The present disclosure relates to apparatuses and methods for manufacturing absorbent articles, and more particularly, to apparatuses and methods for unwinding material used in absorbent articles.
Along an assembly line, diapers and various types of other absorbent articles may be assembled by adding components to and otherwise modifying an advancing, continuous web of material. For example, in some processes, advancing webs of material are combined with other advancing webs of material. In other examples, individual components created from advancing webs of material are combined with advancing webs of material, which in turn, are then combined with other advancing webs of material. Webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, absorbent cores, front and/or back ears, fastener components, and various types of webs, including elastic webs, and components such as leg elastics, barrier leg cuffs, and waist elastics. Once the desired component parts are assembled, the advancing web(s) and component parts are subjected to a final knife cut to separate the web(s) into discrete diapers or other absorbent articles. The discrete diapers or absorbent articles may also then be folded and packaged.
As stated above, during the assembly process, component parts, such as elastic components, are used to manufacture diapers. Generally, the component parts are supplied on spools that comprise a core and a material wound around the core. Spools used in the manufacture of the absorbent articles are located adjacent to the manufacturing line on unwind stations. Traditionally, the unwind stations are large, occupying a substantial amount of floor space in the manufacturing facility. The large size of the unwind stations is also due in part to the need to operate at high manufacturing speeds and the relatively large amount of component material used in a single absorbent article. In order for manufactures to supply enough material to the manufacturing line, several spools of material must be stored adjacent to the line. Traditionally, unwind stations consist of spools mounted in vertical tiers. Each tier has at least two spools, an active spool and a reserve spool. The spools in the same tier are located adjacent one another in the same horizontal plane.
The active spool is unwound such that the elastic material may be fed through a control device such as a metering device or tension device. The control device is positioned between the active and reserve spools so that the elastic material is unwound at an angle. More specifically, the cores of each of the active spool and the reserve spool are not parallel to the control device. Having each spool at an angle to the control device allows manufacturers to switch to the reserve spool after the active spool has been depleted. For seamless transitions, manufactures connect the end of the active spool to the beginning of the reserve spool. The empty spool can then be removed and replaced with a new reserve spool. Thus, the unwind stations have to have sufficient room to load and unload the spools. The spools are loaded and unloaded by threading the core of the spool onto a spool holder, which is generally a fixed shaft. More specifically, the spool holder has an open portion adjacent to the control device where a spool can be loaded adjacent to the control device.
However, the use of unwind devices similar to the aforementioned have presented several problems. For example, unwind stations must be of sufficient size to handle multiple, vertical tiers of spools and tiers having at least an active spool and a replacement spool located horizontally and adjacent to one another. Thus, unwind stations have been large, taking up relatively large amounts of floor space in manufacturing facilities. Further, unwind stations must have sufficient room for operators to load and unload the spools from the portion of the spool holder adjacent to the control system. Further still, operators are required to load the unwind stations near the active unwinding of material. Thus, operators must be extremely careful when loading and unloading not to disrupt the material that is being unwound on the active spool. A disruption in the material can result in, for example, defective products and manufacturing down time.
Thus, a need exists for a method and an apparatus for unwinding material for absorbent articles that allows for a relatively smaller amount of floor space to be used and allows for loading of the unwinding station while reducing the potential for interfering with the unwinding of the active spool.
Aspects of the present disclosure relate to an apparatus and method for assembling absorbent articles. The apparatus may include an unwind apparatus and a loading apparatus. The unwind apparatus may include a frame and a mandrel. The mandrel may include a proximal end portion and a distal end portion and be adapted to support a spool comprising a core and a strand of material wound around the core. More specifically, the mandrel is adapted to be received by the core of the spool. A mandrel support member may be associated with the mandrel and may be moveable with respect to the frame. Further, the apparatus may include a loading apparatus for supporting a replacement spool including a core and a strand of material wound around the core. The loading apparatus may comprise a base member and a loading shaft. The loading shaft may include a proximal end portion and a distal end portion. The proximal end portion of the loading shaft may be connected with the base member, and the distal end portion may be configured to associate with the proximal end portion of the mandrel. The apparatus may be in a first configuration or a second configuration. In a first configuration, the distal end portion of the loading shaft is slidably engaged with the proximal end portion of the mandrel, and the mandrel support member is disassociated from the mandrel such that the core of the replacement spool is movable along the loading shaft and onto the mandrel. In a second configuration, the distal end portion of the loading shaft is disassociated with the proximal end portion of the mandrel, and the mandrel support member is associated with the mandrel.
