The present disclosure relates to a quick and cost-effective means for determining drop volume using optical images of the drops. In particular, the present disclosure relates to a means for determining drop volume of ink drops ejected from a printhead for a printer.
Drop volume is an important parameter for many processes in which drops are expelled as part of an operation of a device or as part of a fabricating process. For example, for inkjet printers, drop volume is an important factor for evaluating ink jetting performance, which in turn can be impact overall performance of the printer. In particular, drop volume data can be critical for development activities such as the early stages of designing ejector, or jet, geometry, formulating new inks, and developing specific printhead drive waveforms. It is know to determine drop volume indirectly by measuring the total weight of tens of millions of drops, for example, the drops are ejected and received on a substrate with a known weight. The substrate with the received drops is then weighted on a balance and the weight of the drops is derived by subtracting the known weigh of the substrate. However, this method is extremely time-consuming and expensive. Use of this method can undesirably prolong the development cycle for new products and increase the cost of the development cycle.
Drop velocity calculation, frequency sweep, and a drop volume frequency sweep are often performed to evaluate ink ejecting performance. It is known to use stroboscopic imaging to generate optical images of expelled drops to measure drop velocity. For example, the stroboscopic imaging system produces high frequency, intensive, short pulsed flashes of light that illuminate drops in flight and produce optical images of the drops in flight. Determining drop volume requires the much slower and cumbersome weighing procedure described above. A drop volume frequency sweep using the drop volume procedure noted above (weighing tens of millions of drops) typically requires hours (and undesirably large amounts of ink) to complete. In contrast a drop velocity calculation, frequency sweep measures can typically be completed in several minutes.
Due to the length of time and the amount of ink required to complete a single drop volume frequency test, it is time consuming and costly, if not impossible, to acquire drop volume frequency sweep data in those cases, for example, selection of single jet design or waveform development, in which tens or hundreds of frequency sweeps are needed. Furthermore the weighting method described above only works for steady jetting conditions in which all drops have the same volumes. In practice, drop velocity as well as drop volume vary considerably in any drop burst pattern, which also is a key factor for assessing jetting performance. The above weighing procedure is unable to measure volume of individual drop in burst pattern because it is an average measurement. In addition, to use the above weighing procedure for a printing application, tens of milliliters of ink are typically required to conduct a single drop volume frequency sweep. However, each batch of experimental inks is typically made in similar volume, for example, hundreds of milliliters. A typical ink evaluation set includes tens of other tests beyond drop volume. Therefore, due to the small volumes of ink typically generated for experimental inks, drop volume determination at all desired conditions is often not possible.
According to aspects illustrated herein, there is provided a computer-based method for measuring volume of a drop, including: storing, in a memory element of a computer, computer readable instructions; expelling a first plurality of drops of a first substance with a known density from a source element, through a medium, and under at least one condition; executing, using a processor for the computer, the computer readable instructions to calculate a plurality of uncalibrated volumes for the first plurality of drops using respective images of drops in the first plurality of drops; expelling a second plurality of drops of the first substance from the source element, through the medium, and under the at least one condition; and executing, using the processor, the computer readable instructions to: calculate, using a weight for the second plurality of drops and the known density, a plurality of actual volumes for the second plurality of drops; and generate, using the plurality of uncalibrated volumes and the plurality of actual volumes, an equation to modify the plurality of uncalibrated volumes to match the plurality of actual volumes.
According to aspects illustrated herein, there is provided a computer-based method for measuring volume of a drop from a printhead for a printer, including: storing, in a memory element of a computer, computer readable instructions; and expelling first respective pluralities of drops of a first ink with a known density from the print head by: applying first respective drive voltages to the printhead while expelling the first respective pluralities of drops at a first constant frequency; or applying a first constant drive voltage and expelling the first respective pluralities of drops at first respective frequencies. The method includes: executing, using a processor for the computer, the computer readable instructions to calculate respective uncalibrated volumes for the first respective pluralities of drops using respective images of drops in the first respective pluralities of drops; and expelling second respective pluralities of drops of the first ink by: applying the first respective drive voltages to the printhead while expelling the second respective pluralities of drops at the first constant frequency; or applying the first constant drive voltage and expelling the second respective pluralities of drops at the first respective frequencies. The method includes executing, using the processor, the computer readable instructions to: calculate, using respective weights for the second respective pluralities of drops and the known density, respective actual volumes for the second respective pluralities of drops; and generate, using the respective uncalibrated volumes and the respective actual volumes, an equation to modify the respective uncalibrated volumes to match the respective actual volumes. The drive voltage regulates a size of a drop expelled from the printhead.
