H are various views of an embodiment of a stationary plate and forming box;



FIGS. 32A to 32D are various views of an embodiment of a stationary plate and forming box;



FIGS. 33A to 33G are various views of an embodiment of a stationary plate and forming box;



FIGS. 34A to 34D are various views of an embodiment of a stationary plate and forming box;



FIG. 35A is a cross-sectional view of a forming member and a stationary plate in a first position; and



FIG. 35B is a cross-sectional view of the forming member and the stationary plate of FIG. 35A in a second position.





DETAILED DESCRIPTION

Flexible stackable packages and equipment for making such packages having a generally cubed shape have been disclosed in, for example, U.S. Pat. No. 8,602,244, the disclosure of which is incorporated herein by reference. The apparatus, systems, and methods of various embodiments of the disclosure can advantageously allow for formation of such flexible stackable packages with improved rigidity and/or improved shape, for example, a cubed shaped.


As described in detail below, the apparatus, systems, and methods of the disclosure can produce a flexible package in which first and second seals (also referred to as leading and trailing seals) are folded over and disposed generally in the same plane of the panel of the package from which they extend. The disclosed apparatuses can also advantageously allow for significantly increased processing speeds in forming such products, as well as the ability to convert conventional packaging machines into machines capable of forming such flexible packages.


The apparatus 10 in accordance with an embodiment of the disclosure can be adapted to function with known packaging machines, including, but not limited to vertical form fill seal (VFFS) packaging machines, horizontal form, fill and seal (HFFS) machines, sequential assembly machines and the like. As used herein, the “transport path” refers to the path of the flexible material as it is transported through the conventional packaging machine during operation for making a flexible package. In various embodiments, the apparatus 10 can be provided on a frame assembly that is portable, allowing the apparatus 10 to be moved into and out of configuration with the conventional packaging machine. The frame assembly and/or components of the apparatus 10 can be adjustable to accommodate different packaging machine configurations and heights.


Referring to FIGS. 1A and 1B, in accordance with an embodiment of the disclosure, an apparatus 10 for making a flexible package can include a forming box 12 and a first flap folding bar 20. The apparatus 10 can receive a sealed flexible package for further processing, for example, such as folding over a seal extending perpendicularly from the sealed package such that it is disposed in substantially the same plane as the panel of the sealed package from which the seal extends.


Referring to FIGS. 3-6, in accordance with an embodiment, the forming box 12 can include a first portion 14, a second portion 16, and a third portion 18. It is contemplated herein that the forming box 12 can be divided into any suitable number of portions. It has been advantageously found that division of the forming box 12 into three portions can increase processing time by providing a forming box 12 that can quickly actuate to accept the package and release the package, thereby increasing package forming speeds. For ease of references, a forming box 12 having three portions will be discussed herein. However, it should be understood that other numbers of portions are contemplated herein and such additional portions may result in additional positions in which the forming box 12 can be actuated for receiving, retaining, and releasing the package after the flap folding process. The portions of the forming box 12 cooperate to define one or more walls of the forming box 12. For example, first, second, and third portion 14, 16, 18 can cooperate to define a forming box 12 having four walls. The forming box 12 can have any suitable size and shape depending on the size and shape of the package to be formed. For example, when the package to be formed is designed to have substantially square edges, the forming box 12 can be designed to have substantially square edges. Such design can facilitate in providing a package having substantially square edges by applying a pressure to the package to retain the squared shape during flap folding.


The forming box 12 can actuate between a first position for receiving a package (shown in FIG. 4), a second position for retaining the package during flap folding (shown in FIG. 5), and a third position for releasing the package from the forming box (shown in FIG. 6). FIG. 6 illustrates the start of the third position for releasing the package from the forming box. The second and third positions actuate further away from each other to provide a space through which the package can be passed out of the forming box. The apparatus 10 can include one or more forming box 12 actuators to actuate portions of the forming box 12 to the various positions. In accordance with an embodiment, the actuators can be operatively coupled to one or more of the portions of the forming box 12. For example, in an embodiment, actuators are coupled to the second and third portions 16, 18 of the forming box 12 to actuate the second and third portions 16, 18 while the first portion 14 remains stationary. In yet another embodiment, only one of the portions may actuate or all three portions can be actuated.


The forming box 12 has a first end and an oppositely disposed second end. The first end is disposed adjacent to the first flap folding bar 20. In an embodiment, the forming box 12 can be open at both the first and second ends. For example, the forming box 12 can be open at the second end and a conveyor 36 can be disposed beneath the second end. The package can reside on the conveyor when it is received in the forming box 12. In another embodiment, the forming box can be closed at the second end. For example, the forming box 12 can include a plate or other member forming a bottom surface of the forming box 12 at the second end. The bottom member can be, for example, an additional fourth portion of the forming box 12 that actuates into and out of position for receiving, retaining, and releasing a package. In an embodiment, the bottom member of the forming box 12 can be operatively coupled to an actuator that actuates the bottom member from a closed position in which the bottom surface forms a bottom surface of the forming box 12 and an open position in which the bottom surface is disposed away from the forming box 12, such that the second end is open.


In an embodiment, the forming box 12 comprises first and second portions defining four walls of the forming box 12 and a third portion defining a bottom wall of the forming box 12 at the second end. In operation, the forming box 12 can actuate from a first position in which the third portion defines a bottom wall of the forming box 12 and the first and second portions are separated to receive the package, a second position in which the first and second portions actuate towards each other to retain the package during flap folding, with the third portion maintaining a bottom surface, and a third position in which the first and second portions separate and the third portion 18 is disposed away from the second end to release the package.


Referring to FIG. 3, in accordance with an embodiment, the first portion 14 can include a first surface 38, which can be a planar or substantially planar surface, extending between first and second mating surfaces 40, 42. The mating surfaces 40, 42 can be angled. Alternatively, the mating surfaces 40, 42 can be substantially planar.


In accordance with an embodiment, the second portion 16 can include second and third surfaces 44, 46, which can be planar or substantially planar surfaces, joined by a corner 48. The second portion 16 can further include a mating surface 52 joined to the third surface 46 by a corner 50. Similarly, the third portion 18 can include fourth and fifth surfaces 56, 58, which can be planar or substantially planar surfaces, joined by a corner 60, and a mating surface 64 joined to the fifth surface 58 by a corner 62. The mating surfaces 52, 64 can have a shape complementary to a shape of the mating surfaces 40, 42, respectively, of the first portion 14. For example, the mating surfaces 52, 64 can be angled at an angle complementary to the angle of the first and second mating surface 40, 42, respectively, of the first portion 14, or be substantially planar to mate with the mating surfaces 40, 42 of the first portion 14. When the forming box 12 is in the second position, the mating surfaces 52, 64 contact the mating surface 40, 42 such that the first surface 38 of the first portion 14 and the mating surfaces 40, 42, 52, 64 define a wall of the forming box 12. For example, the complementary shape of the mating portions 40, 42, 52, 64, can allow the portions to cooperate to define a planar or substantially planar wall. The mating surfaces 52, 64 of the second and third portions 16, 18 being joined to the third and fifth surfaces 46, 58 by a corner can advantageously provide a package releasing aid when the forming box 12 is actuated to the third position. For example, the mating surfaces 52, 64 can contact the package when the second and third portions 16, 18 are actuated to the third position, forcing the package away from the first portion 14 and out of the forming box 12.


The second and fourth surfaces 44, 56 of the second and third portions 16, 18, respectively can each terminate in mating portions 54, 66 that can have complementary shapes such that the mating surfaces 54, 66 can contact each other to define a wall of the forming box 12 when the forming box 12 is in the second position. In alternative embodiments, the second and fourth surfaces 44, 56 of the forming box 12 can be sized such that a gap remains between the mating surfaces 54, 56 when the forming box 12 is in the second position.


Referring to FIGS. 18A-18D, in yet another embodiment of the disclosure, the forming box 12 can include one or more ejectors 102 to aid in releasing the package (not shown) from the forming box 12 after sealing. As described above, the forming box 12 can include any suitable number of portions. By way of example only, description herein will be made with reference to three actuating portions 14, 16, 18. In an embodiment, the first portion 14 can include a first surface 38 extending between first and second ends 40, 42. The second portion 16 can include second 44 and third surfaces 46 joined at a corner 48. The third portion 18 can include fourth 56 and fifth 58 surfaces joined at a corner 60. The first surface 38 defines a first wall of the forming box 12, the third surface 46 defines a second wall of the forming box 12, the second surface 44 defines a portion of the fourth wall of the forming box 12, the fifth surface 58 defines a third wall of the forming box 12, and the fourth surface 56 defines the remaining portion of the fourth wall of the forming box 12.


The third surface 46 and/or the fifth surface 58 can include one or more ejectors 102 extending perpendicularly from the surface. For example, the one or more ejectors 102 can extend from an end of the third surface 46 and/or fifth surface 58 that is adjacent to the first portion 14. Referring to FIG. 18B, in some embodiments, the first portion 14 can include one or more apertures 104 disposed in the first surface 38 to receive the one or more ejectors 102. Referring to FIG. 20B, the apertures 104 can be arranged such that when in the forming box 12 is in the second, closed position, the ejectors 102 reside within the apertures 104 and a substantially planar first wall is defined. Referring to FIGS. 19C, 19D, 20C, and 20D, when the forming box 12 is actuated to the third position for releasing the package, the ejectors 102 contact the package (not shown) and aid in forcing the package out of the forming box 12.


The one or more ejectors 102 can take a variety of forms and shapes, including, but not limited to, pins, pegs, posts, finger-like extensions, and combination thereof. The ejectors 102 can be permanently or removably attached to the second and/or fourth surface 44, 54 of the second and third portions 16, 18, respectively, or can be formed integral with the portion from which it extends. For example, the ejector 102 can include threads and be received in a threaded hole disposed in the portion, thereby providing an ejector that is removable. In various embodiments, the ejectors 102 extend from the third and/or fifth surface 46, 58 at an angle other than a 90° angle, for example, angled relative to the surface 46, 58 about 90° to about 135°. The ejectors 102 can have a length extending from the third and/or fifth surface 46, 58 of about 0.5 inches to about 4 inches, about 1 inch to about 2 inches, about 2 inches to about 4 inches, about 0.5 inches to about 1 inch. Other lengths are also contemplated herein. The length of the ejectors can depend on the package size to be formed using the forming box. For example, for smaller packages, the length of the ejectors can be less than about 1 inch and for larger packages the length of the ejectors can be greater than about 2 inches.


The forming box 12 can include any suitable number of ejectors 102. For example, the forming box 12 can include one ejector 102 extending from the third or fifth surface 46, 58. In yet another embodiment, the forming box 12 can include one ejector 102 extending from the third surface 46 and one ejector 102 extending from the fifth surface 58. In yet another embodiment, the forming box 12 can include two ejectors 102 extending from the third surface 46 and two ejectors 102 extending from the fifth surface 58. For example, one or both of the third and fifth surfaces 46, 58 can include 1 to 12 ejectors, 2 to 10 ejectors, 4 to 8 ejectors, 3 to 7 ejectors, 4 to 12 ejectors, and 6 to 10 ejectors. Other suitable numbers of ejectors include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 ejectors. Use of more than 12 ejectors is also contemplated herein. The selection of the suitable number of ejectors can depend, for example, on the package size. For example, it may be required to utilize a larger number of ejectors for wider packages so that the package is evenly engaged by the ejectors along the width of the package. In embodiments including ejectors 102 extending from the third surface 46 and the fifth surface 58, the surfaces can include the same or different numbers of ejectors.