In another embodiment, a method for loading material on an unwinding apparatus may comprise the steps of: providing a mandrel including a proximal end portion and a distal end portion, wherein the mandrel is adjacent to a frame, and wherein a portion of the mandrel is associated with a mandrel support member; supporting a first spool on a mandrel, the first spool comprising a first core and a first strand of material wound around the first core, and wherein the first core is adapted to receive the mandrel, and wherein the mandrel; providing a second spool comprising a second core and a second strand of material wound around the second core; placing the second spool onto a loading shaft including a proximal end portion and a distal end portion, wherein the second core is adapted to receive the loading shaft; slidably engaging the loading shaft with the mandrel; disassociating the mandrel support member from the mandrel; moving the second spool axially along the support shaft and onto the mandrel; reassociating the support member with the mandrel; and disengaging the loading shaft from the mandrel.
The following term explanations may be useful in understanding the present disclosure:
“Absorbent article” is used herein to refer to consumer products whose primary function is to absorb and retain soils and wastes. “Diaper” is used herein to refer to an absorbent article generally worn by infants and incontinent persons about the lower torso. The term “disposable” is used herein to describe absorbent articles which generally are not intended to be laundered or otherwise restored or reused as an absorbent article (e.g., they are intended to be discarded after a single use and may also be configured to be recycled, composted or otherwise disposed of in an environmentally compatible manner).
The term “pant” (also referred to as “training pant”, “pre-closed diaper”, “diaper pant”, “pant diaper”, and “pull-on diaper”) refers herein to disposable absorbent articles having a continuous perimeter waist opening and continuous perimeter leg openings designed for infant or adult wearers. A pant can be configured with a continuous or closed waist opening and at least one continuous, closed, leg opening prior to the article being applied to the wearer.
The term “machine direction” (MD) is used herein to refer to the direction of material flow through a process. In addition, relative placement and movement of material may be described as flowing in the machine direction through a process from upstream in the process to downstream in the process.
The present disclosure relates to a method and apparatus for unwinding spools of material, such as elastic material, for use in absorbent articles. More particularly, the apparatus herein is directed to an unwind apparatus for unwinding a spool of material and a loading apparatus for loading spools of material onto the unwind apparatus. As discussed in more detail below, the unwind apparatus may include a mandrel adapted to support a spool of material, such as elastic material. The mandrel may be substantially surrounded by a frame. Further, the unwind apparatus can be configured to engage with the loading apparatus. The loading apparatus may include a base member and a loading shaft, extending from the base member. The loading shaft may be configured to support a replacement spool of stranded material. The base member may be releasably connectable with the frame of the unwind apparatus. As discussed in more detail below, the unwind apparatus and the loading apparatus may be reconfigurable. For example, in a first configuration, the loading apparatus may be engaged with the unwind apparatus such that a replacement spool may be moved from the loading apparatus to the unwind apparatus. In a second configuration, the loading apparatus may be disengaged with the unwind apparatus, and the mandrel may support one or more spools of material.
It is to be appreciated that various arrangements and configurations of the apparatus herein may be used to load and unwind various types of materials. For example, as discussed in more detail below, the apparatus according to the present disclosure may be utilized in the production of various components of absorbent articles, such as diapers. For example, webs of material and component parts used to manufacture diapers may include: backsheets, topsheets, absorbent cores, front and/or back ears, fastener components, and various types of webs, including elastic webs, and components such as leg elastics, barrier leg cuffs elastics, and waist elastics. To help provide additional context to the subsequent discussion of the process embodiments, the following provides a general description of absorbent articles in the form of diapers that include components including the materials that may be supplied by the methods and apparatuses disclosed herein.
With continued reference to
As shown in
As shown in
It is also to be appreciated that a portion or the whole of the diaper 100 may also be made laterally extensible. The additional extensibility may help allow the diaper 100 to conform to the body of a wearer during movement by the wearer. The additional extensibility may also help, for example, allow the user of the diaper 100 including a chassis 102 having a particular size before extension to extend the front waist region 116, the back waist region 118, or both waist regions of the diaper 100 and/or chassis 102 to provide additional body coverage for wearers of differing size, i.e., to tailor the diaper to an individual wearer. Such extension of the waist region or regions may give the absorbent article a generally hourglass shape, so long as the crotch region is extended to a relatively lesser degree than the waist region or regions, and may impart a tailored appearance to the article when it is worn.
