Apparatus and method for middle shield connection in magnetic recording transducers

Information

  • Patent Grant
  • 9087527
  • Patent Number
    9,087,527
  • Date Filed
    Tuesday, October 28, 2014
    10 years ago
  • Date Issued
    Tuesday, July 21, 2015
    9 years ago
Abstract
A read transducer having a first read sensor, a second read sensor, and a first middle shield is provided. The second read sensor is disposed in a down track direction from the first read sensor. The first middle shield is disposed between the first read sensor and the second read sensor. The first middle shield includes a first metallic middle shield layer disposed between the first read sensor and the second read sensor, a second metallic middle shield layer disposed between the first metallic middle shield layer and the second read sensor, and a first magnetic-spacer layer disposed between the first metallic middle shield layer and the second metallic middle shield layer. The first metallic middle shield layer and the second metallic middle shield layer have substantially the same polarity.
Description
BACKGROUND


FIGS. 1A-1B illustrate a related-art two-dimensional magnetic recording (TDMR) transducer 1. Specifically, FIG. 1A illustrates a plan view of the related-art read transducer 1 and FIG. 1B illustrates a schematic view of the related-art two-dimensional read transducer 1. As illustrated, the related-art read transducer may include the two outer shields (15, 50), four mid-shields (20, 25, 55, 36), and three read sensors (80, 85, 90), each having to terminals for a total of six terminals (5, 10, 30, 35, 40, 45). The two outer shields include a first outer shield (S1) 15 and a second outer shields (S2) 50. The four mid-shields include a first mid-shield (MS1) 55, a second mid-shield (MS2) 20, a third mid-shield (MS3) 60, and a fourth mid-shield (MS4) 25.


The three read sensors (illustrated in FIG. 1B) include a first read sensor (R1) 80, a second read sensor (R2) 85, and a third read sensor (R3) 90. The first read sensor (R1) 90 includes a negative terminal (R1−) 5 and a positive terminal (R1+) 45. The second read sensor (R2) also includes a negative terminal (R2−) 10 and a positive terminal (R2+) 35. Further, the first read sensor (R3) includes a negative terminal (R3−) 30 and a positive terminal (R3+) 40.


Each of the shields (i.e. outer shields 15, 50 and mid-shields 55, 20, 60, 25) has an electrical polarity. As illustrated in FIG. 1B, adjacent mid-shields (55, 20, 60, 25) have opposite polarities. In other words, the first mid-shield (MS1) 55 has a positive polarity and the second mid-shield (MS2) 20 has a negative polarity. Further, the third mid-shield (MS3) 60 also has a positive polarity and the fourth mid-shield (MS4) 25 has a negative polarity.


Referring back to FIG. 1A, all layers of the TDMR transducer 1 having a negative polarity (e.g. R15, R210, S115, MS220, MS425 and R330) overlap a contact pad located on the same first side 70 of the TDMR transducer 1. Further, all layers of the TDMR transducer 1 having a positive polarity (e.g. R2+ 35, R3+ 40, R1+ 45, S250, MS155 and MS360) overlap a contact pad located on the same second side 70 of the TDMR transducer 1.


By employing multiple sensor array designs, TDMR technology may enable multi-terabit density recording. In principle TDMR operation schemes may require the read sensor array structure of the TDMR transducer be longitudinally aligned along the cross track direction with little or no separation to allow different signals to be obtained at different data track locations simultaneously during read back process. However, a TDMR transducer 1 may suffer a misalignment between adjacent sensor locations 2, 3, 4 and the actual tracks 5, 6, 7 of interests due some skew angle and radius conditions, as illustrated in FIG. 2.


Smaller separation vertical separation between adjacent sensors may reduce a skew angle causing misalignment shift. However, when the multiple sensors are brought together closer and closer, the capacitive coupling noise or the crosstalk may become a major concern especially when the vertical separation between adjacent sensors is reduced. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording read transducer, particular for TDMR.





BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS


FIG. 1A illustrates a plan view of the related-art read transducer 1 and FIG. 1B illustrates a schematic view of the related-art two-dimensional read transducer 1.



FIG. 2 is a schematic view illustrating track misalignment based on skew angle and radius conditions.



FIG. 3 is a schematic view illustrating an exemplary implementation of a disk drive.



FIG. 4 is an ABS view illustrating an exemplary implementation of a portion of the two-dimensional read transducer.



FIGS. 5-8 are plan views illustrating portions of the exemplary implementation of the two-dimensional read transducer.



FIGS. 9 and 10 are schematic views of a second exemplary implementation of a two-dimensional read transducer.



FIG. 11 is a flow chart illustrating an exemplary implementation of a method for reducing crosstalk between a first read sensor and a second read sensor.





DETAILED DESCRIPTION OF THE EXEMPLARY IMPLEMENTATIONS


FIGS. 3-4 depict side and Air Bearing Surface views of a storage drive or disk drive 100. For clarity, FIGS. 3 and 4 are not to scale. For simplicity not all portions of the disk drive 100 are shown. In addition, although the disk drive 100 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive 100 is not shown. For simplicity, only single components are shown. However, multiples of one or more of the components and/or their sub-components might be used.


The disk drive 100 includes media 101, a slider 102, a head 103 including a write transducer 104 and a read transducer 110. The media 101 includes tracks 109. The write transducer includes at least a write pole 106 and coil(s) 108 for energizing the pole 106. Additional and/or different components may be included in the disk drive 100. Although not shown, the slider 102, and thus the transducers 104 and 110 are generally attached to a suspension (not shown). The transducers 104 and 110 are fabricated on the slider 102 and include an ABS proximate to the media 101 during use. Although both a write transducer 104 and a read transducer 110 are shown, in other implementations, only a read transducer 110 may be present.


The read transducer 110 includes multiple read sensors 112, 114 and 116. The read sensors 112, 114 and 116 include sensor layers 113, 115 and 117, respectively, that may be free layers in a magneto resistive junction such as a tunneling magneto resistive (TMR) sensor (such as a current-perpendicular-to-plane (CPP) TMR sensor). As may be apparent to a person of ordinary skill in the art, other types of sensors (such as a giant magneto resistive (GMR) sensor) may also be used. Thus, each sensor 112, 114 and 116 may include a pinning layer, a pinned layer, a nonmagnetic spacer layer and a free layer 113, 115, and 117, respectively. For simplicity, only the free layers 113, 115 and 117 are separately labeled in FIG. 4. The sensors 112, 114 and 116 may also include seed layer(s) (not shown) and capping layer(s) (not shown). The pinning layer is generally an AFM layer that is magnetically coupled to the pinned layer. In other implementations, however, the pinning layer may be omitted or may use a different pinning mechanism. The free layers 113, 115 and 117 are each shown as a single layer, but may include multiple layers including but not limited to a synthetic antiferromagnetic (SAF) structure. The pinned layer may also be a simple layer or a multilayer. Although shown as extending the same distance from the ABS, the pinned layer may extend further than the corresponding free layer 113, 115, and/or 117, respectively. The nonmagnetic spacer layer may be a conductive layer, a tunneling barrier layer, or other analogous layer. Although depicted as a GMR or TMR sensor, in other implementations, other structures and other sensing mechanisms may be used for the sensor.


The read sensors 112, 114 and 116 are separated by distances d1 and d2 in a down track direction. The down track direction is perpendicular to the cross track direction. The cross track direction and track width direction are the same. In the implementation shown, the distance d1 and d2 between the sensors 112 and 114 and between the sensors 114 and 116, respectively, are the same. However, in other implementations, the distances between the sensors 112, 114 and 116 may not be the same. It may generally be desirable to reduce the distance between the sensors 112, 114 and 116 to reduce the skew effect discussed above. In some implementations, the distances d1 and d2 may each be at least ten nanometers and not more than four hundred nanometers. The read sensors 112, 114 and 116 may have various widths, w1, w2 and w3, respectively, in the track width, or cross-track, direction. However, in other implementations, other widths are possible. The widths of the sensors 112, 114 and 116 may also be based on the track pitch. The track pitch is the distance from the center of one track to the center of the next track. Further, the widths may depend not only on the track pitch, but also on the distance between the sensors 112, 114 and 116.


