Apparatus and method for measuring ground amounts of liquid crystal display panel

Information

  • Patent Grant
  • 7528922
  • Patent Number
    7,528,922
  • Date Filed
    Friday, October 24, 2003
    20 years ago
  • Date Issued
    Tuesday, May 5, 2009
    15 years ago
Abstract
An apparatus for measuring ground amounts of a liquid crystal display panel includes a grinding unit for grinding upper and lower marginal portions of a unit liquid crystal display panel, a first imaging system for producing images of a ground surface of the upper marginal portion of the unit liquid crystal display panel, and a second imaging system for producing images of a ground surface of the lower marginal portion of the unit liquid crystal display panel.
Description

The present invention claims the benefit of Korean Patent Application No. P2002-080862 filed in Korea on Dec. 17, 2002, which is hereby incorporated by reference.


BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to an apparatus and method for measuring ground amounts of a display panel, and more particularly, to an apparatus and method for measuring ground amounts of a liquid crystal display panel.


2. Disclosure of the Related Art


In general, a plurality of thin film transistor array substrates are formed on a first large-sized glass substrate and a plurality of color filter substrates are formed on a second large-sized glass substrate in order to improve fabrication yield of liquid crystal display devices. Then, the first and second substrates are attached together to simultaneously form a plurality of unit liquid crystal display panels. Accordingly, a process for cutting the liquid crystal display panel into a plurality of unit liquid crystal display panels is required.


The cutting of the unit crystal display panels is commonly performed such that a scribing line is formed on a surface of one of the first and second substrates using a wheel have a hardness greater than a hardness of the first and second glass substrates in order to propagate a crack along the scribing line.



FIG. 1 is a cross sectional view of a plurality of unit liquid crystal display panels according to the related art. In FIG. 1, a plurality of thin film transistor array substrates 1 protrude along sides of a plurality of color filter substrates 2. In addition, a gate pad unit (not shown) and a data pad unit (not shown) are formed along marginal portions of the thin film transistor array substrates 1 that do not overlap with the color filter substrates 2. Accordingly, the color filter substrates 2 are formed on a second substrate 30 and are isolated by dummy regions 31 corresponding to protruding portions of the thin film transistor array substrates 1 that are formed on a first substrate 20.


The unit liquid crystal display panels are suitably disposed such that an area of the first and the second substrates 20 and 30 may be efficiently utilized. In addition, the unit liquid crystal display panels are usually isolated by the regions 32.


After the first substrate 20, which includes the thin film transistor array substrates 1, and the second substrate 30, which includes the color filter substrates 2, are attached to each other, the liquid crystal display panels are cut into individual unit liquid crystal display panels. Accordingly, the dummy regions 31 and regions 32 are removed during cutting.



FIG. 2 is a plan view of a unit liquid crystal display panel according to the related art. In FIG. 2, a unit liquid crystal display panel 10 includes an image display unit 13 in which liquid crystal cells are arranged in a matrix form, a gate pad part 14 connecting gate lines (GL1 to GLm) of the image display unit 13 to a gate driver integrated circuit (not shown) to which a gate signal is supplied, and a data pad part 15 connecting data lines (DL1 to DLn) of the image display unit 13 to a data driver integrated circuit (not shown) to which image information is supplied. The gate pad part 14 and the data pad part 15 are formed along marginal portions of the thin film transistor array substrate 1 and protrude from a short side and a long side of the thin film transistor array substrate 1, as compared to the color filter substrate 2.


Although not shown, a thin film transistor switching the liquid crystal cells is formed at each of intersectional portions of the data lines DL1 to DLN and the gate lines GL1 to GLm of the thin film transistor array substrate 1. Furthermore, a pixel electrode is connected to the thin film transistor for supplying an electric field to the liquid crystal cells, and a passivation film is provided for protecting the data lines DL1 to DLn and the gate lines GL1 to GLm, wherein the thin film transistors and a pixel electrode are formed on the thin film transistor array substrate 1. In addition, color filters are separately coated at the cell regions by the black matrix and a common transparent electrode, which is a counter electrode of the pixel electrode formed on the thin film transistor array substrate 1, are provided on the color filter substrate 2.