As previously mentioned, the diaper pant 100 may include a backsheet 136. The backsheet 136 may also define the outer surface 134 of the chassis 102. The backsheet 136 may be impervious to fluids (e.g., menses, urine, and/or runny feces) and may be manufactured from a thin plastic film, although other flexible liquid impervious materials may also be used. The backsheet 136 may prevent the exudates absorbed and contained in the absorbent core from wetting articles which contact the diaper 100, such as bedsheets, pajamas, and undergarments. The backsheet 136 may also include a woven or nonwoven material, polymeric films such as thermoplastic films of polyethylene or polypropylene, and/or a multi-layer or composite materials comprising a film and a nonwoven material (e.g., having an inner film layer and an outer nonwoven layer). The backsheet may also include an elastomeric film. An example backsheet 136 may be a polyethylene film having a thickness of from about 0.012 mm (0.5 mils) to about 0.051 mm (2.0 mils). Exemplary polyethylene films are manufactured by Clopay Corporation of Cincinnati, Ohio, under the designation BR-120 and BR-121 and by Tredegar Film Products of Terre Haute, Ind., under the designation XP-39385. The backsheet 136 may also be embossed and/or matte-finished to provide a more clothlike appearance. Further, the backsheet 136 may permit vapors to escape from the absorbent core (i.e., the backsheet is breathable) while still preventing exudates from passing through the backsheet 136. The size of the backsheet 136 may be dictated by the size of the absorbent core 142 and/or particular configuration or size of the diaper 100.
Also described above, the diaper pant 100 may include a topsheet 138. The topsheet 138 may also define all or part of the inner surface 132 of the chassis 102. The topsheet 138 may be compliant, soft feeling, and non-irritating to the wearer's skin. It may be elastically stretchable in one or two directions. Further, the topsheet 138 may be liquid pervious, permitting liquids (e.g., menses, urine, and/or runny feces) to penetrate through its thickness. A topsheet 138 may be manufactured from a wide range of materials such as woven and nonwoven materials; apertured or hydroformed thermoplastic films; apertured nonwovens, porous foams; reticulated foams; reticulated thermoplastic films; and thermoplastic scrims. Woven and nonwoven materials may comprise natural fibers such as wood or cotton fibers; synthetic fibers such as polyester, polypropylene, or polyethylene fibers; or combinations thereof. If the topsheet 138 includes fibers, the fibers may be spunbond, carded, wet-laid, meltblown, hydroentangled, or otherwise processed as is known in the art.
Topsheets 138 may be selected from high loft nonwoven topsheets, apertured film topsheets and apertured nonwoven topsheets. Apertured film topsheets may be pervious to bodily exudates, yet substantially non-absorbent, and have a reduced tendency to allow fluids to pass back through and rewet the wearer's skin. Exemplary apertured films may include those described in U.S. Pat. Nos. 5,628,097; 5,916,661; 6,545,197; and 6,107,539.
As mentioned above, the diaper pant 100 may also include an absorbent assembly 140 that is joined to the chassis 102. As shown in
Some absorbent core embodiments may comprise fluid storage cores that contain reduced amounts of cellulosic airfelt material. For instance, such cores may comprise less than about 40%, 30%, 20%, 10%, 5%, or even 1% of cellulosic airfelt material. Such a core may comprises primarily absorbent gelling material in amounts of at least about 60%, 70%, 80%, 85%, 90%, 95%, or even about 100%, where the remainder of the core comprises a microfiber glue (if applicable). Such cores, microfiber glues, and absorbent gelling materials are described in U.S. Pat. Nos. 5,599,335; 5,562,646; 5,669,894; and 6,790,798 as well as U.S. Patent Publication Nos. 2004/0158212 and 2004/0097895.