The read sensors 112, 114 and 116 may also be displaced along the cross track direction. Therefore, the centers of each of the read sensors 112, 114 and 116 are not aligned along a vertical line that runs the down track direction. In the implementation shown, none of the read sensors 112, 114 and 116 are aligned along a vertical line that runs in the down track direction. In other implementations, some or all of the read sensors 112, 114 and 116 may be aligned. The read sensors 112, 114 and 116 may also partially overlap in the track width/cross track direction. However, in other implementations, the read sensors 112, 114 and 116 may be aligned.


Also shown are bias structures 122, 123 and 124 that magnetically bias the read sensors 112, 114 and 116, respectively. The magnetic bias structure(s) 122, 123 and/or 124 may be soft bias structures fabricated with soft magnetic material(s). In other implementations, the magnetic bias structure(s) 122, 123 and/or 124 may be hard magnetic bias structures. Other mechanisms for biasing the sensors 112, 114 and 116 might also be used.


The read sensors are separated by shields 130 and 140. The read sensors 112, 114 and 116 and mid-shields 130 and 140 are surrounded by read shields 120 and 150. Thus, as used herein, a mid-shield shield may be considered to be an internal shield, which is interleaved with read sensors 112, 114 and 116 and between the outer, read shields 120, 150. The outermost shields 120, 150 for the read transducer 110 are termed read shields. In the implementation shown in FIGS. 3 and 4, three read sensors 112, 114 and 116 and two internal shields 130 and 140 are shown. However, in another implementation, another number of read sensors 112, 114 and 116 and internal shields 130 and 140 may be present. The shields/read shields 120, 130, 140 and 150 generally include soft magnetic material. In some implementations, one or more of the shields 120, 130, 140 and 150 may include ferromagnetic layers that are anti-ferromagnetically coupled.


Current is driven perpendicular-to-plane for the sensors 112, 114 and 116. Thus, current is driven through the sensor 112 between the shields 120 and 130. Similarly, current is driven through the sensor 114 between the shields 130 and 140. Current is also driven through the sensor 116 between the shields 140 and 150. Thus, electrical connection is to be made to the shields 120, 130, 140 and 150. However, different currents may be desired to be driven through the sensors 112, 114 and 116. Similarly, the resistances of the sensors 112, 114 and 116 may be desired to be separately sensed. For example, the sensors 112, 114 and 116 may each be desired to be separately coupled to their own preamplifier (preamp). As a result, the sensors 112, 114 and 116 are desired to be electrically isolated from each other. Consequently, the shields 130 and 140 are configured to not only magnetically shield the sensors 112, 114 and 116, but also to provide electrical isolation. As a result, each middle shield 130 and 140 may include conductive magnetic layers separated by one or more insulating layers. Thus, the shield 130 may include conductive magnetic middle shield layers 132 and 136 that are separated by an insulating layer 134. In some embodiments, the insulating layer 134 may be considered a magnetic-spacer layer 134. Similarly, the shield 140 includes conductive magnetic middle shield layers 142 and 146 separated by a magnetic shield layer 144. However, example implementations are not limited to this configuration, and may include configurations without an insulating layer 134, 144 formed between the conductive magnetic middle shield layers 132/142, 136/146. Further, in some embodiments, the conductive magnetic layers 132/142/136/146 may be formed from a conductive metal and may be referred to as metallic middle shield layers.