A cell gap is formed between the thin film transistor array substrate 1 and the color filter substrate 2 so that they are separated with a gap formed there between. The thin film transistor array substrate 1 and the color filter substrate 2 are attached by a sealant (not shown) formed along an exterior of the image display unit 13, and a liquid crystal layer (not shown) is formed within the gap between the thin film transistor array substrate 1 and the color filter substrate 2.


Although not shown, a shorting bar is formed at the marginal portion of the thin film transistor array substrate 1 to prevent electrostatic discharge that may occur when conductive films are patterned on the thin film transistor array substrate 1. The shorting bar is removed after the liquid crystal display panels are cut to individual unit liquid crystal display panels. Thus, marginal portions of the unit liquid crystal display panel are ground to remove the shorting bar. In addition, grinding of the marginal portions of the unit liquid crystal display panel adversely causes generation of fragments within the marginal portion of the unit liquid crystal display panel due to exterior impact. Accordingly, an operator may be injured by the sharp fragments of the marginal portions of the unit liquid crystal display panel.



FIG. 3 is a schematic view of a grinding device for a liquid crystal display panel according to the related art. In FIG. 3, a grinding device includes a loading unit 50 that loads a cut unit liquid crystal display panel 10, a grinding unit 53 that receives the unit liquid crystal display panel 10 loaded at the loading unit 50, aligns the unit liquid crystal display panel 10 at a grinding table 51, and grinds a marginal portion of the unit liquid crystal display panel 10 using a grinding wheel 52 rotated at a high speed, and an unloading unit 54 that receives and unloads the ground unit liquid crystal display panel 10 from the grinding unit 53.



FIG. 4 is a perspective view of an apparatus for measuring a grinding amount of a liquid crystal display panel according to the related art. In FIG. 4, the marginal portions of the unit liquid crystal display panel 10 are ground to have sloped edge portions along upper and lower surfaces. In general, the upper marginal portion of the unit liquid crystal display panel 10 where the shorting bar is formed is ground more than the lower marginal portion of the unit liquid crystal display panel 10.


In order to measure the ground amounts of the unit liquid crystal display panel 10, a camera 60 is installed at an upper side of the marginal portion of the unit liquid crystal display panel 10 to create and image of the upper marginal portion of the unit liquid crystal display panel 10. As the operator inspects the image of the upper marginal portion of the unit liquid crystal display panel 10, the operator may determine whether the ground amount is adequate.



FIG. 5 is a plan view of a photographic image produced by a camera according to the related art. In FIG. 5, an image C1 photographed by the camera 60 (in FIG. 4) shows a grind width W1 of the upper marginal portion of the unit liquid crystal display panel 10. However, the apparatus for measuring the ground amount of liquid crystal display panel has the following problems. First, since the camera 60 (in FIG. 4) is installed at the upper side of the marginal portion of the unit liquid crystal display panel 10, photographic images of only the upper marginal portion of the unit liquid crystal display panel 10 are obtained. Accordingly, photographic images of the lower marginal portion of the unit liquid crystal display panel 10 are not obtained, thereby making it impossible to determine whether the lower marginal portion of the unit liquid crystal display panel 10 has been adequately ground. Thus, the lower marginal portion of the unit liquid crystal display panel 10 may be defective, which would result in a defective liquid crystal display panel and a yield degradation.


SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to an apparatus and method for measuring ground amounts of a liquid crystal display panel that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.


An object of the present invention is to provide an apparatus for measuring ground amounts of upper and lower marginal portions of a unit liquid crystal display panel.


Another other object of the present invention is to provide a method of measuring ground amounts of upper and lower marginal portions of a unit liquid crystal display panel.