Referring to FIG. 18C, in various embodiments, the apparatus or system for making the flexible package can include a stationary plate 106 disposed beneath the forming box 12, adjacent the second end. When a package is received in the forming box 12, the package resides on the stationary plate 106. Advantageously, in such embodiments, a conveyor need not be disposed beneath the forming box 14 to aid in releasing the package from the forming box 12. It has been surprisingly and beneficially discovered that the ejectors 102 can engage the package and provide enough force to push the package out of the forming box 12 when the forming box 12 is actuated to the third position. In various embodiments, the package can be pushed across a stationary plate 106 and onto a take away conveyor for further processing, such as boxing. In other embodiments, as illustrated in FIG. 18A, the package can be pushed across the stationary plate 106 to a chute 108 or other means of transporting the package for further operation, such as boxing. By eliminating the need for a conveyor to be disposed beneath the forming box, the complexity of coordinating the timing of a conveyor speed with the actuation and folding operations associated with the forming box can be eliminated.


It is also contemplated herein that more complex systems such as an actuating plate disposed beneath the forming box can be used as opposed to a stationary plate. The plate may actuate in a direction transverse to the transport path such that it is disposed beneath the forming box when a package is to be received in the forming box and actuate away from the forming box once the package is released from the forming box. The plate may also or alternatively actuate in a direction parallel to the transport path, towards any away from the forming box second end, to provide improved pressure against the package when the package is retained in the forming box for flap folding, while allowing for release of the pressure during receipt of the package and ejection of the package from the forming box. One or more plate actuators may be coupled to the plate to actuate the plate in the various positions.


In some embodiments, the stationary plate 106 may include a forming member 250, as illustrated in FIGS. 31A to 34D. As illustrated in FIG. 31E, the forming member 250 may have a raised portion or a protrusion upwardly extending from a top surface 251 of the stationary plate 106. In some embodiments, the forming member 250 may include a perimeter portion 252 and a central portion 254, and the perimeter portion 252 may at least partially surround the central portion 254. In some embodiments, the perimeter portion 252 completely surrounds the central portion 254.


The perimeter portion 252 of the forming member 250 may include one or more segments that forms or cooperates to form a shape (or two or more shapes) that generally corresponds to a shape (or two or more shapes) of a perimeter of bottom portion of a package that is received in the forming box 12. For example, the perimeter portion 252 may include one segment that forms an oval or circular shape. In other embodiments, the perimeter portion 252 may include a plurality of segments that cooperate to form a polygonal shape, such as a rectangular shape or a square shape. The perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be positioned on the top surface 251 of the stationary plate 106 such that each of the segments of the perimeter portion 252 are disposed within (i.e., inside) a perimeter formed by the forming box 12 (e.g., the first, second and third portions 14, 16, 18 of the forming box 12) when the forming box 12 is in the second position (and when viewed normal to the top surface 251 of the stationary plate 106).


The perimeter portion 252 may have any suitable cross-sectional shape or combination of shapes. More specifically, the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be tapered and may gradually decrease in height (i.e., distance normal to the top surface 251 of the stationary plate 106) from the central portion 254 to the top surface 251 of the stationary plate 106. In some embodiments, the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be normal to the top surface 251 of the stationary plate 106. Any other shape or combination of shapes is contemplated. In some embodiments, a cross-sectional shape of the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may be uniform (or substantially uniform) along the entire perimeter portion 252. In other embodiments, one or more portions of the perimeter portion 252 (i.e., the segments that cooperate to form the perimeter portion 252) may have a cross-sectional shape that varies.


Still referring to FIG. 31E, a perimeter of the central portion 254 may be defined by an edge portion 255 having a shape that corresponds to the shape of the perimeter portion 252 when viewed normal to the top surface 251 of the stationary plate 106. A top surface 256 of the central portion 254 may have any suitable shape or combination of shapes. For example, the top surface 256 of the central portion 254 may be planar or substantially planar (when viewed in a direction parallel to the top surface 251 of the stationary plate 106) and may be disposed at a desired vertical distance (i.e., a distance normal or substantially normal to the top surface 251 of the stationary plate 106) from the top surface 251 of the stationary plate 106. The vertical distance may correspond to a distance that allows a top surface of the central portion 254 to contact a surface of a bottom portion of a package that is received in the forming box 12. In some embodiments, the top surface 256 of the central portion 254 may be contoured or partially contoured. In some embodiments, all or a portion of the forming member 250 may be formed as a unitary part with the stationary plate 106. In other embodiments, all or a portion of the forming member 250 may be coupled to the stationary plate 106 (e.g., by mechanical fasteners or by welding). The skilled person would recognize that the forming member 250 may be formed on or coupled to an actuating plate instead of a stationary plate 106.


In some embodiments, such as that illustrated in FIGS. 35A and 35B, the central portion 254 and the perimeter portion 252 of the forming member 250 may be displaceable relative to the stationary plate 106. Specifically, the forming member 250 may displace (e.g., vertically displace along an axis normal to the top surface 251 of the stationary plate 106) from a first position 260 (illustrated in FIG. 35A) to a second position 261 (illustrated in FIG. 35B) that is different than the first position 260. In some embodiments, the first position 260 may be a position in which the top surface 256 of the central portion 254 is a desired vertical distance D1 from the top surface 251 of the stationary plate 106, and the second position 261 may be a position in which the top surface 256 of the central portion 254 is coplanar with (or substantially coplanar with) the top surface 251 of the stationary plate 106. In other embodiments, such as that illustrated in FIG. 35B, the second position 261 may be a position in which a vertical distance D2 between the top surface 256 of the central portion 254 and the top surface 251 of the stationary plate 106 may be a vertical distance D2 that is less than the desired vertical distance D1 between the top surface 256 of the central portion 254 and the top surface 251 of the stationary plate 106. In still other embodiments, the second position 261 may be a position in which the top surface 256 of the central portion 254 is vertically below the top surface 251 of the stationary plate 106. The skilled person would recognize that such configurations allows a package to be ejected from the forming box 12 (e.g., using the one or more ejectors of FIGS. 18A-18D previously discussed) without interference from the forming member 250.


In use, when a package is received into the forming box 12, a surface of a bottom portion of a package may be at least partially engaged (or contacted) by the top surface 256 of the central portion 254 and a perimeter portion (that may surround the surface of the bottom portion) of the bottom portion of the package may be at least partially engaged or contacted by the segment(s) forming the perimeter portion 252. In embodiments in which the forming member 250 displaces relative to the stationary plate 106, this position of the top surface 256 corresponds to the first position 260 of FIG. 35A. So disposed, the forming member 250 maintains the shape of the bottom portion of the package when the package is in the forming box 12, thereby minimizing or eliminating deformation of the bottom portion of the package, if desired. Alternatively, the forming member 250 may also crease the edges of the bottom portion of the package (for example, by leaving a gap proximate to the edges so when a flap folder, e.g., the first flap folding bar 20, applies downward pressure to the package, the internal package pressure pushes the edges into the gap and “over-bends” the edges). In embodiments in which the forming member 250 displaces relative to the stationary plate 106, the forming member may displace to the second position 261 (e.g., of FIG. 35B) after the forming member 250 creases the edges of the bottom portion of the package but prior to (or during) the ejection of the package from the forming box 12.


As with the embodiment described above, the forming box 12 can include one or more forming box actuators to actuate portions of the forming box to the various positions. In accordance with an embodiment, the actuators can be operatively coupled to one or more of the portions of the forming box. For example, in an embodiment, actuators are coupled to the second and third portions 16, 18 of the forming box 12 to actuate the second and third portions 16, 18 while the first portion 14 remains stationary. In yet another embodiment, only one of the portions may actuate or all three portions can be actuated.


In any of the embodiments of the forming box disclosed herein, the forming box actuators can be any known type of actuator. For example, in an embodiment, the forming box actuators are linear motors. Other types of actuators include, but are not limited to, air cylinders, linear servos, electric cylinders, hydraulic cams, hydraulic cylinders, and combinations thereof.


Any of the actuators describe herein can be any known type of actuator including, but not limited to, linear servos, air cylinders, linear motors, electric cylinders, hydraulic cams, hydraulic cylinders, and combinations thereof.


In operation, in any embodiment of the forming box described herein, a sealed package can be received into the forming box 12 when the forming box 12 is in the first position. In the first position, the first, second, and third portions 14, 16, 18 are separated slightly to allow the package to be received within the forming box 12 and accommodate any potential offset in the package path that may occur during the package transport process, but prevent the package from passing through the forming box 12. The forming box 12 then actuates to the second position in which the first, second, and third portions 14, 16, 18 close with the mating surface in contact or substantially in contact with one another, as described above. The forming box 12 is sized such that the package is retained within the first, second, and third portions 14, 16, 18 when the forming box 12 is in the second position. For example, in an embodiment, the forming box 12 can be sized such that the first, second, and third portions 14, 16, 18 apply a pressure to the panel of the package when the forming box 12 is in the second position.


In various embodiments, the package to be received in the forming box 12 is a sealed package having at least one seal that extends perpendicularly or substantially perpendicularly from a panel of the package. The package can be received in the forming box 12 such that at least one first seal extends perpendicularly or substantially perpendicularly from the first end of the forming box 12. Once the package is received in the forming box 12, the first flap folding bar 20 can be actuated to the second position in which the first flap folding bar 20 is shifted in a direction transverse to the transport path of the package (and flexible material in a packaging machine) across the first end of the forming box 12 and engages the at least one first seal to force the seal over towards the panel of the package. In various embodiments, the first flap folding bar 20 can actuate across the forming box 12 and down towards the forming box 12 to apply added pressure to fold the first seal against the panel of the package. In an embodiment, the first flap folding bar 20 can be actuated in a direction transverse to the transport path (across the forming box 12) and then in a direction parallel to the transport path (towards the forming box 12). In other embodiments, the first flap folding bar 20 can be actuated in a direction transverse to the transport path and in a direction parallel to the transport path substantially simultaneously.


In various embodiments, the first flap folding bar 20 and the forming box 12 can actuate. For example, the flap folding bar 20 can be operatively coupled to an actuator that actuates the first flap folding bar 20 in a direction transverse to the transport path and the forming box 12 can be operatively coupled to an actuator that actuates the forming box 12 (including the package retained therein) in a direction parallel to the transport path, towards the first flap folding bar 20. In other embodiments, the first flap folding bar 20 can be stationary and the forming box 12 can be operatively coupled to one or more actuators that actuate the forming box 12 in a direction transverse to the transport path and parallel to the transport path towards the first flap folding bar 20. In such embodiments, the first flap folding bar 20 can reside outside of the transport path and the forming box 12 can be actuated into engagement with the first flap folding bar 20 once the package is received to contact the flap of the at least one seal with the first flap folding bar 20 for folding.