The diaper 100 may also include elasticized leg cuffs 156. It is to be appreciated that the leg cuffs 156 can be and are sometimes also referred to as leg bands, side flaps, barrier cuffs, elastic cuffs or gasketing cuffs. The elasticized leg cuffs 156 may be configured in various ways to help reduce the leakage of body exudates in the leg regions. Example leg cuffs 156 may include those described in U.S. Pat. Nos. 3,860,003; 4,909,803; 4,695,278; 4,795,454; 4,704,115; 4,909,803; U.S. Patent Publication No. 2009/0312730A1; and U.S. Patent Publication No. 2013/0255865A1.
As mentioned above, diaper pants may be manufactured with a ring-like elastic belt 104 and provided to consumers in a configuration wherein the front waist region 116 and the back waist region 118 are connected to each other as packaged, prior to being applied to the wearer. As such, diaper pants may have a continuous perimeter waist opening 110 and continuous perimeter leg openings 112 such as shown in
The central region 106c of the first elastic belt is connected with the first waist region 116 of the chassis 102, and the central region 108c of the second elastic belt 108 is connected with the second waist region 118 of the chassis 102. As shown in
As shown in
The first and second elastic belts 106, 108 may also each include belt elastic material interposed between the outer layer 162 and the inner layer 164. The belt elastic material may include one or more elastic elements such as strands, ribbons, or panels extending along the lengths of the elastic belts. As shown in
As shown in
In some embodiments, the elastic strands 168 may be disposed at a constant interval in the longitudinal direction. In other embodiments, the elastic strands 168 may be disposed at different intervals in the longitudinal direction. As discussed in more detail below, the belt elastic strands 168, in a stretched condition, may be interposed and joined between the uncontracted outer layer and the uncontracted inner layer. When the belt elastic material is relaxed, the belt elastic material returns to an unstretched condition and contracts the outer layer and the inner layer. The belt elastic material may provide a desired variation of contraction force in the area of the ring-like elastic belt. It is to be appreciated that the chassis 102 and elastic belts 106, 108 may be configured in different ways other than as depicted in
As previously mentioned, the apparatuses and methods according to the present disclosure may be utilized to assemble discrete absorbent articles 100 and/or various components of absorbent articles 100, such as for example, chassis 102, elastic belts 106, 108, and/or leg cuffs 156. Although the following methods may be provided in the context of the diaper 100 shown in
The apparatuses and methods according to the present disclosure may be utilized to supply material to assemble elastic laminates that may be used in various components of absorbent articles, such as for example, elastic belts 106, 108 and/or leg cuffs 156. Such elastic laminates may be assembled by positioning the supplied material between two or more substrate layers. It is to be appreciated that the elastic laminates may be constructed in various ways, such as for example, in accordance with the methods and apparatuses disclosed in U.S. Pat. No. 8,440,043 and U.S. Patent Publication Nos. US2013/0255861A1; US2013/0255862A1; US2013/0255863A1; US2013/0255864A1; and US2013/0255865A1, which are all incorporated by reference herein. Although the following methods may be provided in the context of the diaper 100 shown in
Generally, the material 226, 236 wound about the core 224, 234 of the spool 222, 232 may be unwound and fed into a control device 220. The control device 220 may be used to regulate the unwind speed, the tension on the material being unwound, and other variables affecting the supply of the material to the manufacturing line. Example control devices are disclosed in U.S. Pat. No. 7,878,447, filed on Nov. 25, 2009 and U.S. Pat. No. 7,905,446, filed on Dec. 29, 2006, which are all hereby incorporated by reference herein.
The control device 220 may be located such that the entry point 278 of the material 226, 236 into the control device 220 is in line with the central longitudinal mandrel axis 216. Thus, the material 226, 236 may be unwound at an unwind angle θ to the central longitudinal mandrel axis 216. In one example embodiment, the unwind angle θ may be from about 5 degrees to about 25 degrees. It is to be appreciated that the angle θ is based on the radius of the spool. The maximum unwind angle θ may occur when the spool first begins to unwind and the material is located farthest away from the central longitudinal mandrel axis 216. The minimum unwind angle θ may occur just before the spool is empty and/or the material being unwound is in contact with the core.