Additional features and advantage of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, an apparatus for measuring ground amounts of a liquid crystal display panel includes a grinding unit for grinding upper and lower marginal portions of a unit liquid crystal display panel, a first imaging system for producing images of a ground surface of the upper marginal portion of the unit liquid crystal display panel, and a second imaging system for producing images of a ground surface of the lower marginal portion of the unit liquid crystal display panel.


In another aspect, a system for measuring ground amounts of a liquid crystal display panel includes an imaging system for producing images of ground upper and lower marginal portions of the liquid crystal display panel along the upper and lower marginal portions of the liquid crystal display panel.


In another aspect, a method for measuring ground amounts of a liquid crystal display panel includes grinding upper and lower marginal surfaces of a unit liquid crystal display panel using a grinding unit, and producing images of the ground upper and lower marginal surfaces of the unit liquid crystal display panel using an imaging system.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:



FIG. 1 is a cross sectional view of a plurality of unit liquid crystal display panels according to the related art;



FIG. 2 is a plan view of a unit liquid crystal display panel according to the related art;



FIG. 3 is a schematic view of a grinding device for a liquid crystal display panel according to the related art;



FIG. 4 is a perspective view of an apparatus for measuring a grinding amount of a liquid crystal display panel according to the related art;



FIG. 5 is a plan view of a photographic image produced by a camera according to the related art;



FIG. 6 is a perspective view of an exemplary apparatus for measuring a grinding amount of a liquid crystal display panel according to the present invention; and



FIGS. 7A and 7B are plan views of photographic images produced by first and second imaging systems of FIG. 6 according to the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the illustrated embodiments of the present invention, examples of which are illustrated in the accompanying drawings.



FIG. 6 is a perspective view of an exemplary apparatus for measuring a grinding amount of a liquid crystal display panel according to the present invention. In FIG. 6, an apparatus for measuring a ground amount of a liquid crystal display panel may include a grinding unit 110 for grinding upper and lower marginal portions of a unit liquid crystal display panel 100, a first imaging system 120 for producing images of a ground surface of the upper marginal portion of the unit liquid crystal display panel 100, and a second imaging system 130 for producing images of a ground surface of the lower marginal portion of the unit liquid crystal display panel 100. The grinding unit 110 may include a grinding table 111 upon which the unit liquid crystal display panel 100 may be loaded, and a plurality of grinding wheels (not shown) for grinding the upper and lower marginal portions of the unit liquid crystal display panel 100.


Although not shown, the unit liquid crystal display panel 100 may be formed as a thin film transistor array substrate and a color filter substrate attached together such that one short side and one long side of the thin film transistor array substrate may protrude compared to sides of the color filter substrate. In addition, an image display part, where a plurality of pixels may be formed in a matrix configuration, may be provided at a region where the thin film transistor array substrate and the color filter substrate are attached together.


A plurality of gate lines, which are arranged along a horizontal direction, and a plurality of data lines, which are arranged along a vertical direction, may be formed to intersect each other at the image display part of the thin film transistor array substrate. Furthermore, a plurality of pixels may be arranged in a matrix configuration at a rectangular region defined at a region where the gate and data lines intersect. The plurality of pixels may individually include a thin film transistor, which may function as a switching device, and a pixel electrode.


The image display part of the color filter substrate may include red, green, and blue color filters formed to be separated by a black matrix and a common electrode, and the counter electrode of the pixel electrode may be formed on the thin film transistor array substrate. The thin film transistor array substrate and the color filter substrate may be attached together using a seal pattern formed along an outer edge of the image display part. Randomly scattered ball spacers or patterned spacers (i.e., column spacers) may be formed using photolithographic processes on the thin film transistor array substrate or on the color filter substrate. Accordingly, the attached thin film transistor array substrate and the color filter substrate may have a certain gap therebetween, wherein a liquid crystal layer may be provided within the gap. The liquid crystal layer may be formed using a vacuum injection method after the thin film transistor array substrate and the color filter substrate are attached together, or dropping liquid crystal material onto at least one of the thin film transistor array substrate and the color filter substrate and attaching the thin film transistor array and color filter substrates together.