In some embodiments, the seal can be attached to the panel of the package by the applied pressure from the first flap folding bar 20 and the residual heat remaining in the at least one first seal from the sealing operation. In other embodiments or additionally, the first flap folding bar 20 can be heated to apply both heat and pressure to attach the seal to the panel. Alternatively or additionally, the first flap folding bar 20 can be cooled or include cooling structures to cool the heated seal once it has been folded over towards the side of the package. For example, referring to FIGS. 29A-29C, the first flap folding bar can include one or more vent holes 90 that allow for heated and/or cooled gas to flow through the vent holes 90 and towards the surface of the package. In an embodiment, the vent holes 90 can be in fluid communication with a manifold 94 or other supply source for supplying the heating or cooling medium. For example, as shown in FIG. 29A, a cooling manifold 94 can be attached to a surface of the flap folding bar. 20 Alternatively, the supply source can be separate from and fluidly coupled to the vent holes 90. Any structures necessary for fluidly coupling the supply source to the vent holes and/or controlling the supply of cooling or heating medium can be used, including, but not limited to, supply inlets, supply lines, and control valves. As illustrated in FIGS. 29A to 29C and 30A to 30E, the vent holes 90 can be disposed on a bottom surface of the flap folding bar 20 to direct the cooling or heating medium towards the package residing in the forming box 12 during the flap folding operation. In an embodiment, as shown in FIGS. 30A-30E, the flap folding bar 20 can include one or more venting channels 92 having one or more vent holes 90 disposed in the venting channel 92. For example, in one embodiment, the flap folding bar can include a series of vent channels oriented parallel to one another along the surface of the flap folding bar. The vent channels can include the same or a different number of vents. As with the embodiment shown in FIGS. 29A to 29C, the venting channels 92 and vent holes 94 can direct cooling or heating medium towards the package during the flap folding operation. Any suitable number and arrangement of vent holes 90 and/or venting channels 94 can be used. For example, the vent holes can be arranged in a region to localize the application of the heat and/or cooling medium to the package. For example, the flap folding bar can include differing numbers of vent holes (density of vent holes) in various portions to direct more or less heating and/or cooling medium to different regions of the package. Heating and/or cooling medium can be directed to the package through the vent holes during all or any portion of the flap folding aperture.


In an embodiment, during operation, a heating medium, for example, a heating gas can be directed to the package as the flap folding bar is actuated to engage and fold over the seal. The heating gas can aid in heating the flexible material forming the seal and/or the outer surface of the package to allow for or aid in formation of a heat seal between seal and the outer surface of the package.


In an embodiment, during operation, the cooling medium, for example a cooling gas, can be directed to the package after the flap folding bar has engaged and folded over the seal. For example, the flap folding bar can be actuated to engage and fold over the seal and then the cooling gas can be flowed through the vent holes to cool the flexible material while the flap folding bar is still engaged with the package. Alternatively, the cooling gas can be flowed through the vent holes and directed to the package concurrently or substantially concurrently with retracting the flap folding bar from engagement with the flap, after the flap folding operation. Cooling during or after the flap folding operation can advantageously aid in setting a hot tack seal to attach the flap to the outer surface of the package. Cooling can also aid in preventing wrinkling in the seal in downstream operations by cooling the seal in place prior to the downstream operations. Cooling can also aid in preventing the seal from detaching from the outer surface of the package in downstream operations by cooling the seal and setting the attachment of the seal to the outer surface, for example, a heat seal, before such downstream operations.


The flap folding bar can remain actuated over forming box for any suitable duration to allow for contact of the package with the heating or cooling medium. For example, the flap folding bar can remain in the actuated position while the package is ejected from the forming box. Alternatively, the flap folding bar can actuate to engage the package, and then retract prior to or substantially concurrently with the ejection of the package from the forming box. Heating and/or cooling by flowing a medium through the flap folder and out the vent holes can occur at any time during the flap folding process.


In various embodiments, any one or more of the features of heating and/or cooling described above with respect to the first flap folding bar can be incorporated into the second flap folding bar. In such embodiments, cooling and/or heating can be initiated during the flap folding operation while the package is retained above the second flap folding bar. The vents and/or vent channels can be incorporated into the second flap folding bar so as to direct the cooling or heating medium towards the package. For example, in various embodiments, the second flap folding bar actuates to engage a seal of the package while the package is disposed upstream of the second flap folding bar. In such embodiments, the vents and/or vent channels can be located on the upstream surface (top surface) of the second flap folding bar.


In other embodiments, the first seal can be folded by the actuation of the first flap folding bar 20, but not attached to the panel. In such embodiments, the at least one first seal can be retained in substantially the same plane as the panel by the fold imparted by the actuation of the first flap folding bar 20. In yet other embodiments, the first flap can be attached to the panel by application of an adhesive prior to or during the flap folding operation.


The first flap folding bar can further include a sealing structure extending from one or both ends of the flap folding bar. The sealing member can engage the edges of the packages as the flap folding bar is actuated to fold the flap, which can apply a pressure to the edges of the package for forming a seal at the edges of the package. The sealing member of the flap folding bar can be heated, for example, to impart a heat seal at the edges of the package when the flap folding bar is actuated to engage the flap. Alternatively or additionally, the forming box can be heated to heat the edges of the package, as described in detail below.


In an embodiment, the first flap folding member can be arranged with the heating and/or sealing member such that the heating and/or sealing member folds the flexible material into the forming box. In various embodiments, the heating and/or sealing member can be mounted to the flap folder and the forming box may be mounted in a position such that the heating and/or sealing member mounted to the flap folder clamps the flexible material against an edge of the forming box to form and/or seal the edge. The forming box and/or the heating and/or sealing member can be thermally insulated from the flap folder. The heating and/or sealing member can be attached to the flap folder with a spring bias. The heating and/or sealing member can be integrally formed into the flap folder.


Alternatively or additionally, similar to the first flap folding bar 20, the stationary plate 106 and/or the forming member 250 can be cooled or include cooling structures to cool the heated seal once it has been folded over towards the side of the package. For example, the stationary plate 106 may include the one or more vent holes 90 of FIGS. 29A-29C that allow for heated and/or cooled gas to flow through the vent holes 90 and towards the surface of the package. In an embodiment, the vent holes 90 can be in fluid communication with a manifold (or other supply source) for supplying the heating or cooling medium. Alternatively, the supply source can be separate from and fluidly coupled to the vent holes 90. Any structures necessary for fluidly coupling the supply source to the vent holes 90 and/or controlling the supply of cooling or heating medium can be used, including, but not limited to, supply inlets, supply lines, and control valves. The vent holes 90 can be disposed on any suitable surface of the stationary plate 106 and/or the forming member 250 to direct the cooling or heating medium towards the package residing in the forming box 12 during the flap folding operation. In an embodiment, the stationary plate 106 and/or the forming member 250 can include one or more venting channels 92 (illustrated in FIGS. 30A to 30E) having one or more vent holes 90 disposed in the venting channel 92. For example, in one embodiment, the stationary plate 106 and/or the forming member 250 can include a series of vent channels oriented parallel to one another along a surface of the stationary plate 106 and/or the forming member 250 (e.g., the top surface 251 of the stationary plate 106). The vent channels 92 can include the same or a different number of vents. As with the embodiment shown in FIGS. 29A to 29C, the venting channels 92 and vent holes 94 can direct cooling or heating medium towards the package while the package is disposed on the stationary plate 106. Any suitable number and arrangement of vent holes 90 and/or venting channels 94 can be used. For example, the vent holes can be arranged in a region to localize the application of the heat and/or cooling medium to the package. For example, the stationary plate 106 and/or the forming member 250 can include differing numbers of vent holes (density of vent holes) in various portions to direct more or less heating and/or cooling medium to different regions of the package. Heating and/or cooling medium can be directed to the package through the vent holes during all or any portion of the forming process while the package is disposed within the forming box 12.


In an embodiment, during operation, a heating medium, for example, a heating gas can be directed to the package as the package is disposed on the stationary plate 106 and/or the forming member 250. The heating gas can aid in heating the flexible material forming the seal and/or the outer surface of the package to allow for or aid in formation of a heat seal between seal and the outer surface of the package. Heated gas can also help to define the shape of the package by preferentially creating shape memory in the edges. In an embodiment, during operation, the cooling medium, for example a cooling gas, can be directed to the package as the package is disposed on the stationary plate 106 and/or the forming member 250. For example, the cooling gas can be flowed through the vent holes 90 and directed to the package while the package is disposed on the stationary plate 106 and/or the forming member 250. Cooling can advantageously aid in preventing wrinkling of the seals along the bottom portion of the package. In downstream operations by cooling the seal in place prior to the downstream operations. Heating and/or cooling by flowing a medium through the stationary plate 106 and/or the forming member 250. and out the vent holes can occur at any time during the forming process while the package is in the forming box 12. The skilled person would also recognize that a first portion of the stationary plate 106 may be heated and a second portion of the stationary plate 106 may be cooled. The skilled person would also recognize that an actuating plate may be cooled in a manner identical to that described for the stationary plate 106.


In various embodiments, a plate, for example a stationary plate or actuating plate disposed below the forming box as described above can include a sealing structure to engage the edges of the package at the bottom of the forming box to impart a seal at the edges as described above with respect to the first flap folding bar. The sealing structure of the plate can be heated, for example, to impart a heat seal. Alternatively or additionally, the forming box can be heated to heat the edges. When the package is provided into the forming box, the edges of the package can align with the sealing structure of the plate and pressure applied by the first flap folding bar can force the package downward to apply pressure at the sealing structures of the plate. Alternatively or additionally, the plate can actuate upstream towards the package to apply pressure with the sealing structure at the edges of the package and form the seal.


In various embodiments, it can be desired to form a package having a contour shape as illustrated in FIG. 21. As shown in FIG. 21, the side edges of the package are contoured. To aid in achieving the contour shape, the forming box can include one or more contoured surfaces corresponding to the contour edges of the package. That is when a package is received in the forming box, the contour edges of the package or to be defined in the package are arranged in line with the contour surfaces of the portions of the forming box. It is contemplated herein that the contour surfaces of the forming box can be applied to any embodiment of the foregoing box disclosed herein, including one with or without ejectors and/or apertures.


Referring to FIGS. 22A to 22E, the first portion 14 can include opposed first and second contoured surfaces 110, 112 at the top and bottom ends of the first portion 14. Any suitable contour can be used depending on the shape of the package desired. In the embodiment illustrated in FIGS. 22A to 22E, the first portion 14 is illustrated with two convex contours at the top and bottom ends of the first portion 14. When a package is engaged by the forming box, the contours will contact the sides of the package to aid in providing a concave contour shape to the package edges.


Referring to FIGS. 23A to 23D and 24A to 24D, the second and third portions 16, 18 can also include contoured surfaces. For example, the second and fourth portions 44, 56 of the second and third portions 16, 18, respectively, can each include contoured surfaces 114, 116 disposed at the top and bottom ends of the second and third portions 16, 18, respectively. As with the first portion 14, the location of the contoured surfaces corresponds to contoured edges formed or to be formed in the package. That is, when the package is received in the forming box, contour edges of the package align with the contoured surfaces 114, 116 of the second and third portions 16, 18.


The contoured surfaces can be formed along any of the surfaces of the forming box 12, depending on the contours to be imparted to the package. For example, if contours are only desired on subset of the edges of the package, then contoured surfaces could be provided on only a subset of the portions and/or at a subset of the ends of the portions. For example, if it is desired to provide contours only on two edges of the package, the first portion may include only the contoured surfaces, or alternatively, the second and third portions 16, 18 can include the contoured surfaces with the first portion having substantially linear or non-contoured surfaces.


It is also contemplated herein that the contoured surfaces on the first, second, and third portions 14, 16, 18 can have the same contour or different contours shapes and/or dimensions. The contour provided on the surface of the portions can be determined by the desired package configuration and contours to be imparted therein. In various embodiments, the contour surfaces can have a size and shape corresponding to the contoured edges to be formed on the package. In other embodiments, the contour surfaces can have an exaggerated size and shape as compared to the contoured edges to be formed on the package to over-bend the contoured edges of the packages, which can aid in retaining the contoured shape in the package. It is also contemplated herein that the top and/or bottom edge of the first, second, and third portions can be extended into the interior of the forming box, without a contour provided thereon, which can beneficially over-bend the edges of the package. This is can aid in retaining well-defined and/or creased edges in the package even when a non-contoured or straight-line shape is desired.


