Apparatus and method for making fluid filled units

Information

  • Patent Grant
  • 7513090
  • Patent Number
    7,513,090
  • Date Filed
    Tuesday, July 11, 2006
    18 years ago
  • Date Issued
    Tuesday, April 7, 2009
    15 years ago
Abstract
The present invention concerns a machine and a method for converting a web of preformed pouches to dunnage units. In one exemplary embodiment the machine includes a drive, a blower, and a sealing mechanism. The drive is arranged to move the web of preformed pouches along a path of travel through the machine. The blower is positioned with respect to the path of travel, to inflate the preformed pouches. The sealing mechanism includes a heating element support and a heating element. The heating element support includes a sealing side and a belt preheating side. The heating element is disposed around at least a portion of the heating side and at least a portion of the belt preheating side. The drive includes a belt that is disposed around the heating element. The sealing mechanism is positioned with respect to the path of travel, to provide seals to the pouches to form inflated dunnage units. The heating element support is configured to maintain the heating element in contact with the heating element support preheating side.
Description
FIELD OF THE INVENTION

The present application relates to apparatus and methods for filling fluid filled units.


BACKGROUND

Machines for forming and filling dunnage units from sheets of plastic are known. Machines which produce dunnage units by inflating preformed pouches in a preformed web are also known. For many applications, machines which utilize preformed webs are preferred.


SUMMARY

The present invention concerns a machine and a method for converting a web of preformed pouches to dunnage units. In one exemplary embodiment the machine includes a drive, a blower, and a sealing mechanism. The drive is arranged to move the web of preformed pouches along a path of travel through the machine. The blower is positioned with respect to the path of travel, to inflate the preformed pouches. The sealing mechanism includes a heating element support and a heating element. The heating element support includes a sealing side and a belt preheating side. The heating element is disposed around at least a portion of the heating side and at least a portion of the belt preheating side. The drive includes a belt that is disposed around the heating element. The sealing mechanism is positioned with respect to the path of travel, to provide seals to the pouches to form inflated dunnage units. The heating element support is configured to maintain the heating element in contact with the heating element support preheating side.





BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, which are incorporated in and constitute a part of this specification, embodiments of the invention are illustrated, which, together with a general description of the invention given above, and the detailed description given below serve to illustrate the principles of this invention. The drawings and detailed description are not intended to and do not limit the scope of the invention or the claims in any way. Instead, the drawings and detailed description only describe embodiments of the invention and other embodiments of the invention not described are encompassed by the claims.



FIG. 1 schematically illustrates a plan view of an exemplary machine in accordance with the present invention for converting a web of preformed pouches to fluid filled units;



FIG. 2 schematically illustrates an elevational view of an exemplary machine in accordance with the present invention for converting a web of preformed pouches to fluid filled units;



FIG. 2A schematically illustrates an elevational view of a second embodiment of a machine in accordance with the present invention for converting a web of preformed pouches to fluid filled units;



FIG. 2B schematically illustrates an elevational view of a third embodiment of a machine in accordance with the present invention for converting a web of preformed pouches to fluid filled units;



FIG. 2C schematically illustrates an elevational view of a fourth embodiment of a machine in accordance with the present invention for converting a web of preformed pouches to fluid filled units;



FIG. 3 illustrates a perspective view of an exemplary sealing mechanism in accordance with the present invention for sealing inflated pouches, in which a drive belt is shown in phantom lines;



FIG. 4 illustrates an elevational view of the exemplary sealing mechanism of FIG. 3;



FIG. 5 schematically illustrates an elevational view of an exemplary heating element support and heating element in accordance with the present invention;



FIG. 6 schematically illustrates a bottom view of the heating element support and heating element of FIG. 5; and



FIG. 7 schematically illustrates a top view of the heating element support and heating element of FIG. 5.





DETAILED DESCRIPTION

The Detailed Description merely describes preferred embodiments of the invention and is not intended to limit the scope of the claims in any way. Indeed, the invention as described by the claims and the specification is broader than and unlimited by the preferred embodiments, and the terms in the claims and specification have their full ordinary meaning.


The present invention concerns machines and methods of using such machines for converting a web of preformed pouches to dunnage units. Examples of webs of preformed pouches that can be converted to dunnage units by machines in accordance with the present invention are shown and described in U.S. patent application Ser. No. 11/141,304 to Wehrmann, filed May 31, 2005, and U.S. patent application Ser. No. 11/194,375 to Wehrmann, filed Aug. 1, 2005, both of which are hereby incorporated in their entirety. It should be readily apparent that other preformed webs, in addition to those disclosed in the above-referenced patent applications, may be used in the machines disclosed herein to produce dunnage units.