Thus, the shields 130 and 140 may magnetically shield and electrically isolate the sensors 112, 114 and 116. However, without more, the capacitive coupling between the metallic middle shield layers 132 and 136 and the metallic middle shield layers 142 and 146 may adversely affect performance of the magnetic transducer 100. Consequently, a first electrical potential having a first polarity may be applied to the first and second metallic middle shield layers 132 and 136. Further, a second electrical potential having a second polarity, opposite the first polarity, may be applied to the third and fourth metallic middle shield layers 142 and 146. For example, a positive (+) polarity electrical potential may be applied to the first and second metallic middle shield layers 132 and 136, and a negative (−) polarity electrical potential may be applied to the third and fourth metallic middle shield layers 142 and 146. Of course in other implementations, the positive polarity (+) may be applied to the third and fourth metallic middle shield layers 142 and 146 and the negative (−) polarity may be applied to the first and second metallic middle shield layers 132 and 136. Structures to apply the first and second electrical potentials are discussed in greater detail below. In some implementations, the first and second electrical potentials may have the same magnitude or may have different magnitudes.


The insulating layer(s) 134 and/or 144 may also be configured to improve the performance of the shields 130 and/or 140, respectively. For example, a low dielectric constant material may be used for the insulating layers 134 and/or 144. A low dielectric constant material is one which has a dielectric constant less than eight. For example, SiO and/or SiOC might be used for the insulating layer(s) 134 and/or 144. As a result, capacitive coupling between the metallic middle shield layers 132 and 136 and/or the metallic middle shield layers 142 and 146 may be reduced. The thickness of the insulating layer(s) 134 and/or 144 may be varied. More specifically, the thickness of the insulating layer(s) 134 and/or 144 may be increased distal from the sensors 112, 114 and 116. In some implementations, the insulating layer 134 and 144 may be on the order of ten nanometers within five microns of the sensors 112, 114 and 116. Further from the sensors 112, 114 and 116, the thickness may be increased, for example to twenty nanometers. In addition, the material(s) may be changed further from the sensors 112, 114 and 116. For example, the insulating layer 134 may include a ten nanometer thick alumina sub-layer having a dielectric constant of approximately six. At least five microns from the sensors an additional sub-layer of silicon dioxide having a thickness of approximately ten nanometers with a dielectric constant of approximately three may be added. Thus, the insulating layer(s) 134 and/or 144 may have varying thicknesses and/or materials.


The read transducer 110 may be used in higher density recording, such as TDMR. Through the placement of the sensors 112, 114 and 116, the transducer 110 may address skew issues that might otherwise adversely affect performance of the transducer 110. Consequently, the impedance and response of the transducer 110 may be sufficient for higher frequency performance. Cross talk may thus be reduced. In addition, the effect on the magnetics and other aspects of the transducer 110 because of the reduced overlap may be mitigated by the configuration of the shields 130 and 140. Performance of the magnetic transducer 110 may thus be improved.



FIGS. 5-8 depict plan views of an exemplary implementation of a portion of the two-dimensional read transducer 110 showing overlap and contacts. For clarity, FIGS. 5-8 are not to scale. For simplicity, only a portion of the layers of the read transducer 110 is shown in each of FIGS. 5-7. All layers of the transducer 110 are shown in FIG. 8.



FIG. 5 illustrates the layers around the first read sensor (R1) 112. In FIG. 5, the positive terminal 160 and negative terminal 162 of the first read sensor 112, the first (lower) shield layer 120, and the first metallic middle shield layer 132 of the transducer 110 are illustrated. As illustrated, the negative terminal 160 (R1−) associated with the first read sensor 112 (not illustrated in FIG. 5) is formed on one side 170 of the transducer 110 and a positive terminal associated with the first read sensor (R1+) 162 is formed on a second, opposite side 175 of the transducer 110.


Further, the negative terminal 160 of the first read sensor is formed over an electrical contact 164 as additional conductive material deposited over a portion of the electrical contact 164. The electrical contact 164 may overlap the first shield (S1) 120, on the first side 170 of the transducer 110. The electrical contact 164 provides an electrical potential having a negative polarity to the first shield (S1) 120.