The loading apparatus 250 may be configured to support a replacement spool 242 of material 246. To support the spool and removably engage with the unwind apparatus, the loading apparatus 250 may include a base member 252 and a loading shaft 254. The loading shaft 254 may include a proximal end portion 256 and a distal end portion 258, opposite the proximal end portion 256, and a central longitudinal shaft axis 218. The proximal end portion 256 of the loading shaft 254 may be connected with the base member 252. The distal end portion 258 of the loading shaft 254 may be releasably connectable with the proximal end portion 210 of the mandrel 208. The replacement spool 242 may substantially surround the central longitudinal shaft axis 218 and be moveable between the proximal end portion 256 and the distal end portion 258 of the loading shaft 254. Stated another way, the replacement spool 242 may include a core 244. The core 244 may be moveable between the proximal end portion 256 and the distal end portion 258 of the loading shaft 254.
In some embodiments, additional support of the loading apparatus 250 may be needed. For example, in certain instances the loading apparatus 250 holding the replacement spool 242 may be too heavy for an operator to support by himself or herself. Thus, in some embodiments, the loading apparatus 250 may also include a dowel member 260, which may extend from the base member 252. The dowel member 260 may be configured to engage an aperture 206 defined by the frame 204 of the unwind apparatus 200. It is to be appreciated that the unwind apparatus 200 may include a dowel member 260 and the base member 252 may define an aperture 206.
Thus, the dowel member 260 may extend from the frame 204 and the aperture 206 may be configured to receive the dowel member 206 (not shown). Further, the unwind apparatus 200 may include a dowel member 260 extending from the frame 206 and the frame 206 may also define an aperture 206. Similarly, the loading apparatus 250 may include a base member 252 defining an aperture 206 and include a dowel member 260 extending from the base member 252 (not shown). The dowel member 260 received by the aperture 206 may provide additional support of the loading apparatus 250 while the replacement spool 242 is moved from the loading apparatus 250 to the unwind apparatus 200. It is to be appreciated that any number of dowel members and any number of corresponding apertures may be used to provide additional support to the loading apparatus. For example, a single dowel member and a corresponding single aperture may be used in some embodiments. It is also to be appreciated that in some embodiments, where additional support of the loading apparatus is not needed, the unwind apparatus may not include a dowel member and a corresponding aperture.
As previously mentioned, the unwind apparatus and the loading apparatus may be reconfigurable. For example, in a first configuration, the loading shaft 250 may be associated with the unwind apparatus 200 such that a spool may be moved from the loading apparatus to the unwind apparatus and vice versa. More specifically, the distal end portion 258 of the loading shaft 254 may be associated with the proximal end portion 210 of the mandrel 208. Further, the base member 252 may be associated with the frame 204. The mandrel support member 214 may be disassociated from the mandrel 208 such that the replacement spool is moveable along the loading shaft 254 and onto to the mandrel 208. In a second configuration, the unwind apparatus may be disassociated with the loading apparatus. More specifically, the distal end portion 258 of the loading shaft 254 may be disassociated with the proximal end portion 210 of the mandrel 208, and the base member 252 may be disassociated with the frame 204. Further, the mandrel support member 214 may be associated with the mandrel 208. Each of these configurations will be better understood in view of the following disclosure.
Referring to
As the strand of elastic material 226 is unwound, the mandrel 208 supports the first spool 222. The mandrel 208 may be a substantially rigid member that extends away from the frame 204, toward the unwind direction of the strand of elastic material 202. In some embodiments, the diameter of the mandrel 208 may be sized to allow the spool to rotate or not rotate about the surface of the mandrel 208. The diameter of the mandrel 208 may be less than the core diameter DC, as shown in
In some embodiments, the mandrel may rotate about a longitudinal mandrel axis. Thus, the diameter of the mandrel 208 may be sized to control rotation of the spool. Stated differently, the spool may rotate with the rotation of the mandrel 208 about the longitudinal mandrel axis 216.
The mandrel 208 may be supported by a mandrel support member 214. The mandrel support member 214 may be associated with the mandrel 208 to allow spools to be loaded and/or unloaded from the mandrel 208. Further, the mandrel support member 214 may be moveably connected with the frame 204 of the unwind apparatus 200. The mandrel support member 214 may include a first block member 268 and a second block member 270. The mandrel support member 214 may be any device that provides adequate support for the mandrel 208. For example, in some embodiments, the mandrel support member 214 may also include one or more arms.