Referring to FIGS. 2 and 3, one embodiment of the present invention is a machine 10 for converting a web 12 of performed pouches to dunnage units, with a heating element support 38 that maintains a heating element 40 in contact with a preheating side 54 of the heating element support 38. In the example illustrated by FIG. 3, the preheating side 54 is contoured to keep the heating element 40 in contact with the heating element support 38. The heating element 40 may be kept in contact with the heating element support in a wide variety of other ways. For example, an automatic tensioning member, such as a spring or a manual tensioning member, such as a threaded fastener may press or pull the heating element 40 against the heating element support 38. The heating element 40 can be molded into the heating element support 38. The heating element 40 can be glued to the heating element support. In the embodiment illustrated by FIG. 2A, a roller 100 presses the heating element 40 into contact with the preheating side 54 of the heating element support 38. The roller 100 may be biased into engagement with the belt 46 with a spring or other biasing member as indicated by arrow 102 or the position of the roller 100 may be fixed with respect to the heating element support 38 by a roller support 104. In the embodiment illustrated by FIG. 2B, a finger or extension member 106 presses the heating element 40 into contact with the preheating side 54 of the heating element support 38. The extension member 106 may be biased into engagement with the belt 46 with a spring or other biasing member as indicated by arrow 108 or the position of the extension member 106 may be fixed with respect to the heating element support 38 by a support 110. In the embodiment illustrated by FIG. 2C, a brush 116 presses the heating element 40 into contact with the preheating side 54 of the heating element support 38. The brush 116 may be biased into engagement with the belt 46 with a spring or other biasing member as indicated by arrow 118 or the position of the brush 116 may be fixed with respect to the heating element support 38 by a support 118.



FIGS. 1 and 2 schematically illustrate an example of a machine 10 and process for converting webs 12 of preformed pouches to dunnage units that may include a heating element support 38 that maintains the heating element 40 in contact with the heating element support. A heating element support 38 that maintains the heating element 40 in contact with the heating element support can be implemented on a wide variety of other machines for producing dunnage units from preformed webs. An exemplary web 12 is routed from a supply 14 (shown in FIG. 2) to and around a pair of elongated, transversely extending guide rollers 16. The guide rollers 16 keep the web 12 taught as the web 12 is pulled through the machine 10. The web 12 includes a top elongated layer of plastic superimposed onto a bottom layer of plastic. Referring to FIG. 1, the layers are connected along spaced edges, referred to as the inflation edge 18 and the opposite edge 20. In addition, a plurality of longitudinally spaced, transverse seals 22 join the top and bottom layers. Generally, each transverse seal 22 extends from the opposite edge 20 to within a short distance of the inflation edge 18. Spaced pairs of lines of perforations 24 extend through the top and bottom layers terminating a short distance from the edges 18 and 20. In one embodiment, the web includes gap forming area 26 that extends between each associated pair of lines of perforations 24. The gap forming area 26 can serve to reduce stresses and other unwanted forces on the pouches while the pouches are inflated. In other embodiments, the gap forming area 26 is not included. For example uniform perforations 24 may extend from one side of the web to the other side of the web in a uniform manner.


Referring again to FIGS. 1 and 2, at location A of the machine 10, the web of pouches are uninflated. As the web 12 moves through the machine 10, along a path of travel T, a longitudinally extending guide pin 28 is disposed in the web 12 at station B. The guide pin 28 is disposed in a pocket bounded by the top and bottom layers of plastic, the inflation edge 18, and the ends 29 of the transverse seals 22, located proximate to the inflation edge 18. The guide pin 28 aligns the web 12 as the web 12 is pulled along the path of travel T through the machine 10. A cutter 30 extends from the guide pin 28 and is used to cut the inflation edge 18 of the web 12. The cutter 30 slits the inflation edge 18 as the web 12 moves through the machine 10 to provide inflation openings 32 (See FIG. 2) into the pouches.