Additionally, the first metallic middle shield layer 132 overlaps the positive terminal 162 (R+) of the first read sensor (112 in other FIGS.; not illustrated in FIG. 5) on the second side 175 of the transducer 110. This overlap provides an electrical potential having a positive polarity to the first metallic middle shield layer 132. Although depicted as simple layers, the first shield layer 120 and the first metallic middle shield layer 132 may be multilayered structures. Such a multilayer may include but not be limited to anti-ferromagnetically coupled magnetic layers interleaved with nonmagnetic spacer layer(s).



FIG. 6 illustrates the layers around the second read sensor (R2) 114. In FIG. 6, the positive terminal 168 and negative terminal 166 of the second read sensor 114, the second metallic middle shield layer 136, and the third metallic middle shield layer 142 of the transducer 110 are illustrated. As illustrated, the negative terminal 166 (R2−) associated with the second read sensor 114 (not illustrated in FIG. 6) is formed on the one side 170 of the transducer 110 and the positive terminal associated with the second read sensor (R2+) 162 is formed on the second, opposite side 175 of the transducer 110.


Further, an electrical contact 180 surrounds the negative terminal 166 of the second read sensor, and overlaps the third metallic middle shield layer (MS3) 142, on the first side 170 of the transducer 110. The electrical contact 180 provides an electrical potential having a negative polarity to the third metallic middle shield layer (MS3) 142.


Additionally, the second metallic middle shield layer (MS2) 136 overlaps the positive terminal 168 (R+) of the second read sensor (112 in other FIGS.; not illustrated in FIG. 6) on the second side 175 of the transducer 110. This overlap provides an electrical potential having a positive polarity to the second metallic middle shield layer (MS2) 136. Although depicted as simple layers, the second metallic middle shield layer (MS2) 136 and the third metallic middle shield layer (MS3) 132 may be multilayered structures. Such a multilayer structure may include but not be limited to anti-ferromagnetically coupled magnetic layers interleaved with nonmagnetic spacer layer(s).



FIG. 7 illustrates the layers around the third read sensor (R3) 116. In FIG. 7, the positive terminal 174 and negative terminal 172 of the third read sensor 116, the fourth metallic middle shield layer 146, and the second shield 150 of the transducer 110 are illustrated. As illustrated, the negative terminal 172 (R3−) associated with the third read sensor 116 (not illustrated in FIG. 7) is formed on the one side 170 of the transducer 110 and the positive terminal associated with the third read sensor (R3+) 174 is formed on the second, opposite side 175 of the transducer 110.


Further, an electrical contact 182 surrounds the negative terminal 172 of the third read sensor, and overlaps the fourth metallic middle shield layer (MS4) 146, on the first side 170 of the transducer 110. The electrical contact 182 provides an electrical potential having a negative polarity to the third metallic middle shield layer (MS4) 146.


Additionally, the second (upper) shield (S2) 150 overlaps the positive terminal 174 (R+) of the third read sensor (116 in other FIGS.; not illustrated in FIG. 7) on the second side 175 of the transducer 110. This overlap provides an electrical potential having a positive polarity to the second shield (S2) 150. Although depicted as simple layers, the fourth metallic middle shield layer (MS4) 146 and the second shield (S2) 150 may be multilayered structures. Such a multilayer structure may include but not be limited to anti-ferromagnetically coupled magnetic layers interleaved with nonmagnetic spacer layer(s).



FIG. 8 illustrates all of the above discussed layers of the transducer 110 overlaid. As illustrated, the first (lower) shield 120, third metallic middle shield layer 142, and the fourth metallic middle shield layer 146 all overlap on the first side 170 of the transducer 110 and can be provided with the same electrical polarity (i.e. negative polarity). Further, the second (upper shield) 150, the first metallic middle shield layer 132, and the second metallic middle shield layer 136 all overlap on the second side 175 of the transducer 110 and provided with the same electrical polarity (i.e. positive polarity). However, example implementations are not limited to this configuration and may include other configurations that may be apparent to a person of ordinary skill in the art. For example, a positive polarity may be applied to the first (lower) shield 120, third metallic middle shield layer 142, and the fourth metallic middle shield layer 146 and a negative polarity may be applied to second (upper shield) 150, the first metallic middle shield layer 132, and the second metallic middle shield layer 136.