Along the protruding short side of the thin film transistor array substrate, a gate pad part may be formed to be electrically connected to the gate lines to supply drive signals to the gate lines. In addition, along the protruding long side of the thin film transistor array substrate, a data pad part may be formed to be electrically connected to the data lines to supply image information to the data lines.


In FIG. 6, upper and lower marginal portions of the unit liquid crystal display panel 100 may be ground to include a sloped edge portion. For example, the upper marginal portion of the unit liquid crystal display panel 100, where the shorting bar may be formed, may be ground more as compared to the lower marginal portion of the unit liquid crystal display panel 100.


The first and second imaging systems 120 and 130 may be positioned along the upper and lower marginal portions of the unit liquid crystal display panel 100, respectively. For example, either one or both of the first and second imaging systems 120 and 130 may include a charge coupled device (CCD) to produce images of the upper and lower marginal portions of the unit liquid crystal display panel 100. The first and second imaging systems 120 and 130 may be aligned to the upper and lower marginal portions of the unit liquid crystal display panel 100, respectively, using an alignment mark (not shown) that may be provided at the upper and lower marginal portions of the unit liquid crystal display panel 100. Then, an image of the ground surfaces of the upper and lower marginal portions of the unit liquid crystal display panel 100 may be used to measure ground amounts of the upper and lower marginal portions of the unit liquid crystal display panel 100.


For example, the first and second imaging systems 120 and 130 may produce images along the upper and lower marginal portions of the unit liquid crystal display panel 100 to be used to measure the ground amounts. Alternatively, the first and second imaging systems 120 and 130 may produce images of the ground surfaces of the upper and lower marginal portions of the unit liquid crystal display panel 100 at one or more positions of the upper and lower marginal portions of the liquid crystal display panel 100 to be used to measure the ground amounts.


As the grinding table 111 of the grinding unit 110 rotates and moves, the first imaging system 120 may produce images at a predetermined position, or predetermined positions, of the upper surface of the unit liquid crystal display panel 100 to be used to measure ground amounts of the upper surface of the unit liquid crystal display panel 100. In addition, the second imaging system 130 may produce images at the predetermined position(s) of the lower surface of the unit liquid crystal display panel 100 to be used to measure the ground amounts. Accordingly, additional processes to correct grinding amounts of the lower surface of the unit liquid crystal display panel 100 may not be necessary.



FIGS. 7A and 7B are plan views of photographic images produced by first and second imaging systems of FIG. 6 according to the present invention. In FIGS. 7A and 7B, an image C11 produced by the first imaging system 120 may show a ground width W11 of the upper marginal portion of the unit liquid crystal display panel 100, while an image C12 produced by the second imaging system 130 may show a ground width W12 of the lower marginal portion of the unit liquid crystal display panel 100. For example, the upper marginal portion of the unit liquid crystal display panel 100 where the shorting bar may be formed may be ground more as compared to the lower marginal portion of the unit liquid crystal display panel 100. Accordingly, the ground width W11 of the upper marginal portion of the unit liquid crystal display panel 100 may be wider than the ground width W12 of the lower marginal portion of the unit liquid crystal display panel 100.


Thus, the operator may detect the ground amounts of the upper and lower marginal portions of the unit liquid crystal display panel 100 from the images C11 and C12 produced using the first and second imaging systems 120 and 130. If defective grinding is performed, the ground amounts of the upper and lower marginal portions of the unit liquid crystal display panel 100 may be corrected by suitably controlling the grinding wheels (not shown) that may be provided within the grinding unit 110.