A blower 34 is positioned after the cutter 30 at station B of the machine 10 and inflates the preformed pouches as the web 12 moves past the blower 34. A sealing mechanism or assembly 36 is positioned at station C of the machine 10 to form a seal to close the pouches and complete the dunnage units. In the illustrated embodiment, the sealing assembly 36 includes a pair of heating element supports 38, a pair of heating elements 40, a pair of cooling elements 42. A drive 48 includes a pair of drive rollers 44 that are driven by one or more motors 45, and a pair of drive belts 46 (shown in FIG. 2) that are driven by the rollers 44. The drive 48 moves the web 12 along the path of travel T through the machine 10. The illustrated drive 48 can be replaced by any drive that can move the web along the path of travel. In an alternate embodiment, the pair of cooling elements 42 are omitted.


As best seen in FIGS. 3 and 4, an example of a suitable heating element support 38 is a block formed or fabricated from an insulating material and structurally capable of supporting a heating element 40. Examples of suitable materials for the heating element support include Teflon, ceramics, plastic materials and a wide variety of other materials. An example of a suitable heating elements 40 is a heating wire made of an electrically conductive material. Resistance in such a wire causes the heating wire to heat up when a voltage is applied to the wire. The illustrated drive 48 may be replaced by any drive that can move the web along the path of travel.


In the exemplary embodiment, each heating element is disposed around one of the heating element supports The heating elements are secured to their heating element supports 38 by attachment members 50. In the embodiment illustrated by FIGS. 3 and 4, attachment members 50 are posts. However, the attachment members 50 may be any mechanism for mechanically attaching the heating elements to the insulation blocks that allows a voltage to be applied to the heating element. The heating elements 40 are secured to the posts 50 such that the machine 10 can selectively apply voltage to the wires 40 to heat the wires 40. The voltage is applied to the wires 40 such that the wires 40 reach a generally consistent operating temperature that is effective in sealing an inflated pouch to form a dunnage unit.


In the illustrated embodiment, each drive belt 46 is a loop of material that is disposed around its respective drive roller 44, insulation block 38, and cooling element 42, if included. The drive belts can be made from a wide variety of different materials. For example, the drive belts can be made from Teflon impregnated fiberglass cloth. As best seen in FIG. 4, the drive belt 46 is also disposed around the heating element 40 such that the heating element is 40 positioned between the drive belt 46 and the heating element support 38.


The drive belts 46 are driven by the drive rollers 44 and moves along a generally oval path about the heating element support 38, cooling element 42, and drive roller 44. As best seen in FIGS. 2 and 3, the pair of drive belts 46 contact and engage one another along the path of travel T of the web 12 through the machine 10. This contact and engagement causes the drive belts 46 to grasp the web 12 and pull the web 12 through the machine 10, first past the heating wires 40 and then, optionally, past the cooling elements 42.


A seal is formed between the top layer and bottom layer of each pouch when the layers are exposed to heat from the heating element 40. The seal is positioned to intersect with the transverse seals 22. This heat, applied to the top and bottom layers of plastic, causes the plastic to become molten and flow, such that portions of the plastic proximate to the heat source merged. As this area cools, a sealed area is formed to close a pouch. The cooling process can be accelerated by the extraction of heat from the sealed area of the pouch. This accelerated cooling can be accomplished by moving the web 12 to position the sealed area proximate to the cooling element 42. The cooling element 42 may be formed or fabricated from any suitable heatsink material, which transfers heat away from the sealed area. One example of such a material is aluminum.


Quality and consistency of seals is ensured by ensuring that the temperature of the heating element 40 is maintained at an intended sealing temperature. For example, the temperature of a wire heating element may be maintained at between 200-400 degrees Fahrenheit. The temperature of a heating element 40 is a function of the voltage applied to the heating element 40 and the environment the heating element 40 operates in (i.e., the medium that dissipates heat from the wire). The voltage applied to the heating element 40 determines how much heat is generated by the heating element 40 and the environment the heating element 40 is operated in determines how rapidly heat dissipates from the heating element 40. If the operating conditions vary along the length of the heating element 40, then the temperature of the heating element 40 may differ at discrete locations along the length of the heating element 40. This disparity in temperatures along the heating element 40 can cause one section or portion of heating element 40 to increase in temperature. For example, if one portion of the wire does not contact the heating element support 38, that portion may become significantly hotter than other portions of the wire.


Each heating element support 38, which is an insulation block in the illustrated embodiment has a sealing side 52 and a belt preheating side 54. The sealing side 52 of the heating element support 38 is along the path of travel T, where the drive belts 46 are in contact with one another. The belt preheating side 54 is on the opposite side of the heating element support 38. The belt preheating side 54 serves to heat the drive belts 46 as the belt 46 passes to preheat the belt and enhance the transfer heat through the belt 46 to the pouches that are sealed along the sealing side 52 of the heating element support 38.