According to aspects illustrated herein, there is provided a computer-based apparatus for measuring volume of a drop, including: a memory element for a computer arranged to store computer readable instructions; a processor for the computer; and a source element arranged to expel a first plurality of drops of a first substance with a known density through a medium, and under a first set of conditions. The processor is arranged to execute the computer readable instructions to calculate a plurality of uncalibrated volumes for the first plurality of drops using respective images of drops in the first plurality of drops. The source element is arranged to expel a second plurality of drops of the first substance through the medium, and under the first conditions. The processor is arranged to execute the computer readable instructions to: calculate, using a weight for the second plurality of drops and the known density, a plurality of actual volumes for the second plurality of drops; and generate, using the plurality of uncalibrated volumes and the plurality of actual volumes, an equation to modify the plurality of uncalibrated volumes to match the plurality of actual volumes.
According to aspects illustrated herein, there is provided a computer-based apparatus for measuring volume of a drop from a printhead for a printer, including: a memory element for a computer arranged to store computer readable instructions; a processor for the computer; and the printhead arranged to expel first respective pluralities of drops of a first ink with a known density by: applying first respective drive voltages to the printhead while expelling the first respective pluralities of drops at a first constant frequency; or applying a first constant drive voltage and expelling the first respective pluralities of drops at first respective frequencies. The processor is arranged to execute the computer readable instructions to calculate respective uncalibrated volumes for the first respective pluralities of drops using respective images of drops in the first respective pluralities of drops. The printhead is arranged to expel second respective pluralities of drops of the first ink by: applying the first respective drive voltages to the printhead while expelling the second respective pluralities of drops at the first constant frequency; or applying the first constant drive voltage and expelling the second respective pluralities of drops at the first respective frequencies. The processor is arranged to execute the computer readable instructions to: calculate, using respective weights for the second respective pluralities of drops and the known density, respective actual volumes for the second respective pluralities of drops; and generate, using the respective uncalibrated volumes and the respective actual volumes, an equation to modify the respective uncalibrated volumes to match the respective actual volumes, wherein the drive voltage regulates a size of a drop expelled from the printhead.
Various embodiments are disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
As used herein, the words “printer,” “printer system”, “printing system”, “printer device” and “printing device” as used herein encompasses any apparatus, such as a digital copier, bookmaking machine, facsimile machine, multi-function machine, etc. which performs a print outputting function for any purpose.
Moreover, although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of these embodiments, some embodiments of methods, devices, and materials are now described.
The source element is arranged to expel plurality 112 under a set of conditions. In an example embodiment, the set of conditions includes expelling plurality 112 while at least one parameter 116 affecting the expulsion of the drops or the behavior of the drops while the drops are passing through the medium is varied. For example, a particular plurality 112 is associated with a particular quantification of the parameter, as further described below. The at least one parameter can be any parameter known in the art as further described below.
In an example embodiment, operation of the source element is controlled by the processor, for example, by executing instructions 108. That is, a particular plurality of drops, such as plurality 112, is expelled in response to one or more control signals 117 inputted to the source element. For example, a magnitude of the signals, a frequency of the signals, or data included in the signals affects how drops are expelled from the source element. In an example embodiment, signals 117 are stored in the memory element or inputted to the processor and transmitted to the source element by the processor. The discussion regarding operation of the source element by the processor is applicable to other pluralities of drops described infra.
As an example, in the control signal case, the control signal is a voltage signal and the voltage level of the control signal determines the size of the drops expelled. One plurality 112 is expelled in response to a level of 30 volt for the signal, another plurality 112 is expelled in response to a level of 40 volt for the signal, and further pluralities 112 are expelled in response to progressively larger voltage levels for the signal.
In an example embodiment, while pluralities 112 are passing through the medium, each plurality is exposed to a particular physical condition associated with a particular quantification of the parameter. By “passing through the medium” we mean that the drops have been expelled by the source element and travel of the drops has not yet been terminated, for example, the drops have not yet impacted a surface or device. For example, if the source element is being used in a pharmaceutical operation, drops of a pharmaceutical substance are ejected by the source element and pass through the medium until the drops contact receiving element 134. While passing through the medium, the drops may be affected by gravity or other forces related to the parameter as further described infra. The medium can be any medium known in the art through which drops can be transmitted, for example, other combinations of gases, or another liquid. In general, a medium through which the drops pass has one or more predetermined properties.