FIGS. 9 and 10 are schematic views of a second exemplary implementation of a two-dimensional read transducer 210. The two-dimensional read transducer 210 has features similar to those discussed above with respect to the two-dimensional read transducer 110 illustrated in FIGS. 3-8 and like reference numerals have been used to illustrate similar features in FIGS. 9 and 10. FIG. 9 illustrates a first configuration of the second exemplary implementation of the two-dimensional read transducer 210. As illustrated, the first (lower) shield layer (S1) 120, the first read sensor (R1) 112, the first metallic middle shield layer (MS1) 132, the second metallic middle shield layer (MS2) 136, the second read sensor (R2) 114, the third metallic middle shield layer (MS3) 142, the fourth metallic middle shield layer (MS4) 146, the third read sensor (R3) 116, and the second (upper) shield layer (S2) 150 are layered in sequence from bottom to top. Further, a first preamp (PA1) 186 is electrically connected to both the first (lower) shield layer (S1) 120 and the first metallic middle shield layer (MS1) 132. Additionally, a second preamp (PA2) 188 is electrically connected to both the second metallic middle shield layer (MS2) 136 and the third metallic middle shield layer (MS3) 142. Further, a third preamp (PA3) 190 is electrically connected to both the fourth metallic middle shield layer (MS4) 146 and the second (upper) shield layer (S2) 150.


In the first configuration illustrated in FIG. 9, the first preamp (PA1) 186 is configured to provide an electrical potential between the first (lower) shield (S1) 120 and the first metallic middle shield layer (MS1) 132 such that a positive polarity is applied to the first (lower) shield (S1) 120 and a negative polarity is applied to the first metallic middle shield layer (MS1) 136. Further, the second preamp (PA2) 188 is configured to provide an electrical potential between the second metallic middle shield layer (MS2) 136 and the third metallic middle shield layer (MS3) 142 such that a positive polarity is applied to the third metallic middle shield layer (MS3) 142 and a negative polarity is applied to the second metallic middle shield layer (MS2) 132. Additionally, the third preamp (PA3) 190 is configured to provide an electrical potential between the fourth metallic middle shield layer (MS4) 146 and the second (upper) shield (S2) 150 such that a positive polarity is applied to the fourth metallic middle shield layer (MS4) 146 and a negative polarity is applied to the second (upper) shield (S2) 150.



FIG. 10 illustrates a second configuration of the second exemplary implementation of the two-dimensional read transducer 210 that is structurally similar to the first configuration illustrated in FIG. 9. Specifically, FIG. 10 also illustrates the first (lower) shield layer (S1) 120, the first read sensor (R1) 112, the first metallic middle shield layer (MS1) 132, the second metallic middle shield layer (MS2) 136, the second read sensor (R2) 114, the third metallic middle shield layer (MS3) 142, the fourth metallic middle shield layer (MS4) 146, the third read sensor (R3) 116, and the second (upper) shield layer (S2) 150 are layered in sequence from bottom to top. Further, the first preamp (PA1) 186 is electrically connected to both the first (lower) shield layer (S1) 120 and the first metallic middle shield layer (MS1) 132. Additionally, the second preamp (PA2) 188 is electrically connected to both the second metallic middle shield layer (MS2) 136 and the third metallic middle shield layer (MS3) 142. Further, the third preamp (PA3) 190 is electrically connected to both the fourth metallic middle shield layer (MS4) 146 and the second (upper) shield layer (S2) 150.