Still referring to
The loading shaft 254 may include a first circumference 274 and a second circumference 276. The first circumference 274 may be greater than, less than, or equal to the second circumference 276. The first circumference 274 and the second circumference 276 may be equal to, greater than, or less than the circumference of the mandrel 208. In one example embodiment, the second circumference 276 may be less than or greater than the circumference of the mandrel 208. The loading shaft 254 may include a second circumference 274 such that the shaft may be sized to substantially surround the external surface of the mandrel 208 or, in another example embodiment, to fit within the internal surface of the mandrel 208. In either configuration, the second circumference 276 may allow the loading shaft 254 to engage with and support the mandrel 208 during loading of the replacement spool 242.
For example, in some embodiments, the loading shaft 254 may include a first circumference 274 and a second circumference 276. The first circumference 274 may be greater than the second circumference 276, as shown in
In some embodiments, the loading apparatus 250 may also include a dowel member 260. The dowel member 260 may extend from the base member 252 in a direction substantially parallel to the loading shaft 254. In other embodiments, the dowel member 260 may also extend through the base member 252. Generally, the dowel member 260 may be configured to be received by an aperture 206 defined by the frame 204. It is to be appreciated that the fame 204 may include a dowel member and the base member 252 may define an aperture (not shown). Thus, the aperture within the base member may be configured to receive the dowel member extending from and/or through the frame. It is to be appreciated that any number of dowel members and any number of corresponding apertures may be used to adequately support the loading apparatus. For example, two dowel members and two corresponding apertures may be used in some embodiments.
Referring now to
When the distal end portion 258 of the loading shaft 254 is associated with the proximal end portion 256 of the mandrel 208, the central longitudinal mandrel axis 216 may be substantially in line with the central longitudinal shaft axis 218. The longitudinal mandrel axis 216 may be substantially parallel to the central longitudinal shaft axis 218. In yet another embodiment, when the distal end portion 258 of the loading shaft 254 is associated with to the proximal end portion 256 of the mandrel 208, the central longitudinal mandrel axis 216 and the central longitudinal shaft axis 218 may be substantially parallel to the machine direction MD.
Further, a dowel member 260 may be attached to at least one of the base member 252 and the frame 204. The dowel member 260 may be used to provide additional stability to the loading apparatus 250 and/or the mandrel 208 during transfer of the replacement spool 242. In one example embodiment, as shown in
As previously discussed, the loading shaft 254 may have a surface having a first circumference 274 greater than or equal to the exterior surface circumference of the mandrel 208. Thus, when the loading apparatus 250 engages the unwind apparatus 200 such that the loading shaft 254 slidably engages the mandrel 208, the first circumference 274 may act as a guide. More specifically, loading apparatus 250 may engage the unwind apparatus 200 up to the point where the first circumference 274 of the loading shaft 254 abuts the exterior surface circumference of the mandrel 208. The first circumference 274 of the loading shaft 254 may indicate to the manufacturing operator that the loading device 250 is in place when the loading shaft 254 abuts the exterior surface circumference of the mandrel 208. The first circumference 254 may stop the loading apparatus 250 from slidably advancing any further into the mandrel 208.
Referring now to
As shown in
In some example embodiments, the mandrel support member 214 may include an arm 280, also referred to as a clamp, as shown in
Referring to
Referring to
Once the first spool 222 and the second spool 242 have progressed toward the distal end portion 212 of the mandrel 208, the mandrel support member 214 may re-engage the mandrel 208. As discussed above, the mandrel 208 may include a mandrel key and the mandrel support member 214 may include a support key 286, 287, as shown in
To supply a constant stream of material to the manufacturing line, the first spool 222 may be connected to the second spool 242. Referring to
When the mandrel support member 214 has sufficient support of the mandrel 208, the loading apparatus 254 may be disengaged from the unwind apparatus 200, as illustrated in
In some embodiments, the unwind apparatus 200 may include a removal component 290, as illustrated in
In some embodiments, the protective component 292 may substantially surround the demolishing component 288. The protective component 292 may be configured to safeguard operators working near the demolishing component 288. Further, the protective component 292 may aid in directing the pieces of core into the interior of the mandrel 208. Further still, the protective component 292 may aid in controlling any dust or debris that may be generated when the empty spool 248 is grinded by the demolishing component 288.
It is to be appreciated that the protective component 292 and the demolishing component 288 may be designed such that these components do not interfere with the unwinding of the material 226, 236 from the spool 222, 232. In some embodiments, the protective component 292 and/or the demolishing component 288 may be retractable. More specifically, the protective component 292 and/or the demolishing component 288 may retract such that the material being unwound from the spool does not contact the protective component 292 and/or the demolishing component 288 (not shown).