In an embodiment, the forming box can be heated and/or chilled to aid in forming and defining the shape of the package. For example, the forming box 12 can include a heater to heat all or selected portions of the forming box. For example, portions of the forming box 12 contacting and/or adjacent to the fold lines of the package can be heated and/or cooled to aid in further defining the fold lines/edges of the package. The forming box 12 can additionally or alternatively include a chiller and/or cooling channels 72 to aid in rapidly setting seals and folds formed in prior package processing steps.


Referring to FIGS. 8A to 10H, for example, the forming box of any of the foregoing embodiments can include one or more heaters 68 and/or one or more fluid heating/chilling lines. In the embodiment of FIGS. 8A to 10H, a forming box 12 that does not include ejectors 102 is shown in the figures. However, it is contemplated herein that any of the embodiments of the forming box, including ones with one or more ejectors and/or contour surfaces can include the heating and/or chilling lines. The one or more fluid heating/chilling lines can include one or more fluid inlets or ports 70, one or more fluid channels 72, and one or more fluid outlets 74 for receiving a heating or cooling fluid, such as a heated or cooled gas or liquid. For example, the one or more fluid outlets 74 can be disposed along a surface of one or more of the first, second, and third portions 14, 16, 18 at the first end and/or the second end. In an embodiment, a heated gas can flow through the one or more fluid outlets 74 to locally heat the package at a fold line. The package can be locally heated while the forming box 12 engages the package by actuating into the second position and the first flap folding bar 20 begins to actuate. A cooling gas can then be applied to the package through the one or more fluid outlets 74 or a different set of fluid outlets 74 to chill the package while the first flap folding bar 20 is applying a pressure to the package. In another embodiment, the forming box 12 can include a heater, such as a cartridge heater, to locally heat one or more of the portions of the forming box 12, for example, in regions corresponding to a fold line or edge of the package. The portions of the forming box and/or cooling/heating channels can be formed of a thermally conductive material, such as aluminum, to allow heat transport through the forming box 12. The forming box 12 can alternatively or additionally include a cooler, for example, a thermo-electric cooler to locally cool portions of the package to set folds and creases in the package.


In embodiments including a heater, the forming box 12 can further include fluid inlets, fluid channels 72, and fluid outlets 74 for flow of a chilling fluid to set the folds and edges after heating for example, by the cartridge heater. Additional components, such as thermocouples and temperature sensors can be included to regulate the temperature of the forming box 12.


In various embodiments, the forming box 12 can be heated to soften the material to aid in forming folds and/or seals in the package. The temperature will depend on the type of material, the speed of operation, and the product contained therein. Generally, the flexible material can be heated to a temperature greater than a heat deflection temperature of the flexible material, but less than a melting point and/or distortion point of the flexible material. For example, the forming box can be heated to a temperature of about 70° F. to about 350° F.


During cooling, the forming box 12 can be cooled to any desirable temperature, including room temperature or below room temperature. For example, the forming box can be cooled to a temperature of about 33° F. to about 77° F. Cooling temperatures to set a seal or a fold will depend on the type of material, the speed of operation, and the product contained therein.


The temperature of the forming box 12 can be heated and then cooled to set any folds or seals formed in the flexible material. Alternatively, the forming box 12 can be heated only and cooling can be achieved in a separate operation or by normal convention/radiative processes. For example, cooling fluid can be circulated about the package after it is released from the forming box 12, for example, by directing cooled gas towards the package as travels along the conveyor. In yet another embodiment, the forming box 12 can be cooled only. Cooling can be used to chill the residual heat in the package to set folds and seals formed in the flexible package and/or to aid in setting a seal attaching the at least one extending seal to the panel, for example, where the first flap folding bar 20 is heated.


Referring to FIGS. 2A and 2B, the apparatus 10, can further include a second flap folding bar 22 disposed upstream the first flap folding bar 20. The package can include a second seal extending perpendicularly or substantially perpendicularly from a panel opposite the panel from which the at least one first seal extends. The second flap folding bar 22 can be operatively coupled to at least one second flap folding bar actuator that actuates the second flap folding bar 22 in a direction transverse to the transport path. One or more actuators can also actuate the second flap folding bar 22 in a direction parallel to the transport path. For example, in operation, a sealed package can be transported to the second flap folding bar 22. The second flap folding bar 22 can be actuated to engage the second seal and fold the second seal over towards the panel of the package from which it extends. As with the first flap folding bar 20, the flap folding operation can attach the seal to the panel or the flap folding operation can form a fold that keeps the flap retained in substantially the same plane as the panel. The second flap folding bar 22 can be heated to aid in attaching the second seal to the panel. The second seal can alternatively be attached by residual heat remaining in the second seal after the sealing operation and/or by an adhesive applied prior to or during the flap folding operation.


The package can be received at the second flap folding bar 22 after the package is sealed and released from the sealing components. Alternatively, the second flap folding bar 22 can engage the package after the second seal is formed, but prior to or substantially simultaneously as the first seal is being formed.


In embodiments in which the apparatus 10 does not include a second flap folding bar 22, the second flap folding bar 22 can be a part of the packaging machine upstream of the apparatus 10, such that the apparatus 10 receives a seal package in which one seal is folded over and disposed in substantially the same plane as the panel from which is extends and optionally attached to the panel.


The apparatus 10 can include one or more additional components. Referring to FIGS. 18A and 18B, the apparatus 10 can be provided on a lift assembly 120 that can allow the height of the apparatus to be adjusted, thereby allowing the apparatus to be adaptable to a variety of packaging machine platforms. The lift assembly 120 can control the height of the components of the apparatus, including the forming box and any flap folding bars. The lift assembly 120 can be configured to control the height of the components as a single unit so the relative spacing the components is not affected by the height adjustment. Alternatively or additionally, lift assemblies can be provided to the individual components to allow for individual adjustment of the components of the apparatus, such as the forming box, the stationary plate, the flap folding bars, and any one or more of the components.


Referring to FIGS. 1A to 2B, for example, the apparatus 10 can include a volume adjuster 24 disposed upstream of the first flap folding bar 20 and the second flap folding bar 22, if present. Referring to FIGS. 7A-7F, the volume adjuster 24 can include a package transition box 28 and a plate 26 disposed within the package transition box 28. In various embodiments, the volume adjuster 24 can include opposed actuating plates that actuate towards one another to apply a pressure to the package. In yet another embodiment, the volume adjuster 24 can include stationary plates and actuating plates. The plates of any of the foregoing embodiments can have any suitable size and shape. For example, the plates can be sized and shaped to substantially correspond to the size and shape of the panel of the package, which is contacted by the plate 26 such that a substantially even force is applied across the package panel. In other embodiments, the plate 26 can be sized to be smaller than the package to apply a force in a selected and targeted location of the package.


An actuator can be operatively coupled to the one or more plates to actuate the plate 26 from a first position in which the plate 26 is disposed adjacent to an internal wall of the package transition box 28 to a second position in which the plate 26 is moved transverse to the transport path towards and opposed internal wall of the package transition box 28. In operation, the package is received in the package transition box 28 and the plate 26 is actuated to contact a panel of the package to apply a pressure to the package and release a portion of the air contained within the package. The plate 26 can be actuated substantially simultaneously with the sealing operation to seal the package or the plate 26 can be actuated before the sealing operation is performed to seal the package. In embodiments in which the plate 26 is actuated before the sealing operation is performed, the plate 26 can remain engaged with the package until sealing is complete. For example, the plate can be actuated about 100 ms before the sealing operation is performed. In other embodiments, the plate can be actuated substantially simultaneously with the start of the sealing operation, with the plate being actuated into position prior to complete sealing of the package.


The packaging machine can include a gas nozzle (not shown) disposed for example on or at the end of the forming tube 2 and configured to apply a gas for inflating the flexible material that is being configured into the package. The gas can also provide the package with a modified gas atmosphere depending on the product to be contained therein. Such gas inflation devices are well known in the art. Inflation of the package can be coordinated with the volume adjuster 24, such that the package can be inflated and then deflated to the desired volume by actuation of the plate 26 of the volume adjuster 24 just prior to or substantially simultaneously with sealing the package. Inflation and volume reduction by the volume adjusters can also aid in tucking the flexible material inwardly to form the leading and trailing seals.


In various embodiments, the volume adjuster 24 is separate from the apparatus 10. For example, the volume adjuster 24 can be attached to a frame member 34 that can be incorporated or attached to a conventional packaging machine. In such embodiments, the volume adjuster 24 can be disposed downstream of a seal bar station, which is conventionally disposed downstream of a forming tube 2. In other embodiments, the volume adjuster 24 is a component of the apparatus 10 and can be attached to the frame 32 of the apparatus 10.


Referring again to FIGS. 1A, 1B, 2A, and 2B, the apparatus 10 can further include a guide box 30 disposed upstream the first flap folding bar 20. In embodiments including the second flap folding bar 22, the guide box 30 can be disposed between the first and second flap folding bars 20, 22. The second flap folding bar 22 can either be part of the packaging machine or part of the apparatus 10 in embodiments including a guide box 30. The guide box 30 is sized such that the package can easily pass through the guide box 30 with little to no resistance. The guide box 30 can aid in transitioning the package between the second flap folding bar 22 and the first flap folding bar 20 to keep the package in the proper orientation during the transition.


Referring to FIGS. 11 and 12A to 12E, in accordance with an embodiment of the disclosure, a pre-creasing device 76 can be used when forming the flexible material into the package. The pre-creasing device 76 can include a first plate 78 and a second plate 80 in facing relationship with the first plate 78. One of the plates can be disposed against the forming tube 2, such that the flexible material passes over the plate. The plate disposed against the forming tube 2 can include a stripper plate to aid in removing the flexible material from the plate after the creasing so the flexible material can move down the transport path. For ease of reference, the pre-creasing device 76 will be described herein with reference to the first plate 78 being disposed adjacent the forming tube 2. The first and second plates 78, 80 can include one or more projections and/or one or more apertures.


Referring to FIGS. 15A to 16D, for example, the first plate 78 can include one or more first plate projections 82 and the second plate 80 can include one or more second plate apertures 88 for receiving the first plate projections 82. In operation, the flexible material passes over at least the first plate 78 (or plate disposed against the forming tube), the plates 78, 80 are actuated towards each other to force the flexible material into contact with the projections and forcing the projections into engagement with the corresponding apertures, thereby creasing the flexible material at the location of the projections. Actuation of the plates towards each other can be achieved by actuation of one or both plates. Either one or both of the plates can be operatively coupled to one or more actuators to actuate the plates into engagement to crease the flexible materials. The projections can provide a crease in the flexible material at a region of a fold line of the flexible material that defines an edge of the package when the flexible material is configured into the package. In this embodiment, the first plate 78 is configured to be disposed adjacent the forming tube 2. Alternatively, the second plate 80 can include one or more second plate projections 86 and the first plate 78 can include one or more first plate apertures 84 for receiving the second plate 80 projections.


Referring to FIGS. 13A to 14E, in yet another embodiment, the first plate 78 can include both first plate projections 82 and first plate apertures 84 and the second plate 80 can include both second plate projections 86 and second plate apertures 88, with the first and second plate projections 82, 86 and the first and second plate apertures 84, 88 arranged such that the first plate projections 82 are received in the second plate apertures 88 and the second plate projections 86 are received in the first plate apertures 84 when the plates are actuated into engagement with one another. The embodiment of FIGS. 13A to 14E illustrate first and second plates that include first plate projections 82 and corresponding second plate apertures 88 for forming a crease at a fold line of the flexible material that defines an edge of the package when the flexible material is configured into the package, and second plate projections 86 and first plate apertures 84 for forming a crease in a pull tab to bias the pull tab away from the flexible material. In this embodiment, the first plate 78 is configured to be disposed adjacent the forming tube 2.