It will be apparent to those skilled in the art that various modifications and variations can be made in the apparatus and method for measuring ground amounts of a liquid crystal display panel of the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A method for measuring ground amounts of a liquid crystal display panel, comprising: grinding upper and lower marginal surfaces of a unit liquid crystal display panel using a grinding unit to include a sloped edge portion, wherein the unit liquid crystal display panel includes a thin film transistor array substrate and a color filter substrate;producing first images of the ground surface of the upper and marginal surface of the unit liquid crystal display panel using a first imaging system; andproducing second images of the ground surface of the lower marginal surface of the unit liquid crystal display panel using a second imaging system, wherein the upper marginal surface of the unit liquid crystal display panel is grinded more as compared to the lower marginal surface of the unit liquid crystal display panel.
  • 2. The method according to claim 1, further comprising: loading the unit liquid crystal display panel upon a grinding table of the grinding unit; andgrinding the upper and lower marginal surfaces of the unit liquid crystal display panel using a plurality of grinding wheels.
  • 3. The method according to claim 1, wherein the first and second imaging systems are provided within the grinding unit.
  • 4. The method according to claim 1, wherein the first and second imaging systems include at least one charge coupled device (CCD).
  • 5. The method according to claim 1, further comprising aligning the first and second imaging systems with the upper and lower marginal surfaces of the unit liquid crystal display panel using an alignment mark provided at the upper and lower marginal surfaces of the unit liquid crystal display panel.
  • 6. The method according to claim 1, wherein producing first and second images includes producing the first and second images of the ground upper and lower marginal surfaces of the unit liquid crystal display panel using the first and second imaging systems.
  • 7. The method according to claim 1, wherein producing first and second images includes producing the first and second images of the ground upper and lower marginal surfaces of the unit liquid crystal display panel at one or more positions of the upper and lower marginal surfaces of the unit liquid crystal display panel using the first and second imagine systems.
  • 8. A liquid crystal display panel having measured ground upper and lower marginal surfaces measure using the method according to claim 1.
Priority Claims (1)
Number Date Country Kind
10-2002-0080862 Dec 2002 KR national
US Referenced Citations (40)
Number Name Date Kind
3978580 Leupp et al. Sep 1976 A
4094058 Yasutake et al. Jun 1978 A
4653864 Baron et al. Mar 1987 A
4691995 Yamazaki et al. Sep 1987 A