In some embodiments, to prevent the unwinding material from contacting the protective component 292 and the demolishing component 288, the unwind apparatus 200 may include a rotatable arm 296 adjacent the distal end portion 212 of the mandrel 208, as illustrated in
In view of the aforementioned, a method for loading elastic material on an unwinding apparatus may include the following steps. An unwind apparatus 200 may include a frame, a mandrel including a proximal end portion and a distal end portion, and a mandrel support member connected with the frame and the mandrel. A first spool may be supported on the mandrel, and the first spool may include a first core and a first strand of elastic material wound around the first core. The first strand of elastic material may be unwound from the first core in a direction past the distal end of the mandrel. A second spool may be provided that includes a second core and a second strand of elastic material wound around the second core. The second spool may be placed onto a loading shaft. The loading shaft may include a proximal end portion and a distal end portion. The loading shaft may be associated with the mandrel, and the mandrel support member may be disassociated with the mandrel. More specifically, the distal end portion of the loading shaft may be slidably engaged with the proximal end portion of the mandrel.
In some embodiments, a base member may be associated with the frame to provide additional support to the mandrel. More specifically, the base member may include a dowel member and the frame may include an aperture, or, the base member may include an aperture and the frame may include a dowel member. In either instance, the dowel member may be inserted into the aperture.
The second spool may be moved axially along the support shaft and onto the mandrel. Then, the support member may be reassociated with the mandrel, and the loading shaft may be disassociated from the frame and the mandrel. The empty spool may be removed from the distal end portion of the mandrel by pushing first core along the mandrel with the second core.
Further to the above, the first strand may include a first end portion and a second end portion, and the second strand may include a first end portion and a second end portion. The method may further include the step of connecting the second end portion of the first strand with the first end portion of the second strand. Further still, the mandrel support member may comprise a first block member and a second block member movably connected with the frame. Thus, the step of disassociating the mandrel support member from the mandrel further includes moving the first block member and the second block member in a direction substantially perpendicular to a longitudinal mandrel axis. It is to be appreciated that in some embodiments, the mandrel support member may include an arm pivotally connected with the frame, and the step of disassociating the mandrel support member from the mandrel may include pivoting the arm.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.” Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1459694 | Holder | Jun 1923 | A |
1578488 | Howard | Mar 1926 | A |
2561543 | Teplitz | Jul 1951 | A |
2602606 | Hanse | Jul 1952 | A |
2809791 | Haworth | Oct 1957 | A |
2942802 | Bachus | Jun 1960 | A |
3073545 | Frate et al. | Jan 1963 | A |
3150845 | Pool | Sep 1964 | A |
3175784 | Dambrogio | Mar 1965 | A |
3315917 | Brown | Apr 1967 | A |
3428269 | Horwood et al. | Feb 1969 | A |
3637155 | Pato | Jan 1972 | A |
3847366 | Schmidt | Nov 1974 | A |
3860003 | Buell | Oct 1975 | A |
4074871 | Stotler | Feb 1978 | A |
4100721 | Seiichi et al. | Jul 1978 | A |