The first plate 78 and/or the second plate 80 are operatively coupled to an actuator. Any known actuators including, but not limited to, linear servos and air cylinders, can be used. The one or more actuator can actuate one or both of the plates into engagement with each other such that the flexible material is folded over the projections, defining a crease in the flexible material. The first and second plates 78, 80 and the projections/apertures contained thereon can be arranged such that a crease is defined in the flexible material at an edge of the package to be formed. Additionally, projections can be included on the plate disposed away from the forming tube 2, for example, in a region corresponding to a pull tab of a flap to form a crease in the pull tab to bias the pull tab away from the panel of flexible material. This can advantageously ease grasping of the pull tab when opening the package.


The pre-creasing device 76 can include a frame that is attachable to the frame of a packaging machine to place the pre-creasing device 76 in position along the forming tube 2.


In accordance with an embodiment, a system for making a flexible package from a flexible material can include a conventional packaging machine and an apparatus 10 in accordance with embodiments of the disclosure in which the second flap folding bar 22 is a part of the conventional packaging machine. In accordance with another embodiment, a system for making a flexible package from a flexible material can include a conventional packaging machine and the apparatus in accordance with embodiments of the disclosure in which the second flap folding bar 22 is part of the apparatus. The system of any of the embodiments herein can optionally include a volume adjuster 24, a guide box 30, a pre-creasing device 76, and other components, including but not limited to additional guides, pull belts, heaters, coolers, and conveyors.


Referring to FIGS. 25A to 25F, the packaging machine can further include tuckers for inwardly tucking a portion of the flexible material during sealing of the leading and trailing seals of the package. As is known in the art, the tuckers can be coupled to a frame and one or more actuators that actuate the tuckers transverse to the transport path of the flexible material to engage the flexible material while the leading and/or trailing seals are being formed. Optionally, the one or more actuators can actuate the tuckers to rotate once engaged with the flexible material to enhance the shape of the package by more tightly creasing the flexible material at the edges. For example, the articulating tuckers 200 can include a tuck portion 202 attached to a base 204 by a hinge or spring 206, that allows the tuck portion 202 to move upward and downward relative to the base 204. The base can be attached to a frame or other structure that actuates the tucker into and out of engagement with the flexible material as known in the art. In various embodiments, the articulating tuckers may be rotated by movement of the package during sealing of the leading and trailing seals and/or lifting of the package during sealing. The articulating tuckers may also be spring-loaded to articulate in a direction parallel to the transport path when engaged with the package. The articulating tuckers can be located above and/or below the seal jaw. In an embodiment, articulating tuckers disposed above the seal jaw can be articulated upward towards the package being formed above the seal jaw. Articulating tuckers disposed below the seal jaw can be articulated downward towards the package being formed below the seal jaw. In another embodiment, the articulating tuckers can be actuated towards the seal jaw. In an embodiment, articulating tuckers can be located above and below the seal jaw, with the tuckers located above the seal jaw articulating upward towards the upstream package, and the tuckers located below the seal jaw articulating downward towards the downstream package. In yet another embodiment, articulating tuckers can be located above and below the seal jaw, with the tuckers located above the seal jaw articulating upward towards the upstream package, and the tuckers located below the seal jaw articulating upward towards the downstream package. FIGS. 25A-C illustrate a tucker in a non-articulated position and FIGS. 25D-F illustrate a tucker in an articulated position.


Referring to FIGS. 26A to 26E, the packaging machine can include one or more seal jaws for forming the leading and trailing seals of the package. Conventionally, seal jaws are provided on packaging machines to impart a seal to close the package, such as at the leading and trailing edges of the flexible material. The thickness of the flexible material can affect the ability to form a seal, in particular, a hermetic seal. With conventional seal jaws, it may be necessary to use relatively thin flexible materials in order to achieve a sufficient seal, for example, by heat sealing. Additionally, it has been problematic with conventional seal jaws to achieve suitable seals, without leakage, where there are different numbers or layers of materials present in the sealing area. Different thickness of material may be present in the seal zone due to folding of the flexible material when configuring it into the package. For example, in the seal area, the flexible material can be presented with 2 plies and 4 plies side by side as a result of folds in the package. Conventional seal jaws heat sealing through such a sealing zone can provide ineffective seal in which a portion of the seal zone at the transition between the 2 plies and 4 plies region remains unsealed. Such a defect is conventionally known as a channel leaks. This results from a gap between the seal bars that can occur in the thinner region because of the presence of the thicker region of the material in the seal zone. Conventionally, the sealing pressure was increased in an attempt to avoid channel leaks by decreasing the width of the seal. This, however, limits the types of packaging and even the products that can be stored therein as certain products and/or package configurations may be required for a given seal width.


It has been surprisingly and beneficially discovered that providing seal jaws with one or more compressive bands disposed on the sealing surface of at least one of the engagements bars can provide an effective seal without channel leaks, regardless of the width of the seal to be formed. Referring to FIGS. 26A to 26E, the seal jaw 300 can include first and second engagement bars 302, 304 each coupled to an actuator (not shown) that actuates the engagements bars 302, 304 towards and away from one another. During operation, the flexible material, for example, the leading or trailing edges of a flexible material, is received between the engagement bars 302, 304, and the engagement bars are actuated together to engage the flexible material and apply pressure and optionally heat to impart a seal in the flexible material.


One or both of the engagement bars 302, 304 can include one or more compressive bands 306 disposed on the sealing surfaces of the engagement bars 302, 304. When one of the engagement bars includes a compressive band, the compressive band is aligned with the sealing surface of the other engagement bar, such that the compressive band of one engagement bar is aligned with the sealing surface of the opposed engagement bar during the sealing operation. The sealing surface of the engagement bar can be a flat sealing surface, a ribbed sealing surface, or other textured surface. For example, the sealing surface can be machined to include channels and projections. The channels and projections can provide a wavy surface, a zigzag surface, sinusoidal surface, or any other shaped/textured surface. During operation, the engagement bars are closed together such that the flexible material disposed between the engagement bars is engaged and compressed between the compressive band and the sealing surface of the other engagement bar. In embodiments in which the sealing surface of the other engagement bar includes channels and projections, the compressive band can be aligned, for example, with a single projection of the sealing surface. In other embodiments, the compressive band can have width such that it is aligned to be contacted, through the flexible material, by two or more projections of the sealing surface of the other engagement bar. In various embodiments, both the engagement bars can include compressive bands 306 disposed on the sealing surfaces thereof. In such embodiments, the compressive bands can be arranged such that upon closing of the engagement bars, the compressive bands of one engagement bar are not aligned with the compressive band of the opposed engagement bar. As described above, the sealing surfaces of the engagement bars can each include projections and channels. The compressive bands of one engagement bar can be aligned with one or more projections of the opposed engagement bar in various embodiments. In a thicker region of the seal zone, for example, the one or more compressive bands are locally compressed to provide an increased compressive force in this region. In the thinner region, the one or more compressive bands remain less compressed or uncompressed, which allows the seal jaw to maintain contact between the seal bars despite the presence of the thicker region. That's, local compressive of the compressive bands in the thicker region of the seal zone, while having the band in an uncompressed or less compressed stat in the thinner region, prevents a gap between the engagement bars at the transition between the thick and thin regions of the seal zone, which in turn can prevent channel leaks. Additionally, because sealing pressure can be locally increased by the compressive nature of the compressive bands, the overall seal pressure can be reduced, which can reduce wear on the seal jaws.


As illustrated in FIGS. 26A to 26E, the engagement bars can include machined channels for receiving the compressive band. The machined channels can retain the compressive band by friction forces. Placement of the compressive bands in a machined channel can facilitate replacement of the bands once they become worn. For example, a machined channel formed in accordance with the Parker standard for dovetail grooves can be used when the compressive band is an o-ring. Other cross-sectional shapes for the machined channel can be used depending on the type and shape of the compressive band used. Other ways of attaching a compressive band to the engagement bar are also contemplated herein, including, for example, the use of adhesive to adhere the compressive band to the engagement bar. Adhesive can be used with or without a machined channel. The use of one or more compressive bands can extend the overall life of the seal jaws by reducing the wear on the sealing surfaces by allowing for reduced sealing pressures to be used, and/or by localizing increased sealing pressures on the compressive bands, themselves. While the compressive bands may be subject to wear, they can be easily and cost effectively replaced, leaving the seal jaw structure with a longer life span.


The compressive band can be formed of any compressive material, for example, an elastomer such as silicon rubber. For example, the compressive band can be an o-ring. A commercially available elastomer that can be used can be Viton® Fluoroelastomer (DUPONT). Other elastomeric materials can also be used as the compressive bands. In various embodiments, the seal jaw seals the flexible material by a heat seal. The elastomeric material can be selected so as to withstand the temperature necessary for imparting the heat seal. The compressive band can have any suitable width and length. For example, the compressive band can extend long the length of the entire engagement bar or a portion of the engagement bar. The engagement bar can include any suitable number of compressive bands. For example, the engagement bar can each include 1 to 10 compressive bands, 1 to 8 compressive band, 2 to 6 compressive bands, 3 to 5 compressive bands, and 4 to 8 compressive bands. Other suitable numbers of bands can include, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. When an engagement bar includes multiple compressive bands, the bands can be spaced across the sealing surface in any suitable manner. For example, in some embodiments, as illustrated in FIGS. 26A to 26E, the seal jaw can include a separator or knife 308 embedded in one of the engagement bars, with the other engagement bar including a receiving slot 310. As discussed above, one or both of the engagement bars can include compressive bands. The engagement bars can include the same or a different number of compressive bands above and below the separator and receiving slot. The spacing and/or number of compressive bands on the sealing surface of an engagement bar can be used to define a shape or characteristic to the seal. For example, the compressive bands and/or machined channels can be used to form ridge features in the seals.


While various embodiments have been described above, the disclosure is not intended to be limited thereto. Variations can be made to the disclosed embodiments that are still within the scope of the appended aspect