The portion of the heating element 40 along the sealing side 52 is clamped between each pair of heating element supports 38 to ensure that the pair of drive belts 46 are in contact and engaged. This clamping keeps the portion of heating element 40 along the sealing side 52 in contact with both the heating element support 38 and the drive belt 46. On the belt preheating side 54, there is no clamping force to ensure that the heating element 40 stays in contact with both the drive belt 46 and the heating element support 38 in the illustrated embodiment. Because the heating element support dissipates heat, if the heating element 40 is not in contact with the heating element support 38, the temperature along that portion of wire 40 will differ from the temperature of the portion of heating element disposed 40 along the sealing side 52. For example, the heating element on the preheating side could become too hot and/or make the belt too hot.


The shape and contour of the belt preheating side 54 may be designed such that the portion of the heating element 40 along the belt preheating side 54 of the heating element support 38 stays in contact with the heating element support 38. In one embodiment, the shape of the heating element support also causes the heating element 38 to stay in contact with the belt 46. As is shown in FIGS. 3, 4, and 5, the belt preheating side 54 of the heating element support 38 can be fabricated to be generally curved, convex, or arcuate. As best seen in FIG. 4, a convex, generally curved shape maintains the heating element 40 in contact with the belt 46 and the heating element support 38 along the entire belt preheating side 54.


Although the heating element has been shown and described as a heating wire disposed along the sealing and belt preheating sides of an insulation block, it should be understood that a heating element in accordance with the present invention can take an a variety of embodiments and be disposed in a variety of arrangements. For example, a heating element may be a band of material or a plurality of discretely dispersed material. In addition, a heating element may be disposed only around a portion of the sealing side or the a portion of the belt preheating side. The heating element support is illustrated as an insulation block is having a curved, convex, or arcuate belt preheating side. The heating element support may be made from any material and may be in any shape and/or configuration that supports a heating element such that the heating element does not overheat.


While various aspects of the invention are described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects may be realized in many alternative embodiments not shown, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present invention. Still further, while various alternative embodiments as to the various aspects and features of the invention, such as alternative materials, structures, configurations, methods, devices, and so on may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the aspects, concepts or features of the invention into additional embodiments within the scope of the present invention even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the invention may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present invention however; such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated.