4180218 | Jacobs | Dec 1979 | A |
4235393 | Schenkel et al. | Nov 1980 | A |
4298174 | Kovaleski | Nov 1981 | A |
4402467 | Kontz | Sep 1983 | A |
4515328 | Payne, Jr. | May 1985 | A |
4610678 | Weisman et al. | Sep 1986 | A |
4673140 | Boles | Jun 1987 | A |
4673402 | Weisman et al. | Jun 1987 | A |
4687151 | Memminger et al. | Aug 1987 | A |
4695278 | Lawson | Sep 1987 | A |
4704115 | Buell | Nov 1987 | A |
4795454 | Dragoo | Jan 1989 | A |
4834735 | Alemany et al. | May 1989 | A |
4888231 | Angstadt | Dec 1989 | A |
4909803 | Aziz et al. | Mar 1990 | A |
5031381 | Focke | Jul 1991 | A |
5562646 | Goldman et al. | Oct 1996 | A |
5599335 | Goldman et al. | Feb 1997 | A |
5628097 | Curro et al. | May 1997 | A |
5669894 | Goldman et al. | Sep 1997 | A |
5692698 | Forbes | Dec 1997 | A |
5709354 | Blandin et al. | Jan 1998 | A |
5749210 | Kikuchi et al. | May 1998 | A |
5803652 | Martin | Sep 1998 | A |
5916661 | Curro et al. | Jun 1999 | A |
5975457 | Forbes | Nov 1999 | A |
6056232 | Karaki | May 2000 | A |
6076763 | Sparafora | Jun 2000 | A |
6107539 | Palumbo et al. | Aug 2000 | A |
6386477 | Kaufmann et al. | May 2002 | B1 |
6533212 | Tafel, II | Mar 2003 | B1 |
6545197 | Mueller et al. | Apr 2003 | B1 |
6676054 | Heaney et al. | Jan 2004 | B2 |
6722606 | Hanson et al. | Apr 2004 | B2 |
6786264 | Torres Martinez | Sep 2004 | B1 |
6790798 | Suzuki | Sep 2004 | B1 |
6820837 | Long | Nov 2004 | B2 |
6923401 | Lock | Aug 2005 | B2 |
7056076 | Ichikawa | Jun 2006 | B2 |
7527216 | Manning, Jr. et al. | May 2009 | B2 |
7540174 | Snijders | Jun 2009 | B2 |
7569039 | Matsuda et al. | Aug 2009 | B2 |
7621479 | Matzenmüller | Nov 2009 | B2 |
7806360 | Chadwick | Oct 2010 | B2 |
7878447 | Hartzheim | Feb 2011 | B2 |
7887001 | Yoon et al. | Feb 2011 | B2 |
7896282 | Barea | Mar 2011 | B2 |
7905446 | Hartzheim | Mar 2011 | B2 |
9067755 | Barea | Jun 2015 | B2 |
20040097895 | Busam et al. | May 2004 | A1 |
20040104299 | Heaney et al. | Jun 2004 | A1 |
20040158212 | Ponomarenko et al. | Aug 2004 | A1 |
20050107764 | Matsuda et al. | May 2005 | A1 |
20050133653 | Heaney et al. | Jun 2005 | A1 |
20050150990 | Schmidt-Hebbel | Jul 2005 | A1 |
20050278914 | Bartkowiak et al. | Dec 2005 | A1 |
20060131459 | Barea | Jun 2006 | A1 |
20070084960 | Heanley et al. | Apr 2007 | A1 |
20090312730 | LaVon et al. | Dec 2009 | A1 |
20110042012 | Benner et al. | Feb 2011 | A1 |
20110127364 | Rees et al. | Jun 2011 | A1 |
20120061015 | LaVon et al. | Mar 2012 | A1 |
20120061016 | LaVon et al. | Mar 2012 | A1 |
20120217337 | Barea | Aug 2012 | A1 |
20130112794 | Castillo et al. | May 2013 | A1 |
20130112800 | Castillo et al. | May 2013 | A1 |
20130161431 | Yanez, Jr. et al. | Jun 2013 | A1 |
20130255861 | Schneider | Oct 2013 | A1 |
20130255862 | Schneider et al. | Oct 2013 | A1 |
20130255863 | LaVon et al. | Oct 2013 | A1 |
20130255864 | Schneider et al. | Oct 2013 | A1 |
20130255865 | Brown et al. | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
1 009 581 | May 1997 | BE |
223 815 | Oct 1942 | CH |
1 972 011 | Nov 1967 | DE |
1 449 659 | Mar 1969 | DE |
38 33 434 | Dec 1989 | DE |
102 24 909 | Dec 2003 | DE |
0 045 854 | Feb 1982 | EP |
2 104 228 | Apr 1972 | FR |
598 999 | Mar 1948 | GB |
2 172 617 | Feb 1986 | GB |
02 11172 | Jan 1990 | JP |
06 287843 | Oct 1994 | JP |
08 151169 | Jun 1996 | JP |
2001 025868 | Jan 2001 | JP |
3505856 | Mar 2004 | JP |
WO 8900971 | Feb 1989 | WO |
WO 02077685 | Oct 2002 | WO |
Entry |
---|
PCT/US2015/019596 International Search Report, dated Jun. 23, 2015, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20150257941 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
61953957 | Mar 2014 | US |