4775225 Tsuboyama et al. Oct 1988 A
5247377 Omeis et al. Sep 1993 A
5263888 Ishihara et al. Nov 1993 A
5379139 Sato et al. Jan 1995 A
5406989 Abe Apr 1995 A
5499128 Hasegawa et al. Mar 1996 A
5507323 Abe Apr 1996 A
5511591 Abe Apr 1996 A
5539545 Shimizu et al. Jul 1996 A
5548429 Tsujita Aug 1996 A
5642214 Ishii et al. Jun 1997 A
5680189 Shimizu et al. Oct 1997 A
5742370 Kim et al. Apr 1998 A
5757451 Miyazaki et al. May 1998 A
5852484 Inoue et al. Dec 1998 A
5854664 Inoue et al. Dec 1998 A
5861932 Inata et al. Jan 1999 A
5875922 Chastine et al. Mar 1999 A
5952676 Sato et al. Sep 1999 A
5956112 Fujimori et al. Sep 1999 A
6001203 Yamada et al. Dec 1999 A
6011609 Kato et al. Jan 2000 A
6016178 Kataoka et al. Jan 2000 A
6016181 Shimada Jan 2000 A
6055035 Von Gutfeld et al. Apr 2000 A
6163357 Nakamura Dec 2000 A
6219126 Von Gutfeld Apr 2001 B1
6224459 Stocker et al. May 2001 B1
6226067 Nishiguchi et al. May 2001 B1
6236445 Foschaar et al. May 2001 B1
6304306 Shiomi et al. Oct 2001 B1
6304311 Egami et al. Oct 2001 B1
6337730 Ozaki et al. Jan 2002 B1
6414733 Ishikawa et al. Jul 2002 B1
6428390 Clark et al. Aug 2002 B1
20010021000 Egami Sep 2001 A1
Foreign Referenced Citations (202)
Number Date Country
1364134 Aug 2002 CN
1 003 066 May 2000 EP
51-65656 Jun 1976 JP
57-38414 Mar 1982 JP
57-88428 Jun 1982 JP
58-27126 Feb 1983 JP
59-57221 Apr 1984 JP
59-195222 Nov 1984 JP
60-111221 Jun 1985 JP
60-164723 Aug 1985 JP
60-217343 Oct 1985 JP
61-7822 Jan 1986 JP
61-55625 Mar 1986 JP
06-054229 Mar 1987 JP
62-054225 Mar 1987 JP
62-054228 Mar 1987 JP
62-89025 Apr 1987 JP
62-90622 Apr 1987 JP
62-205319 Sep 1987 JP
63-109413 May 1988 JP
63-128315 May 1988 JP
63-311233 Dec 1988 JP
02-002946 Jan 1990 JP
02-062974 Mar 1990 JP
03-009549 Jan 1991 JP
03-22916 Oct 1991 JP
05-036425 Feb 1993 JP
05-036426 Feb 1993 JP
05-107533 Apr 1993 JP
5-127179 May 1993 JP
5-154923 Jun 1993 JP
5-265011 Oct 1993 JP
5-281557 Oct 1993 JP
5-281562 Oct 1993 JP
06-018829 Jan 1994 JP
6-51256 Feb 1994 JP
06-064229 Mar 1994 JP
6-148657 May 1994 JP
6-160871 Jun 1994 JP
06-194637 Jul 1994 JP
6-235925 Aug 1994 JP
6-265915 Sep 1994 JP
6-313870 Nov 1994 JP
7-84268 Mar 1995 JP
7-128674 May 1995 JP
7-181507 Jul 1995 JP
07-275770 Oct 1995 JP
07-275771 Oct 1995 JP
08-076133 Mar 1996 JP
8-95066 Apr 1996 JP
8-101395 Apr 1996 JP
8-106101 Apr 1996 JP
08-110504 Apr 1996 JP
08-136937 May 1996 JP
8-171094 Jul 1996 JP
08-173874 Jul 1996 JP
8-190099 Jul 1996 JP
8-240807 Sep 1996 JP
08-243891 Sep 1996 JP
09-001026 Jan 1997 JP
9-5762 Jan 1997 JP
9-26578 Jan 1997 JP
9-61829 Mar 1997 JP
9-73075 Mar 1997 JP
9-73096 Mar 1997 JP
09-094500 Apr 1997 JP
9-127528 May 1997 JP
9-230357 Sep 1997 JP
9-281511 Oct 1997 JP
9-311340 Dec 1997 JP
10-123537 May 1998 JP
10-123538 May 1998 JP
10-142616 May 1998 JP
63-110425 May 1998 JP
10-148619 Jun 1998 JP
10-174924 Jun 1998 JP
10-177178 Jun 1998 JP
10-221700 Aug 1998 JP
10-282512 Oct 1998 JP
10-333157 Dec 1998 JP