Claims
  • 1. An apparatus for forming a flexible package, comprising: a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends;one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position in which the forming box is closed for retaining the package, and a third position for releasing the package, wherein when the package is retained in the forming box with the forming box in the second position, the package comprises a first panel disposed at or adjacent to the first end of the forming box, the first panel comprising a flap extending substantially perpendicular from the first panel such that the flap is extended in a direction substantially parallel to a transport path;a first flap folding bar disposed upstream and adjacent the first end of the forming box; andone or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to the transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar engages the flap forcing it over towards the first panel of the package such that the flap extend substantially parallel to the first panel, and the portion of the first flap folding bar is disposed over the first end of the forming box, wherein the first flap folding bar is operable to actuate from the first position to the second position when the package is retained in the forming box, with the forming box in the second position.
  • 2. The apparatus of claim 1, wherein: the first portion of the forming box comprises a first substantially planar surface extending between first and second mating ends,the second portion of the forming box comprises second and third substantially planar surfaces joined together at a first corner, and a third mating end joined to the third substantially planar surface at a second corner, the third mating end having a complementary shape to a shape of the first mating end; andthe third portion of the forming box comprises fourth and fifth substantially planar surfaces joined together at a third corner, and a fourth mating end joined to the fifth substantially planar surface at a fourth corner, the fourth mating end having a complementary shape to a shape of the second mating end.
  • 3. The apparatus of claim 2, wherein the second and third portions comprise fifth and sixth mating ends, respectively, the fifth and six mating ends having complementary shapes.
  • 4. The apparatus of claim 1, further comprising a plate disposed beneath the forming box such that the package rests on the plate when disposed in the forming box.
  • 5. The apparatus of claim 4, further comprising a forming member, wherein the forming member is a protrusion upwardly extending from a top surface of the plate.
  • 6. The apparatus of claim 5, wherein the forming member includes a perimeter portion and a central portion, and wherein the perimeter portion at least partially surrounds the central portion.
  • 7. The apparatus of claim 6, wherein the perimeter portion includes one or more segments that gradually decrease in height from the central portion to the top surface of the plate.
  • 8. The apparatus of claim 4, wherein the plate includes one or more vent holes that allow for heated and/or cooled gas to flow through the vent holes.
  • 9. The apparatus of claim 1 further comprising a second flap folding bar disposed upstream of the first flap folding bar and one or more second flap folding bar actuators operatively coupled to the second flap folding bar to actuate the second flap folding bar in a direction transverse to the transport path between a first position in which the second flap folding bar does not engage the package disposed in the transport path, and a second position in which the second flap folding bar engages a flap portion of the package disposed in the transport path.
  • 10. The apparatus of claim 9, wherein the second flap folding bar comprises one or more vents arranged to direct cooling and/or heating gas towards the package when the second flap folding bar is in the second position in which the second flap folding bar engages the flap portion of the package disposed in the transport path.
  • 11. The apparatus of claim 1, wherein the first flap folding bar actuators further actuate the first flap folding bar in a direction parallel to the transport path, such that the first flap folding bar is actuated to the second position in which at least a portion of the flap folding bar is disposed over the first end of the forming box and shifted downstream toward the first end of the forming box.
  • 12. The apparatus of claim 1, comprising a first forming box actuator operatively coupled to the second portion and a second forming box actuator operatively coupled to the third portion, wherein the forming box is actuated between the first, second, and third positions by actuation of the second and third portions.
  • 13. The apparatus of claim 1, further comprising at least one heater operatively coupled to the forming box to heat one or more regions of the forming box.
  • 14. The apparatus of claim 1, wherein one or more of the first, second, and third portions comprises one or more fluid inlets fluidly coupled to one or more fluid channels fluidly coupled to one or more fluid outlets, the one or more fluid outlets are disposed at the first and/or second ends of the forming box along a surface of the one or more of the first, second, and third portions.
  • 15. The apparatus of claim 1, wherein the first flap folding bar comprises one or more vents arranged to direct a cooling and/or heating gas towards the package when the package is disposed in the forming box.
  • 16. An apparatus for forming a flexible package, comprising: a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends;one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining the package, and a third position for releasing the package;a first flap folding bar disposed upstream and adjacent the first end of the forming box, one or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to a transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar is disposed over the first end of the forming box; anda volume adjuster disposed upstream of the first flap folding bar, wherein the volume adjuster comprises a transition box, a plate disposed within an interior of the transition box, and an actuator operatively coupled to the plate to actuate the plate in a direction transverse to the transport path.
  • 17. An apparatus for forming a flexible package, comprising: a forming box having a first end and an oppositely disposed second end, wherein the forming box comprises first, second, and third portions that cooperate to define first, second, third, and fourth walls of the forming box, each extending between the first and second ends;one or more forming box actuators operatively coupled to the forming box to actuate the forming box between a first position for receiving a package, a second position for retaining the package, and a third position for releasing the package, wherein when the package is retained in the forming box with the forming box in the second position, the package comprises a first panel disposed at or adjacent to the first end of the forming box, the first panel comprising a flap extending substantially perpendicular from the first panel such that the flap is extended in a direction substantially parallel to a transport path;a first flap folding bar disposed upstream and adjacent the first end of the forming box;one or more first flap folding bar actuators operatively coupled to the first flap folding bar to actuate the first flap folding bar in a direction substantially transverse to the transport path of a flexible material between a first position in which the first flap folding bar is disposed away from the forming box and a second position in which at least a portion of the first flap folding bar engages the flap forcing it over towards the first panel of the package such that the flap extend substantially parallel to the first panel, and the portion of the first flap folding bar is disposed over the first end of the forming box; anda forming tube disposed upstream of the first flap folding bar and a pre-creasing device disposed along a portion of the forming tube, wherein the pre-creasing device comprises a first plate and a second plate disposed in facing relationship to the first plate, wherein one of the first plate or the second plate is disposed adjacent the forming tube and a pre-creaser actuator operatively coupled to one or both of the first plate and the second plate to actuate the first plate and/or the second plate towards and engagement with the other one of the first or second plate, wherein the first plate comprises one or more projections and the second plate comprises one or more apertures for receiving the one or more projections when the first and second plates is actuated into engagement with each other.
  • 18. The apparatus of claim 17, wherein the first plate further comprises one or more apertures and the second plate further comprises one or more projections.
  • 19. A method of making a flexible package, comprising: actuating first, second, and third portions of a forming box to a first position for receiving a sealed package having a first seal extending substantially perpendicularly from a first panel of the sealed package;receiving the sealed package in the forming box;actuating the first, second, and third portions of the forming box to a second position in which the first, second, and third portions engage the sealed package and the forming box is closed to retain the sealed package;actuating a first flap folding bar when the forming box is in the second position to fold the first seal towards the sealed package such that the seal is disposed in substantially the same plane as the first panel;actuating the first, second, and third portions of the forming box to a third position to release the package.
  • 20. The method of claim 19, wherein the sealed package further comprises a second seal extending from a second panel of the sealed package substantially perpendicularly from the sealed package, and the method further comprises, before receiving the sealed package in the forming box, actuating a second flap folding bar to engage the second seal and fold the second seal toward the sealed package such that the seal is disposed in substantially the same plane as the second panel.
  • 21. The method of claim 20, wherein actuating the second flap folding bar comprises moving the second flap folding bar in a direction parallel to the second panel.
  • 22. The method of claim 21, wherein actuating the second flap folding bar further comprises moving the second flap folding bar towards the second panel after moving the second flap folding bar in a direction parallel to the second panel.
