The present invention is described with the help of accompanying drawings:
The present invention provides an apparatus and method for measuring the position of moving objects with an inertial navigation system, a reference positioning system, and a Kalman-filter based fusion mechanism, which leads to a solution that offers higher accuracy and improved reliability than the application of any of the two basic type-specific location positioning solutions.
r
r(t)=r(t)+r(t),
where υr(t) is additive white Gaussian noise (AWGN) with a variance σ2υr. The inertial measurement unit 102 as disclosed above measures acceleration and angular velocity in a right-handed Cartesion co-ordinate system (x,y,z) that is body-fixed to the inertial measurement unit 102. In present embodiment, the inertial measurement unit 102 is mounted on the object in such a way that the z-axis is pointing in the opposite direction of the gravity vector; therefore, any movement of the object on a plain floor can be tracked with one gyroscope 121 and two accelerometers 122. Accelerometers 122 provide real-time measurements of acceleration components aix(t) and aiy(t) of the moving object in x- and y-direction. As these measurements are rather noisy due to the vibrations of the object and often biased by a non-negligible, time-varying offset, each measurement ai(t) is generated from the acceleration a(t) and bias b(t) according to the equation
a
i(t)=a(t)+b(t)+υa(t),
where υa(t) is additive white Gaussian noise (AWGN) with a variance σ2υa.
The gyroscope 121 measures the angular velocity {dot over (ψ)}zi(t) around the z-axis. Based on this noisy measurement, the angle estimator 131 continuously estimates the rotation angle {circumflex over (ψ)}zi(t). In a low-noise environment, this operation can be performed with an integrator. The output value of angle estimator 131 has to be initialized so that the x- and y-axis are aligned to the target co-ordinate system (X,Y). After this initial calibration step, the rotation unit 132 continuously transforms the measurements aix(t) and aiy(t) to the target co-ordinate system by
The dynamic and random movements of the object along the X- and Y-axis of the target co-ordinate system and the resulting signals provided by the inertial measurement unit 102 with co-ordinate transformer 103 and the reference positioning system 101 can be modelled as shown in
{dot over (a)}(t)=−αa(t)+wa(t), α≧0
where wa(t) represents white Gaussian noise with variance σ2wa. α defines the correlation between successive acceleration values and is inversely proportional to the time maneuver constant of the object.
Similarly, a time-dependent bias b(t) introduced by sensor imperfections can be modelled by
{dot over (b)}(t)=−βb(t)+wb(t), β≧0
where wb(t) is additive white Gaussian noise (AWGN) with variance σwb2. The correlation coefficient β, however, takes on a larger value than a because the bias b(t) changes with a much slower rate than the acceleration a(t). The position r(t) of the object, which is modeled at the output of the integrator 209, relates to its acceleration a(t), which is modeled at the output of the integrator 202, according to
{umlaut over (r)}(t)={dot over (υ)}(t)=a(t)
where υ(t) denotes the velocity of the object.
The above three linear differential equations represent the continuous-time process model of the investigated system, which can be written in the state-space form
{dot over (x)}(t)=Fx(t)+Gw(t)
where the state vector x(t), the process noise w(t), and the corresponding matrices F and G are given by
The measurement model is chosen in accordance with equations rr(t)=r(t)+vr(t) and ai(t)=a(t)+b(t)+υa(t) as
z(t)=Hx(t)+v(t),
where the output vector z(t), measurement noise v(t), and the matrix H are given by
The process and measurement models given by above two equations reflects the behavior of the system if the object is moving and location estimates are provided by the reference positioning system. If the object is stationary, a different model for the dynamic behaviour of the object can be obtained by incorporating the constraint a(t)=υ(t)=0 into the system matrix F of the process model as explained above. Similarly, if reference location position estimates are not available, the matrix H in the measurement model can be modified so that the signal rr(t) in the output vector z(t) is set to 0.
The forward Kalman-filter 303 continuously monitors the noisy measured signals acceleration ai(t) and reference position rr(t) and computes in real-time a location-position estimate {circumflex over (r)}(t) of the object based on a chosen process and measurement model. This is achieved by, firstly, replicating the process and measurement model without noise sources in the Kalman-filter 303 to generate a state vector estimate {circumflex over (x)}(t) and a corresponding output vector {circumflex over (z)}(t)=H{circumflex over (x)}(t) and, secondly, continuously updating the state vector estimate according to
{circumflex over ({dot over (x)}(t)=F{circumflex over (x)}(t)+K(t)[z(t)−{circumflex over (z)}(t)]
{circumflex over (x)}(t) is an optimal estimate of the state vector x(t) with respect to a mean-squared error criterion. The Kalman-filter 303 is driven by the error between the measured signal vector z(t) and the reconstructed output vector {circumflex over (z)}(t) weighted by the Kalman gain matrix K(t). For obtaining the optimum Kalman gain settings, the covariance matrix of the state vector estimation error is computed.