As an example, in the case in which the drops are passing through the medium, the medium is a combination of gases contained in environmental chamber 119 and forces associated the parameter act on the gases in the chamber or are present in the chamber. Possible parameters include, but are not limited to a magnetic field, an electrical field, an electrostatic field, temperature, chemical composition, or pressure. Temperature is used as the parameter in the following example, although it should be understood that other parameters could be used. In the example that follows it is assumed that inputs to the source element remain constant. One plurality 112 is expelled into the medium when the chamber is heated to a first temperature, another plurality 112 is expelled into the medium when the chamber is heated to a second, higher, temperature, and further pluralities 112 are expelled into the medium when the chamber is heated to progressively higher temperatures. In an example embodiment, one or more inputs to the source element are varied in addition to varying the parameter affecting the chamber. In an example embodiment, while respective pluralities 112 are passing through the medium, each respective plurality 112 is exposed to one physical condition associated with one quantification of a parameter and is exposed to another respective physical condition associated with a quantification of a another parameter; or, in response to one control signal 117 and in response to respective control signals 117 associated with a respective quantification of parameter.
The processor is arranged to execute the computer readable instructions to calculate an average uncalibrated volume 118 for each plurality 112 expelled from the source element using respective images 120 of drops in pluralities 112, as is known in the art. Any means known in the art can be used to generate the optical images. In an example embodiment, the processed images are generated from respective stroboscopic images, or a high-speed camera. In an example embodiment, the processed images are generated outside of apparatus 100 are inputted to apparatus 100. In an example embodiment, stroboscopic images are inputted to apparatus 100 and the processor generates the processed images. In an example embodiment, apparatus 100 includes stroboscopic assembly 122 used to generate stroboscopic images of the drops as the drops pass through or by the stroboscopic assembly and the processor generates the processed images from input received from assembly 122 regarding the stroboscopic images. The processor controls operation of assembly 122, for example, by executing instructions 108 and sending appropriate control signals to assembly 122.
As noted supra, the accuracy of the known methods of estimating drop volume from optical images is unsuitable for some applications. To improve upon the accuracy of graph 130, the following calibration procedure is implemented. The source element expels respective pluralities 132 of drops of substance 114 under the same conditions under which the first respective pluralities of drops 112 (those used to generate average uncalibrated volumes 118) were expelled. The number of drops included in each plurality 132 is known. Respective drops for pluralities 132 are collected on receiving element 134 and weighed using any means known in the art. In an example embodiment, data 136 including a known weight of receiving element 134 and the weight of receiving element 134 after receiving pluralities 132 is received by the processor. The processor calculates the weight of the drops for each plurality of drops using the weight of receiving element 134 before and after receiving the drops. It should be understood that the preceding weighing sequence can be performed for each plurality 132 or for some combination of all of pluralities 132. In an example embodiment, apparatus 100 includes receiving element 134.
The processor calculates an average actual volume 138 for each plurality 132 using the weight of the drops, the known density of substance 114, and the number of drops in each plurality 132. Although a particular procedure is described for obtaining volumes 138, it should be understood that any other procedure known in the art involving the weighing of drops 112 can be used. In general, a relatively large number of drops expelled over a relatively large stretch of time are needed to implement the weighing procedure described above.
As further described below, equation 143 is used to adjust, or calibrate, uncalibrated volumes, for example, similar to volumes 118, for subsequent pluralities of drops of substance 114 or for pluralities of drops of another substance, as further described below. Further, equation 143 also is applicable to pluralities of drops in which parameter 116 is varied.
As an example, the source element expels pluralities 144 of substance 146 having at least some characteristics different from those of substance 114. Pluralities 144 are expelled under the same respective conditions under which the first respective pluralities of drops 112 (those used to generate average uncalibrated volumes 118) were expelled. Average uncalibrated volumes 148 for pluralities 144 are calculated using the same process described above to calculate volumes 118 using optical images of the drops. The processor uses equation 143 to calibrate, or adjust, each volume 148, correcting respective errors in volumes 148 associated with the calculation of volume 148 using optical data.
In a manner similar to that described for pluralities 154, pluralities 160 of substance 162 having at least some characteristics different from those for substance 114 can be expelled under conditions different from those under which pluralities 112 were expelled to generate volumes 118. For example, a magnitude of signal 117 controls the size of drops expelled from the source element and a frequency of signal 117 controls the frequency at which drops are expelled. As an example, the magnitude of signal 117 is held constant and the frequency of signal 117 is progressively increased for each successive plurality 160 expelled from the source element. Average uncalibrated volumes 164 are calculated using the same process described above to calculate volumes 118 using optical images of the drops. The processor applies equation 143 to volumes 164 to adjust, or calibrate, volumes 164.