  • 23. The method of claim 20, wherein actuating the second flap folding bar comprises moving the second flap folding bar in an oblique motion relative to a plane containing the second panel such that the second flap folding bar is moved towards the second panel and in a direction parallel to the second panel.
  • 24. The method of claim 19, wherein actuating the first flap folding bar comprises moving the first flap folding bar in a direction parallel to the first panel.
  • 25. The method of claim 19, wherein actuating the first flap folding bar further comprises moving the first flap folding bar downstream toward the first panel after moving the first flap folding bar in a direction parallel to the first panel.
  • 26. The method of claim 19, wherein actuating the first flap folding bar comprises moving the first flap folding bar in an oblique motion relative to a plane containing the first panel such that the first flap folding bar is moved towards the first panel and in a direction parallel to the first panel.
  • 27. The method of claim 19, wherein: the first portion comprises a first substantially planar surface extending between first and second mating ends,the second portion comprises second and third substantially planar surfaces joined together at a first corner, and a third mating end joined to the third substantially planar surface at a second corner, the third mating end having a complementary shape to a shape of the first mating end,the third portion comprises fourth and fifth substantially planar surfaces joined together at a third corner, and a fourth mating end joined to the fifth substantially planar surface at a fourth corner, the fourth mating end having a complementary shape to a shape of the second mating end, andthe third and fourth mating ends contact the package when the first, second, and third portions of the forming box are actuated to the third position to force the package out of the forming box.
  • 28. The method of claim 19, wherein: the first portion comprises a first surface extending defining the first wall of the forming box,the second portion comprises second and third surfaces joined together at a first corner, the third surface defining the second wall of the forming box, and the second surface defining a portion of the fourth wall of the forming box,the third portion comprises fourth and fifth surfaces joined together at a third corner, the fifth surface defining the third wall of the forming box, and the fourth surface defining a remaining portion of the fourth wall of the forming box, andone or both of the third surface and/or the fifth surface includes at least one ejector extending perpendicularly to the third surface and/or the fifth surface, the at least one ejector contacting the package when the first, second, and third portions of the forming box are actuated to the third position to force the package out of the forming box.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a national stage application of International Patent Application No. PCT/US2015/031556, filed May 19, 2015, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Patent Application Nos. 62/000,510 filed May 19, 2014, 62/053,001 filed Sep. 19, 2014, and 62/073,760 filed Oct. 31, 2014. The respective disclosures of which are each incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2015/031556 5/19/2015 WO 00
Publishing Document Publishing Date Country Kind
WO2015/179384 11/26/2015 WO A
US Referenced Citations (508)
Number Name Date Kind
724316 Staples Mar 1903 A
1102750 Hawkins Jul 1914 A
1389197 Kusterer Aug 1921 A
1395229 Inman et al. Oct 1921 A
1747618 Burns Feb 1930 A
1930285 Robinson Oct 1933 A
2017176 Andrews Oct 1935 A
2041227 Chalmers May 1936 A
2048122 Howard Jul 1936 A
2092858 Richard Sep 1937 A
2106907 Brunt et al. Feb 1938 A
2113431 Milliken Apr 1938 A
2153310 Newman Apr 1939 A
2180841 Vogt Nov 1939 A
2239398 Palmer Apr 1941 A
2251283 Johnson Aug 1941 A
2259866 Stokes Oct 1941 A
2260064 Stokes Oct 1941 A
2291063 Staude et al. Jul 1942 A
2311857 Noah Feb 1943 A
2328579 Pelosi Sep 1943 A
2330015 Stokes Sep 1943 A
2339156 Duane Jan 1944 A
2352766 Bogue Jul 1944 A
2365159 Walton Dec 1944 A
2385898 Waters Oct 1945 A
2416332 Lehman Feb 1947 A
2495807 Buttery Jan 1950 A
2508962 Moore May 1950 A
2524766 Carroll Oct 1950 A
2619226 Adams Nov 1952 A
2684807 Gerrish Jul 1954 A
2695847 Fisher Nov 1954 A
2719663 Meyer-Jagenberg Oct 1955 A
2737338 Moore Mar 1956 A
2749245 Peters Jun 1956 A
2750093 Moore Jun 1956 A
2758775 Moore Aug 1956 A
2787410 Moore Apr 1957 A
2819831 Polarek et al. Jan 1958 A
2823795 Moore Feb 1958 A
2864710 Pottle et al. Dec 1958 A
2936940 Berghgracht May 1960 A
2970735 Jacke Feb 1961 A
3006257 Orsini Oct 1961 A
3054550 Comstock Sep 1962 A
3091902 Grafingholt Jun 1963 A
3111223 Jacobi Nov 1963 A
3116153 Seiferth et al. Dec 1963 A
3125275 Ehe Mar 1964 A
3127082 Meyer-Jagenberg Mar 1964 A
3143276 Nichols Aug 1964 A
3155304 Beerend Nov 1964 A
3172769 Horan Mar 1965 A
3185379 Kohlhaas May 1965 A
3206094 Humphrey Sep 1965 A
3228584 Ashton Jan 1966 A
3228587 Segebrecht Jan 1966 A
3235168 Nichols Feb 1966 A
3249286 Palmer May 1966 A
3259303 Repko Jul 1966 A
3259507 Smith Jul 1966 A
3272423 Bjarno Sep 1966 A
3275214 Carangelo Sep 1966 A
3299611 Hendrick et al. Jan 1967 A
3314591 Cheeley Apr 1967 A
3318204 Crane May 1967 A
3325077 Boegershausen Jun 1967 A
3326097 Lokey Jun 1967 A
3332198 Thesing Jul 1967 A
3339721 Goldstein Sep 1967 A
3349959 Watkins Oct 1967 A
3373917 Cox Mar 1968 A
3380646 Doyen et al. Apr 1968 A
3423007 Christensson Jan 1969 A
3426499 Paige Feb 1969 A
3434652 Shore Mar 1969 A
3437258 Kugler Apr 1969 A
3462067 Shore Aug 1969 A
3505779 Kopp Apr 1970 A
3515270 Yang et al. Jun 1970 A
3521807 Weisberg Jul 1970 A
3562392 Mylius Feb 1971 A
3599387 James Aug 1971 A
3604491 Spiess Sep 1971 A
3621637 Sternau Nov 1971 A
3738567 Ruda Jun 1973 A
3739977 Shapiro et al. Jun 1973 A
3785112 Leasure et al. Jan 1974 A
3838787 McCloskey Oct 1974 A
3917158 Dorofachuk et al. Nov 1975 A
3935993 Doyen et al. Feb 1976 A
3940054 Goebel et al. Feb 1976 A
3968921 Jewell Jul 1976 A
3980225 Kan Sep 1976 A
4004398 Larsson Jan 1977 A
4041851 Jentsch Aug 1977 A
4069348 Bush Jan 1978 A
4082214 Baker Apr 1978 A
4082216 Clarke Apr 1978 A
4101051 Reil Jul 1978 A
4129976 Grundler et al. Dec 1978 A
4185754 Julius Jan 1980 A
4192420 Worrell, Sr. et al. Mar 1980 A
4197949 Carlsson Apr 1980 A
4252052 Meyers Feb 1981 A
4260061 Jacobs Apr 1981 A
4265074 Reuter May 1981 A
4291826 Swanson Sep 1981 A
4308679 Ray et al. Jan 1982 A
4338766 Hamilton Jul 1982 A
D265777 Elzea et al. Aug 1982 S
4345133 Cherney et al. Aug 1982 A
4345393 Price et al. Aug 1982 A
D266049 Conti Sep 1982 S
4353497 Bustin Oct 1982 A
4361266 Killy Nov 1982 A
4367842 Rausing Jan 1983 A
4420080 Nakamura Dec 1983 A
4441648 Portsmouth Apr 1984 A
4442656 Wylie, Sr. Apr 1984 A
4512138 Greenawalt Apr 1985 A
4531668 Forbes, Jr. Jul 1985 A
4552269 Chang Nov 1985 A
4554190 McHenry et al. Nov 1985 A
4576309 Tzifkansky et al. Mar 1986 A
4589145 Van Erden et al. May 1986 A
D286745 Forbes, Jr. Nov 1986 S
4621000 Frick Nov 1986 A
4651874 Nakamura Mar 1987 A
4663915 Van Erden et al. May 1987 A
4674129 Janhonen Jun 1987 A
4679693 Forman Jul 1987 A
4679701 Ackermann et al. Jul 1987 A
4687104 Lelmini Aug 1987 A
4696404 Corella Sep 1987 A
4738365 Prater Apr 1988 A
D297214 Forbes, Jr. Aug 1988 S
4786192 Graves et al. Nov 1988 A
4790436 Nakamura Dec 1988 A
4798295 Rausing Jan 1989 A
4804137 Harby Feb 1989 A
4808421 Mendenhall et al. Feb 1989 A
4811848 Jud Mar 1989 A
4837849 Erickson et al. Jun 1989 A
4840270 Caputo et al. Jun 1989 A
4848575 Nakamura et al. Jul 1989 A
4851246 Maxwell et al. Jul 1989 A
4861328 Franke Aug 1989 A
D304016 Forbes, Jr. Oct 1989 S
4881360 Konzal et al. Nov 1989 A
4886373 Corella Dec 1989 A
4909017 McMahon et al. Mar 1990 A
4954124 Erickson et al. Sep 1990 A
4986054 McMahon Jan 1991 A
D315099 Alizard Mar 1991 S
4997416 Mitchell et al. Mar 1991 A
5031826 Seufert Jul 1991 A
5036997 May et al. Aug 1991 A
5044777 Watkins et al. Sep 1991 A
5046300 Custer et al. Sep 1991 A
5059036 Richison et al. Oct 1991 A
5062527 Westerman Nov 1991 A
5065887 Schuh et al. Nov 1991 A
5078509 Center et al. Jan 1992 A
5080643 Mitchell et al. Jan 1992 A
5092831 James et al. Mar 1992 A
5127208 Custer et al. Jul 1992 A
5158371 Moravek Oct 1992 A
5158499 Guckenberger Oct 1992 A
D332399 Neff Jan 1993 S
5195829 Watkins et al. Mar 1993 A
5205651 Decottignies et al. Apr 1993 A
5215380 Custer et al. Jun 1993 A
5251809 Drummond et al. Oct 1993 A
5254073 Richison et al. Oct 1993 A
5255497 Zoromski et al. Oct 1993 A
5350240 Billman et al. Sep 1994 A
D351090 Narsutis Oct 1994 S
5352466 Delonis Oct 1994 A
5353946 Behrend Oct 1994 A
5356069 Bochet et al. Oct 1994 A
5366104 Armstrong Nov 1994 A
D354436 Krupa Jan 1995 S
5417035 English May 1995 A
D364563 Miller et al. Nov 1995 S
5463851 Nagai Nov 1995 A
5484101 Hedberg Jan 1996 A
5498080 Dalea et al. Mar 1996 A
5505040 Janssen et al. Apr 1996 A
5505305 Scholz et al. Apr 1996 A
5542902 Richison et al. Aug 1996 A
5545420 Lipinski et al. Aug 1996 A
5556026 Blankitny Sep 1996 A
D374774 Cassel Oct 1996 S
5561966 English Oct 1996 A
5577612 Chesson et al. Nov 1996 A
5611452 Bonora et al. Mar 1997 A
5613608 Tronchetti et al. Mar 1997 A
5655706 Vandiver Aug 1997 A
D386001 Saffran Nov 1997 S
5687848 Scholz et al. Nov 1997 A
5704480 Scholz et al. Jan 1998 A
5704541 Mogard Jan 1998 A
D394606 Zorn et al. May 1998 S
5749512 Gingras-Taylor May 1998 A
5770839 Ruebush et al. Jun 1998 A
5772332 Geller Jun 1998 A
D395952 Buczwinski et al. Jul 1998 S
5785179 Buczwinski et al. Jul 1998 A
5788121 Sasaki et al. Aug 1998 A
5788378 Thomas Aug 1998 A
5789049 Randles Aug 1998 A
5791465 Niki et al. Aug 1998 A
D398526 Schwarz et al. Sep 1998 S
D398844 Oberloier Sep 1998 S
5799863 Capy et al. Sep 1998 A
5818016 Lorence et al. Oct 1998 A
5820017 Eliovson et al. Oct 1998 A
5826401 Bois Oct 1998 A
5832701 Hauers et al. Nov 1998 A
5842790 Imer Dec 1998 A
5852919 Matsuda Dec 1998 A
5857613 Drummond et al. Jan 1999 A
5858543 Futter et al. Jan 1999 A
5862652 Schoeler Jan 1999 A
5882749 Jones et al. Mar 1999 A
5882789 Jones et al. Mar 1999 A
5897050 Barnes Apr 1999 A
D409484 Tasker May 1999 S
5908246 Arimura et al. Jun 1999 A
D412439 Cormack Aug 1999 S
5937615 Forman Aug 1999 A
5944425 Forman Aug 1999 A
5970687 Katayama Oct 1999 A
5972396 Jurgovan et al. Oct 1999 A
5983594 Forman Nov 1999 A
5993593 Swartz et al. Nov 1999 A
6005234 Moseley et al. Dec 1999 A
6021624 Richison et al. Feb 2000 A
6023914 Richison et al. Feb 2000 A
6026953 Nakamura et al. Feb 2000 A
D421901 Hill Mar 2000 S
D421902 Hill Mar 2000 S
6036365 Imer Mar 2000 A
6038839 Linkiewicz Mar 2000 A
6056141 Navarini et al. May 2000 A
6060096 Hanson et al. May 2000 A
D427056 Irace et al. Jun 2000 S
6088998 Malin et al. Jul 2000 A
6113271 Scott et al. Sep 2000 A
6120183 Buchanan et al. Sep 2000 A
D431464 Collins et al. Oct 2000 S