10-333159 Dec 1998 JP
11-14953 Jan 1999 JP
11-38424 Feb 1999 JP
11-64811 Mar 1999 JP
11-109388 Apr 1999 JP
11-133438 May 1999 JP
11-142864 May 1999 JP
11-174477 Jul 1999 JP
11-211799 Aug 1999 JP
11-212045 Aug 1999 JP
11-248930 Sep 1999 JP
11-262712 Sep 1999 JP
11-264991 Sep 1999 JP
11-326922 Nov 1999 JP
11-344714 Dec 1999 JP
2000-2879 Jan 2000 JP
2000-29035 Jan 2000 JP
2000-56311 Feb 2000 JP
2000-66165 Mar 2000 JP
2000-066218 Mar 2000 JP
2000-093866 Apr 2000 JP
2000-137235 May 2000 JP
2000-147528 May 2000 JP
2000-180808 Jun 2000 JP
2000180808 Jun 2000 JP
2000-193988 Jul 2000 JP
2000-202749 Jul 2000 JP
2000-241824 Sep 2000 JP
2000-284295 Oct 2000 JP
2000-292799 Oct 2000 JP
2000-310759 Nov 2000 JP
2000-310784 Nov 2000 JP
2000-338501 Dec 2000 JP
2001-5401 Jan 2001 JP
2001-5405 Jan 2001 JP
2001-13506 Jan 2001 JP
2001-33793 Feb 2001 JP
2001-42341 Feb 2001 JP
2001-51284 Feb 2001 JP
2001-66615 Mar 2001 JP
2001-083492 Mar 2001 JP
2001-91727 Apr 2001 JP
2001-117105 Apr 2001 JP
2001-117109 Apr 2001 JP
2001-133745 May 2001 JP
2001-133794 May 2001 JP
2001-133799 May 2001 JP
2001-135910 May 2001 JP
2001-142074 May 2001 JP
2001-147437 May 2001 JP
2001-154211 Jun 2001 JP
2001-166272 Jun 2001 JP
2001-166310 Jun 2001 JP
2001-183683 Jul 2001 JP
2001-201750 Jul 2001 JP
2001-209052 Aug 2001 JP
2001-209056 Aug 2001 JP
2001-209057 Aug 2001 JP
2001-209058 Aug 2001 JP
2001-209060 Aug 2001 JP
2001-215459 Aug 2001 JP
2001-222017 Aug 2001 JP
2001-235758 Aug 2001 JP
2001-255542 Sep 2001 JP
2001-264782 Sep 2001 JP
2001-272640 Oct 2001 JP
2001-281675 Oct 2001 JP
2001-281678 Oct 2001 JP
2001-282126 Oct 2001 JP
2001-305563 Oct 2001 JP
2001-330837 Nov 2001 JP
2001-330840 Nov 2001 JP
2001-356353 Dec 2001 JP
2001-356354 Dec 2001 JP
2002-14360 Jan 2002 JP
2002-23176 Jan 2002 JP
2002-49045 Feb 2002 JP
2002-079160 Mar 2002 JP
2002-080321 Mar 2002 JP
2002-082334 Mar 2002 JP
2002-82340 Mar 2002 JP
2002-90759 Mar 2002 JP
2002-90760 Mar 2002 JP
2002-107740 Apr 2002 JP
2002-122870 Apr 2002 JP
2002-122872 Apr 2002 JP
2002-122873 Apr 2002 JP
2002-131762 May 2002 JP
2002-139734 May 2002 JP
2002-156518 May 2002 JP
2002-169166 Jun 2002 JP
2002-169167 Jun 2002 JP
2002-182222 Jun 2002 JP
2002-202512 Jul 2002 JP
2002-202514 Jul 2002 JP
2002-214626 Jul 2002 JP
2002-229042 Aug 2002 JP
2002-236276 Aug 2002 JP
2002-258299 Aug 2002 JP
2002-236292 Sep 2002 JP
2002-277865 Sep 2002 JP
2002-277866 Sep 2002 JP
2002-277881 Sep 2002 JP
2002-287156 Oct 2002 JP
2002-296605 Oct 2002 JP
2002-311438 Oct 2002 JP
2002-311440 Oct 2002 JP
2002-311442 Oct 2002 JP
2002-323687 Nov 2002 JP
2002-323694 Nov 2002 JP
2002-333628 Nov 2002 JP
2002-333635 Nov 2002 JP
2002-333843 Nov 2002 JP
2002-341329 Nov 2002 JP
2002-341355 Nov 2002 JP
2002-341356 Nov 2002 JP
2002-341357 Nov 2002 JP
2002-341358 Nov 2002 JP
2002-341359 Nov 2002 JP
2002-341362 Nov 2002 JP
10-149715 Jun 1998 KR
2000-0035302 Jun 2000 KR
Related Publications (1)
Number Date Country
20050274167 A1 Dec 2005 US