However, in the second configuration illustrated in FIG. 10, the first preamp (PA1) 186, second preamp (PA2) 188, and third preamp (PA3) 190 are configures to provide opposite polarities to the respective layers from the first configuration illustrated in FIG. 9. Specifically, the first preamp (PA1) 186 is configured to provide a negative polarity to the first (lower) shield (S1) 120 and a positive polarity to the first metallic middle shield layer (MS1) 132. Further, the second preamp (PA2) 188 is configured to provide a negative polarity to the third metallic middle shield layer (MS3) 142 and a positive polarity to the second metallic middle shield layer (MS2) 136. Additionally, the third preamp (PA3) 190 is configured to provide a negative polarity to the fourth metallic middle shield layer (MS4) 146 and a positive polarity to the second (upper) shield (S2) 150.



FIG. 11 is an exemplary implementation of a method 1100 for reducing cross-talk between read sensors in a multi-read sensor transducer. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 1100 is also described in the context of providing a single recording transducer having two read sensors. However, the method 1100 may be used to form a portion or a complete two-dimensional transducer, such as TDMR transducers 110, 210 illustrated in FIGS. 3-10. Further, the method 1100 may also be used to fabricate multiple transducers at substantially the same time. The method 1100 may also be used to fabricate other transducers, as may be apparent to a person of ordinary skill in the art. The method 1100 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 1100 also may start after formation of other portions of the magnetic recording transducer.


In 1105, a first metallic middle-shield layer 132 is provided adjacent a first read sensor 112. The metal of the first middle shield layer 132 may generally be a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the first middle shield layer 132 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art include sputtering or any other known process. Further, in 1110, a second metallic middle-shield layer 136 is provided adjacent a second read sensor 114. The metal of the second middle-shield layer 136 may also generally be a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the second middle-shield layer 136 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art include sputtering or any other known process.


In 1115, a magnetic-spacer layer 134 is provided between the first metallic middle shield layer 132 and the second metallic middle shield layer 136. The magnetic-spacer layer 134 may be formed from a magnetic isolating material including, but not limited to, a non-magnetic metal, such a ruthenium, or any other magnetic isolating material that may be apparent to a person of ordinary skill in the art. Further, the application process of the magnetic-spacer layer 134 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art include vapor deposition, sputtering or any other known process.


In 1120, an electrical potential having a first polarity is applied to both the first metallic middle shield layer 132 and the second metallic middle shield layer 136. The electrical potential having the first polarity may be applied by providing a common electrical contact electrically connecting the first metallic middle shield layer 132 and the second metallic middle shield layer 136 in some implementations. Additionally and/or alternatively, in some implementations a first Preamp 186 and a second Preamp 188 may be electrically connected to the first metallic middle shield layer 132 and the second metallic middle shield layer 136, respectively, and may be configured to provide the electrical potential having the first polarity to the first metallic middle shield layer 132 and the second metallic middle shield layer 136.


Optionally, a first read shield layer 120 is provided adjacent the first read sensor 112 on a side of the first read sensor opposite the first metallic middle shield layer 132 in 1125. The first read shield layer 120 may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the first read shield layer 120 is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art include sputtering or any other known process.


Further, in 1130, a second read shield layer (third metallic middle shield layer 142) may optionally be provided adjacent the first read sensor 112 on a side of the first read sensor opposite the second metallic middle shield layer 136. In implementations having 3 or more read sensors, the second read shield layer (third metallic middle shield layer 142) may be considered or referred to as a third metallic middle shield layer 142 as illustrated in FIGS. 3-10. The second read shield layer (third metallic middle shield layer 142) may generally be formed from a soft-magnetic material including, but not limited to, Iron alloys, Nickel alloys, or any other soft-magnetic metal that may be apparent to a person of ordinary skill in the art. Further, the application process of the second read shield layer (third metallic middle shield layer 142) is not particularly limited and may include any process that may be apparent to a person of ordinary skill in the art include sputtering or any other known process.