6132351 Lotto et al. Oct 2000 A
6137098 Moseley et al. Oct 2000 A
6139662 Forman Oct 2000 A
6149304 Hamilton et al. Nov 2000 A
D437686 Balzar et al. Feb 2001 S
6182887 Ljunstrom et al. Feb 2001 B1
6195965 Tobolka Mar 2001 B1
6229061 Dragoo et al. May 2001 B1
6231237 Geller May 2001 B1
6234676 Galomb et al. May 2001 B1
6245367 Galomb Jun 2001 B1
6250048 Linkiewicz Jun 2001 B1
6253993 Lloyd et al. Jul 2001 B1
6254907 Galomb Jul 2001 B1
6261215 Imer Jul 2001 B1
D446014 Adkins Aug 2001 S
6273610 Koyama et al. Aug 2001 B1
6274181 Richison et al. Aug 2001 B1
6309105 Palumbo Oct 2001 B1
D450960 Boyea et al. Nov 2001 S
6319184 DeMatteis et al. Nov 2001 B1
D452374 Kim Dec 2001 S
6325239 Randall et al. Dec 2001 B2
6350057 Forman Feb 2002 B1
6354062 Haughton et al. Mar 2002 B1
6361212 Sprehe et al. Mar 2002 B1
6412634 Telesca et al. Jul 2002 B1
6420006 Scott Jul 2002 B1
6423356 Richison et al. Jul 2002 B2
D461403 Chomik et al. Aug 2002 S
6428867 Scott et al. Aug 2002 B1
6430899 Cicha Aug 2002 B1
6431434 Haughton et al. Aug 2002 B1
D463276 Piscopo et al. Sep 2002 S
6446796 Schmidt Sep 2002 B1
D464884 Sumpmann et al. Oct 2002 S
D464894 Mittersinker et al. Oct 2002 S
6481183 Schmidt Nov 2002 B1
D466807 Buck et al. Dec 2002 S
6488556 Galomb Dec 2002 B2
6502986 Bensur et al. Jan 2003 B1
6510673 Visona′ et al. Jan 2003 B1
6513308 Meeuwesen Feb 2003 B1
D471804 Staples Mar 2003 S
6533456 Buchman Mar 2003 B1
D473461 Joubert Apr 2003 S
6568150 Forman May 2003 B2
6589622 Scott Jul 2003 B1
6615567 Kuhn et al. Sep 2003 B2
6659645 Schulz Dec 2003 B1
D485461 Sams et al. Jan 2004 S
6679034 Kohl et al. Jan 2004 B2
6695757 Edwards et al. Feb 2004 B2
D487192 Farnham et al. Mar 2004 S
6702109 Tabuchi Mar 2004 B1
6719140 Rinsler Apr 2004 B1
6719678 Stern Apr 2004 B1
D489530 Lindsay May 2004 S
6729112 Kuss et al. May 2004 B2
6736309 Westerman et al. May 2004 B1
6746388 Edwards et al. Jun 2004 B2
6755927 Forman Jun 2004 B2
6761279 Martin et al. Jul 2004 B1
6783277 Edwards et al. Aug 2004 B2
6817160 Schmidt Nov 2004 B2
6820391 Barmore et al. Nov 2004 B2
D501134 Takahashi et al. Jan 2005 S
6845602 Drut Jan 2005 B2
D502095 Tucker et al. Feb 2005 S
D503336 Tucker et al. Mar 2005 S
D504622 Takahashi et al. May 2005 S
6886313 Knoerzer et al. May 2005 B2
6913389 Kannankeril et al. Jul 2005 B2
6918532 Sierra-Gomez et al. Jul 2005 B2
6935086 Brenkus et al. Aug 2005 B2
6953069 Galomb Oct 2005 B2
D513870 Rosine et al. Jan 2006 S
6986920 Forman et al. Jan 2006 B2
D514439 Snedden et al. Feb 2006 S
7051877 Lin May 2006 B2
7059466 Lees et al. Jun 2006 B2
7077259 Breidenbach Jul 2006 B2
7080726 Breidenbach et al. Jul 2006 B2
D528010 Yashima et al. Sep 2006 S
7108441 Altonen et al. Sep 2006 B2
7128200 Lees et al. Oct 2006 B2
D531894 Ramirez et al. Nov 2006 S
7153026 Galomb Dec 2006 B2
7156556 Takahashi et al. Jan 2007 B2
D536608 Arkins Feb 2007 S
RE39505 Thomas et al. Mar 2007 E
7205016 Garwood Apr 2007 B2
7207717 Steele Apr 2007 B2
7213710 Cotert May 2007 B2
D544762 Zimmerman Jun 2007 S
D545186 Liebe et al. Jun 2007 S
D548080 Brown et al. Aug 2007 S
D551508 Friedland et al. Sep 2007 S
D552468 Seum et al. Oct 2007 S
7299608 Kohl et al. Nov 2007 B2
7350688 Sierra-Gomez et al. Apr 2008 B2
D569719 Ross May 2008 S
7371008 Bonenfant May 2008 B2
D571146 Sanfilippo et al. Jun 2008 S
D571197 Sanfilippo et al. Jun 2008 S
7475781 Kobayashi et al. Jan 2009 B2
D591555 Sanfilippo et al. May 2009 S
D593369 Green et al. Jun 2009 S
D608193 Sanfilippo et al. Jan 2010 S
7665629 Julius et al. Feb 2010 B2
7665895 Takita et al. Feb 2010 B2
7717620 Hebert et al. May 2010 B2
7744517 Bonenfant Jun 2010 B2
7780006 Clark, Jr. et al. Aug 2010 B2
D629296 De Muynck Dec 2010 S
D637577 Han et al. May 2011 S
7993256 Takita et al. Aug 2011 B2
8006833 Clark, Jr. et al. Aug 2011 B2
8038349 Andersson et al. Oct 2011 B2
D648302 Park et al. Nov 2011 S
8066137 Sanfilippo et al. Nov 2011 B2
8074803 Motsch et al. Dec 2011 B2
8114451 Sierra-Gomez et al. Feb 2012 B2
8132395 Gehring et al. Mar 2012 B2
8182891 Scott et al. May 2012 B2
8231024 Sanfilippo et al. Jul 2012 B2
8245865 Damaghi et al. Aug 2012 B2
8276353 Reaves et al. Oct 2012 B2
D671000 O'Neill et al. Nov 2012 S
8308363 Vogt et al. Nov 2012 B2
D676014 Chung Feb 2013 S
8407974 Fontanazzi Apr 2013 B2
D682244 Park et al. May 2013 S
D686181 Jeong Jul 2013 S
D689767 Clark et al. Sep 2013 S
8523441 Goglio et al. Sep 2013 B2
D696107 Kimple et al. Dec 2013 S
8602242 Sanfilippo et al. Dec 2013 B2
8602244 Sanfilippo et al. Dec 2013 B2
8656690 Bierschenk Feb 2014 B2
8746483 Sierra-Gomez et al. Jun 2014 B2
8951591 Vogt et al. Feb 2015 B2
10029814 Galata' Jul 2018 B2
20010005979 Kuss et al. Jul 2001 A1
20010010253 Forman Aug 2001 A1
20020009575 DeMatteis Jan 2002 A1
20020090879 Galomb Jul 2002 A1
20020094922 Edwards et al. Jul 2002 A1
20020112982 Stagray et al. Aug 2002 A1
20020118896 Forman Aug 2002 A1
20020144998 Lees et al. Oct 2002 A1
20020147088 Edwards Oct 2002 A1
20030001002 Haughton et al. Jan 2003 A1
20030041564 Schmidt Mar 2003 A1
20030054929 Post et al. Mar 2003 A1
20030059130 Yoneyama et al. Mar 2003 A1
20030063820 Buchman Apr 2003 A1
20030100424 Barmore et al. May 2003 A1
20030111523 Haugan Jun 2003 A1
20030113042 Yeager Jun 2003 A1
20030152679 Garwood Aug 2003 A1
20030165602 Garwood Sep 2003 A1
20030170357 Garwood Sep 2003 A1
20030170359 Garwood Sep 2003 A1
20030175392 Garwood Sep 2003 A1
20030185937 Garwood Oct 2003 A1
20030185948 Garwood Oct 2003 A1
20030230504 Hamming Dec 2003 A1
20040025476 Oliverio et al. Feb 2004 A1
20040031244 Steele Feb 2004 A1
20040040261 Troyer et al. Mar 2004 A1
20040058103 Anderson et al. Mar 2004 A1
20040081729 Garwood Apr 2004 A1
20040089578 Lin May 2004 A1
20040099570 Cargile May 2004 A1
20040105600 Floyd Jun 2004 A1
20040114838 McGregor Jun 2004 A1
20040120611 Kannankeril et al. Jun 2004 A1
20040141664 Olsen et al. Jul 2004 A1
20040146602 Garwood et al. Jul 2004 A1
20040185154 Garwood Sep 2004 A1
20040185155 Garwood Sep 2004 A1
20040185156 Garwood Sep 2004 A1
20040188457 Galomb Sep 2004 A1
20040226625 Galomb Nov 2004 A1
20040226849 Brenkus et al. Nov 2004 A1
20040232029 Cotert Nov 2004 A1
20040244338 Nievergeld Dec 2004 A1
20040251163 Conde et al. Dec 2004 A1
20040262322 Middleton et al. Dec 2004 A1
20050011906 Buck et al. Jan 2005 A1
20050031233 Varanese et al. Feb 2005 A1
20050053315 Aasen Mar 2005 A1
20050069227 Steele Mar 2005 A1
20050069230 Takahashi et al. Mar 2005 A1
20050084186 Caris Apr 2005 A1
20050139645 Shean et al. Jun 2005 A1
20050150785 Julius et al. Jul 2005 A1
20050189367 Chasid et al. Sep 2005 A1
20050208188 Garwood Sep 2005 A1
20050238766 Henderson et al. Oct 2005 A1
20050265636 Michalsky Dec 2005 A1
20050276525 Hebert et al. Dec 2005 A1
20050284776 Kobayashi et al. Dec 2005 A1
20060006049 Breidenbach et al. Jan 2006 A1
20060016865 Berglin et al. Jan 2006 A1
20060076352 Peterson et al. Apr 2006 A1
20060080944 Annehed et al. Apr 2006 A1
20060113212 Steele Jun 2006 A1
20060126970 Perell Jun 2006 A1
20060169691 Rothschild et al. Aug 2006 A1
20060210202 Plourde Sep 2006 A1
20060283750 Villars et al. Dec 2006 A1
20060285777 Howell et al. Dec 2006 A1
20070080078 Hansen et al. Apr 2007 A1
20070082096 Dougherty et al. Apr 2007 A1
20070084142 Matthews Apr 2007 A1
20070151887 Clark et al. Jul 2007 A1
20080053860 McDonald Mar 2008 A1
20080274686 Kupferberg et al. Nov 2008 A1
20090039078 Sanfilippo et al. Feb 2009 A1
20090113848 Santi May 2009 A1
20090120828 Sanfilippo et al. May 2009 A1
20090193763 Fontanazzi Aug 2009 A1
20090232425 Tai et al. Sep 2009 A1
20090273179 Scott et al. Nov 2009 A1
20100002963 Holbert et al. Jan 2010 A1
20100040311 Plate Feb 2010 A1
20100092112 Goglio et al. Apr 2010 A1
20100113240 Takita et al. May 2010 A1
20100140129 Sanfilippo et al. Jun 2010 A1
20100154264 Scott et al. Jun 2010 A1
20100278454 Huffer Nov 2010 A1
20110058755 Guibert Mar 2011 A1
20110297690 Teys et al. Dec 2011 A1
20120008884 Murray Jan 2012 A1
20120125937 Ahlstrom et al. May 2012 A1
20120177307 Duan et al. Jul 2012 A1
20120275727 Chang Nov 2012 A1
20120321229 Surdziel et al. Dec 2012 A1
20130004626 Renders et al. Jan 2013 A1
20130011527 Renders et al. Jan 2013 A1
20130114918 Lyzenga et al. May 2013 A1
20130227918 Paradisi Sep 2013 A1
20130266244 Doll et al. Oct 2013 A1
20140083897 Sanfilippo et al. Mar 2014 A1
20140102936 Sanfilippo et al. Apr 2014 A1
20140109522 Sanfilippo et al. Apr 2014 A1
20140185962 Sanfilippo et al. Jul 2014 A1
20140196406 Sanfilippo et al. Jul 2014 A1
20140301674 Sanfilippo et al. Oct 2014 A1
20140307985 Sanfilippo et al. Oct 2014 A1
20140328552 Sanfilippo et al. Nov 2014 A1
20140371046 Catellani Dec 2014 A1
20150001234 Sanfilippo et al. Jan 2015 A1
Foreign Referenced Citations (30)
Number Date Country
102010019867 Sep 2011 DE
0085349 Aug 1983 EP
0879767 Nov 1998 EP
1106508 Jun 2001 EP
1508531 Feb 2005 EP
1637472 Mar 2006 EP
2347971 Jul 2011 EP
2468634 Jun 2012 EP
2586718 May 2013 EP
2766794 Feb 1999 FR
1274100 Jul 1997 IT
01167084 Jun 1989 JP
01226579 Sep 1989 JP
01267182 Oct 1989 JP
09142551 Jun 1997 JP
10-203560 Aug 1998 JP
11077857 Mar 1999 JP
2005320032 Nov 2005 JP
WO-8606344 Nov 1986 WO
WO-9411270 May 1994 WO
WO-0012407 Mar 2000 WO
WO-02085726 Oct 2002 WO
WO-2004024588 Mar 2004 WO
WO-2004110885 Dec 2004 WO
WO-2006091821 Aug 2006 WO
WO-2007058689 May 2007 WO
WO-2009061959 May 2009 WO
WO-2012098085 Jul 2012 WO
WO-2012098085 Jul 2012 WO
WO-2013064290 May 2013 WO
Non-Patent Literature Citations (11)
Entry
Brody et al., Encyclopedia of Packaging Technology, 2nd ed., New York, NY: John Wiley & Sons (1993).
Photographs of flexible container packaging, “Minibrick Pack”, from Sonoco (Hartsville, South Carolina, USA) (became aware of in Dec. 2007).
SBS Special Top Design Machine, product sheet from Rovema Packaging Machines L.P. (Lawrenceville, Georgia, USA) (1 pg.) (2005).
International Search Report and Written Opinion from corresponding International Application No. PCT/US2013/066985, dated Jan. 29, 2014.
International Search Report and Written Opinion for counterpart International Application No. PCT/US08/072554, dated Feb. 23, 2009.
International Search Report and Written Opinion for International Application No. PCT/US2009/063591, dated Jun. 18, 2010.
International Search Report and Written Opinion for International Application No. PCT/US2008/082689, dated Mar. 24, 2009.
Extended European Search Report, European application No. EP 09825498.0, dated Nov. 22, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2015/022859, dated Oct. 12, 2015.
International Search Report and Written Opinion, International Application No. PCT/US2015/031556, dated Sep. 15, 2015.
International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/031556 dated Nov. 22, 2016.
Related Publications (1)
Number Date Country
20170096248 A1 Apr 2017 US
Provisional Applications (3)
Number Date Country
62073760 Oct 2014 US
62053001 Sep 2014 US
62000510 May 2014 US