It should be understood that for each plurality of drops from a set of pluralities of drops, for example, pluralities 112, the drops can be expelled from a single port 165 in the source element, or the drops can be expelled from a plurality of ports. Further, it is not necessary for each plurality of drops in the set to be expelled by the same ports or by the same number of ports.
In an example embodiment, assembly 100 includes at least portions of a printer, the source element is a printhead for the printer, and the substances expelled from the printhead are various types of ink. The printhead can include any number of injectors for ejecting, or expelling, the ink. In the discussion that follows, the printhead has at least 100 ejectors; however, it should be understood that the printhead can have other numbers of ejectors. The discussion regarding
Returning to
Returning to
Returning to
Returning to
Apparatus 100 enables fast and accurate determination of drop volume using readily available optical images of the drops. For example, such optical images are routinely generated for printing applications to measure other parameters such as velocity of drops ejected from a printhead. Advantageously, only a single calibrating operation, for example, the generation and weighing of pluralities 132, is needed to generate the calibration equation which is then applicable to other drop generating operations.
Apparatus 100 can be used for any operation in which is necessary or desirable to quickly, cost-effectively, and accurately ascertain volumes for drops being expelled as part of the operation. Possible applications include, but are not limited to, operations, as well as printing applications, pharmaceutical operations, application of adhesives, titration operations, medical applications, biological applications, general chemical operations, 3D printing applications, printed electronics applications, patterning and coating applications, and general mixing.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5387976 | Lesniak | Feb 1995 | A |
5526027 | Wade et al. | Jun 1996 | A |
5621447 | Takizawa et al. | Apr 1997 | A |
5689291 | Tence et al. | Nov 1997 | A |
5818475 | Miyazaki et al. | Oct 1998 | A |
5914739 | Zhang | Jun 1999 | A |
6109723 | Castle et al. | Aug 2000 | A |
6264298 | Mantell | Jul 2001 | B1 |
6352330 | Lubinsky et al. | Mar 2002 | B1 |
6428134 | Clark et al. | Aug 2002 | B1 |
6513901 | Walker | Feb 2003 | B1 |
6517182 | Scardovi | Feb 2003 | B1 |
6655775 | Raman et al. | Dec 2003 | B1 |
6698862 | Choi et al. | Mar 2004 | B1 |
6985254 | Allen et al. | Jan 2006 | B2 |
7121642 | Stoessel et al. | Oct 2006 | B2 |
7585044 | Williams et al. | Sep 2009 | B2 |
8033634 | Komatsu et al. | Oct 2011 | B2 |
8042899 | Folkins et al. | Oct 2011 | B2 |
8087740 | Piatt et al. | Jan 2012 | B2 |
8256869 | Amoah-Kusi et al. | Sep 2012 | B2 |
20020126173 | Sarmast et al. | Sep 2002 | A1 |
20020177237 | Shvets et al. | Nov 2002 | A1 |
20030081023 | Miller et al. | May 2003 | A1 |
20030137563 | Zhang | Jul 2003 | A1 |
20030214562 | Zhang | Nov 2003 | A1 |
20030218648 | Barnes et al. | Nov 2003 | A1 |
20030231231 | Zhang | Dec 2003 | A1 |
20040223015 | Couwenhoven et al. | Nov 2004 | A1 |
20040267888 | Oswald | Dec 2004 | A1 |
20050068352 | Smektala et al. | Mar 2005 | A1 |
20050078136 | Barnes et al. | Apr 2005 | A1 |
20050146543 | Smith et al. | Jul 2005 | A1 |
20070229609 | Kim et al. | Oct 2007 | A1 |
20070257952 | Keller et al. | Nov 2007 | A1 |
20080018710 | Mantell | Jan 2008 | A1 |
20080266339 | Snyder et al. | Oct 2008 | A1 |
20090322822 | Kneezel et al. | Dec 2009 | A1 |
20100097590 | Schumaker | Apr 2010 | A1 |
20100098859 | Schumaker | Apr 2010 | A1 |
20100149268 | Silverbrook | Jun 2010 | A1 |
20110090275 | Govyadinov et al. | Apr 2011 | A1 |
20110286896 | Hess et al. | Nov 2011 | A1 |
20120075378 | Baldy et al. | Mar 2012 | A1 |
20120120163 | Ellinger | May 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20120296581 A1 | Nov 2012 | US |