The forward Kalman-filter 303 provides estimates {circumflex over (x)}(t) of the state vector x(t) in real-time by taking into account all information of the measurement signals obtained up to time t. An even better estimate {tilde over (x)}(t) in terms of estimation accuracy can be obtained by performing forward-backward smoothing. This approach exploits additional information on the state vector which is contained in the measurement signals received after time t. The optimal smoothed estimate {tilde over (x)}(t) can thus not be computed in real time, but only after some delay required for collecting future measurements and afterwards post-processing all available data. However, this inherent disadvantage of optimal smoothing is of no importance if the state vector does not change its value when the approach is implemented. Therefore, we propose to apply forward-backward smoothing when the object is not moving in order to enhance the precision of state-vector estimates at past time instants and thus significantly improve the accuracy of the estimate of the current position of the object.
The forward-backward smoothing approach can be realized with a recording unit 302, a forward Kalman-filter 303, a backward Kalman-filter 305, and a smoothing unit 306 as shown in
The motion and reference detector 301 continuously monitors the acceleration signal ai(t) and reference position signal rr(t), firstly, to detect whether the object is in-motion or stationary and, secondly, to decide for the presence-of-reference or absence-of-reference position signal. The second event can also be directly signaled from the reference positioning system 101 to the location position estimator 104. Motion detector 301 detects the object's motion by continuously tracing the magnitude of the acceleration measurement signal ai(t), which strongly oscillates when the object is moving. The detection can thus be performed by sampling this signal at the rate of 1/T, averaging N consecutive samples, and then deciding for the event object stationary if the obtained mean value is below a pre-defined threshold μ, as defined by
The parameters N and μ are chosen so that even short stops of the object can be reliably detected and false decisions for not moving are avoided.
Depending on the detected events object in-motion/stationary and presence/absence-of-reference position signal, the control unit 304 dynamically switches the Kalman-filters 303 and 305 between the following modes of operation:
In this configuration, the control unit 304 enables the operation of the forward Kalman-filter as shown in
Since no reference signal is available, the location position estimator 104 has to derive an estimate which is entirely based on the accelerometer measurements ai(t). This change can be modelled by setting all elements in the second row of the measurement matrix H to zero. The control unit 304 reconfigures the Kalman-filter 303 so that this change in the measurement model is also reflected in the filter 303.
Moreover, the control unit 304 freezes the bias estimate {circumflex over (b)}(t) in the filter 303 to its current value when the mode of operation if switched from presence-of-reference to absence-of-reference position signal. This freeze operation is recommendable to avoid observability problems of simultaneous changes of acceleration and bias in the system model at the absence of a reference signal. The acceleration signal ai(t), reference position signal rr(t), and the mode parameters are recorded in the storage device with recoding unit 302 to perform forward-backward smoothing in Mode 3.
Whenever the motion detector 301 detects no movement of the object, the control unit 304 resets the acceleration estimate â(t) and the velocity estimate {circumflex over (υ)}(t) in the Kalman-filter 303 to zero. This operation calibrates the integrator output signals in the process and measurement model 408 to the known reference values of zero, and thus prevents offset accumulation by the integrators. Since the acceleration and velocity of the object is zero, an enhanced process model for the dynamic behavior of the object is obtained by incorporating the constraint a(t)=υ(t)=0 into the process equations. The control unit 304 reconfigures the Kalman-filter 303 so that this change in the process model is also reflected in the filter 303. Since the location position estimator 104 has recorded the signals ai(t) and rr(t) while the object was moving as explained in Mode 1, the recorded data stored in the last time interval before the object reached its stop can be post-processed by performing forward-backward smoothing with smoothing unit 306. The control unit 304 initializes the execution of the smoothing procedure after the event no-movement has been detected. After post-processing the recorded data, the location position estimator 104 provides the optimal smoothed estimate of the objects location.
It is believed that the present invention and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an exemplary embodiment thereof, and it is the intention of the following claims to encompass and include such changes.