Claims
  • 1. A machine for converting a web of preformed pouches to dunnage units, the machine comprising: a means for moving the web along a path of travel;a means for inflating the preformed pouches;a means for preheating a portion of a belt at a preheating belt side of a heating element support;a means for maintaining the means for preheating a portion of the belt in contact with the preheating belt side of the heating element support;a means for moving the preheated belt to a sealing side of the heating element support;a means for engaging the web on the sealing side of the heating element support with the belt; anda means for providing seals to the pouches at the seal side of the heating element support to form inflated dunnage units.
  • 2. The machine of claim 1 wherein the means for moving the web along the path of travel comprises a drive.
  • 3. The machine of claim 2 said belt is a first belt of a pair of belts, wherein the drive comprises a pair of drive rollers that are driven by one or more motors, and the pair of belts.
  • 4. The machine of claim 2 wherein the means for moving the preheated belt to a sealing side of the heating element support comprises the pair of drive rollers that are driven by the one or more motors.
  • 5. The machine of claim 1 wherein the means for inflating the preformed pouches comprises a blower.
  • 6. The machine of claim 1 wherein the means for preheating a portion of the belt comprises a portion of a heating wire disposed on the preheating belt side of the heating element support.
  • 7. The machine of claim 1 wherein the means for moving the preheated belt to a sealing side of the heating element support comprises a pair of drive rollers that are driven by one or more motors.
  • 8. The machine of claim 1 wherein said belt is a first belt of a pair of belts, wherein said means for engaging the web comprises the pair of belts arranged to contact one another along said path of travel.
  • 9. The machine of claim 1 wherein said means for providing seals to the pouches comprises a portion of a heating wire disposed on the sealing side of the heating element support and the belt.
  • 10. The machine of claim 1 wherein said means for providing seals to the pouches comprises a portion of a heating wire disposed on the sealing side of the heating element support and the belt.
  • 11. A machine for converting a web of preformed pouches to dunnage units, the machine comprising: a means for moving the web along a path of travel;a means for inflating the preformed pouches;a means for preheating a portion of a belt at a preheating belt side of a heating element support;a means for maintaining the means for preheating a portion of the belt in contact with the preheating belt side of the heating element support;a means for providing seals to the pouches at a seal side of the heating element support to form inflated dunnage units.
  • 12. The machine of claim 11 wherein the means for moving the web along the path of travel comprises a drive.
  • 13. The machine of claim 12 said belt is a first belt of a pair of belts, wherein the drive comprises a pair of drive rollers that are driven by one or more motors, and the pair of belts.
  • 14. The machine of claim 11 wherein the means for inflating the preformed pouches comprises a blower.
  • 15. The machine of claim 11 wherein the means for preheating a portion of the belt comprises a portion of a heating wire disposed on the preheating belt side of the heating element support.
US Referenced Citations (78)
Number Name Date Kind
3254820 Lerner Jun 1966 A
3254828 Lerner Jun 1966 A
3298156 Lerner Jan 1967 A
3367261 Kashiwagi Feb 1968 A
3414140 Feldkamp Dec 1968 A
3462027 Puckhaber Aug 1969 A
3477196 Lerner Nov 1969 A
3523055 Lernelson Aug 1970 A
3575757 Smith Apr 1971 A
3575781 Pezely Apr 1971 A
3577305 Hines et al. May 1971 A
3616155 Chavannes Oct 1971 A
3650877 Johnson Mar 1972 A
3730240 Presnick May 1973 A
3791573 Titchenal et al. Feb 1974 A
3808981 Shaw May 1974 A
3817803 Horsley Jun 1974 A
3837990 McConnell et al. Sep 1974 A
3837991 Evans Sep 1974 A
3938298 Luhman et al. Feb 1976 A
3939995 Baxter Feb 1976 A
4014154 Lerner Mar 1977 A
4017351 Larson et al. Apr 1977 A
4040526 Baxter et al. Aug 1977 A
4044693 Ramsey, Jr. Aug 1977 A
4076872 Lewicki et al. Feb 1978 A
4096306 Larson Jun 1978 A
4102364 Lowdermilk Jul 1978 A
4103471 Lowdermilk Aug 1978 A
4146069 Angarola et al. Mar 1979 A
4201029 Lerner May 1980 A
4306656 Dahlem Dec 1981 A
4314865 Ottaviano Feb 1982 A
4354004 Hughes et al. Oct 1982 A
4518654 Eichbauer et al. May 1985 A
4564407 Tsurata Jan 1986 A
4576669 Caputo Mar 1986 A
4597244 Pharo Jul 1986 A
4619635 Ottaviano Oct 1986 A
4676376 Kerswetter Jun 1987 A
4793123 Pharo Dec 1988 A
4847126 Yamashiro et al. Jul 1989 A
4874093 Pharo Oct 1989 A
4904092 Campbell et al. Feb 1990 A
4918904 Pharo Apr 1990 A
4922687 Chow et al. May 1990 A
4931033 Leeds Jun 1990 A
5117608 Nease et al. Jun 1992 A
5141494 Danforth et al. Aug 1992 A
5181614 Watts Jan 1993 A
5188691 Caputo Feb 1993 A
5203761 Reichental et al. Apr 1993 A
5216868 Cooper et al. Jun 1993 A
5257492 Watts Nov 1993 A
5272856 Pharo Dec 1993 A
5289671 Lerner Mar 1994 A
5351828 Becker et al. Oct 1994 A
5383837 Watts Jan 1995 A
5394676 Lerner Mar 1995 A
5468525 Watts Nov 1995 A
5470300 Terranova Nov 1995 A
5552003 Hoover et al. Sep 1996 A
5693163 Hoover et al. Dec 1997 A
5858153 Mack Jan 1999 A
RE36501 Hoover et al. Jan 2000 E
6015357 Ricci Jan 2000 A
RE36759 Hoover et al. Jul 2000 E
6199349 Lerner Mar 2001 B1
6209286 Perkins et al. Apr 2001 B1
6519916 Brown Feb 2003 B1
6527147 Wehrmann Mar 2003 B2
6582800 Fuss et al. Jun 2003 B2
6625956 Soudan Sep 2003 B1
6659150 Perkins et al. Dec 2003 B1
6672037 Wehrmann Jan 2004 B2
6786022 Fuss et al. Sep 2004 B2
20060090421 Sperry et al. May 2006 A1
20080022630 Fuss et al. Jan 2008 A1
Foreign Referenced Citations (1)
Number Date Country
WO 0071423 Nov 2000 WO
Related Publications (1)
Number Date Country
20080014389 A1 Jan 2008 US