In 1135, an electrical potential having a second polarity, which is opposite the first polarity, may optionally be applied to both the first read shield 120 and the second read shield (third metallic middle shield layer 142). In some implementations, the electrical potential having the second polarity may optionally also have the same magnitude as the electrical potential having the first polarity. The electrical potential having the second polarity may be applied by providing a common electrical contact electrically connecting the first read shield 120 and the second read shield (third metallic middle shield layer 142) in some implementations. Additionally and/or alternatively, in some implementations the first Preamp 186 and the second Preamp 188 may be electrically connected to the first read shield 120 and the second read shield (third metallic middle shield layer 142), respectively, and may be configured to provide the electrical potential having the second polarity to the first read shield 120 and the second read shield (third metallic middle shield layer 142).


By providing an electrical potential having a first polarity to both the metallic middle shield layer layers located between adjacent read sensors may reduce cross-talk between the adjacent read sensors and allow for a reduction in the isolation thickness in a multiple sensor array in some example implementations. However, example implementations need not have any potential reduction in cross-talk or reduction in required isolation thickness, or any other effect.


The foregoing detailed description has set forth various implementations of the devices and/or processes via the use of block diagrams, schematics, and examples. Insofar as such block diagrams, schematics, and examples contain one or more functions and/or operations, each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.


While certain implementations have been described, these implementations have been presented by way of example only, and are not intended to limit the scope of the protection. Indeed, the novel methods and apparatuses described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the protection. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the protection.

Claims
  • 1. A read transducer comprising: a first read sensor;a second read sensor disposed in a down track direction from the first read sensor; anda first middle shield disposed between the first read sensor and the second read sensor, the first middle shield including a first metallic middle shield layer disposed between the first read sensor and the second read sensor;a second metallic middle shield layer disposed between the first metallic middle shield layer and the second read sensor; anda first magnetic-spacer layer disposed between the first metallic middle shield layer and the second metallic middle shield layer,wherein the first metallic middle shield layer and the second metallic middle shield layer have substantially the same polarity.
  • 2. The read transducer according to claim 1, further comprising: a first read shield; anda second read shield disposed in a down track direction from the first read shield,wherein the first read sensor, the first middle shield, and the second read sensor are disposed between the first read shield and the second read shield, andwherein both the first read shield and the second read shield have a polarity opposite the polarity of the first metallic middle shield layer and the second metallic middle shield layer.
  • 3. The read transducer according to claim 1, further comprising: a first preamp electrically connected to the first metallic middle shield layer; anda second preamp electrically connected to the second metallic middle shield layer,wherein the first preamp and the second preamp are configured to provide substantially the same polarity to the first metallic middle shield layer and the second metallic middle shield layer respectively.
  • 4. The read transducer according to claim 1, further comprising: a first electrical contact provided on a first side of the read transducer, the first electrical contact electrically connected to the first metallic middle shield layer; anda second electrical contact provided on the first side of the read transducer, the second electrical contact overlapping the first electrical contact and electrically connected to the second metallic middle shield layer,wherein the first electrical contact and the second electrical contact have a first polarity provided to the first side of the read transducer.
  • 5. The magnetic read transducer according to claim 1, further comprising: a third read sensor disposed in a down track direction from the second read sensor; anda second middle shield disposed between the second read sensor and the third read sensor, the second middle shield including a third metallic middle shield layer disposed between the second read sensor and the third read sensor;a fourth metallic middle shield layer disposed between the third metallic middle shield layer and the third read sensor; anda second magnetic-spacer layer disposed between the third metallic middle shield layer and the fourth metallic middle shield layer,wherein the second metallic middle shield layer and the third metallic middle shield layer have opposite polarities; andwherein the third metallic middle shield layer and the fourth metallic middle shield layer have substantially the same polarity.
  • 6. The read transducer according to claim 5, further comprising: a first read shield; anda second read shield disposed in a down track direction from the first read shield,wherein the first read sensor, the first middle shield, the second read sensor, the second middle shield, and the third read sensor are disposed between the first read shield and the second read shield, andwherein the first read shield has a polarity opposite the polarity of the first metallic middle shield layer of the first middle shield and the second metallic middle shield layer of the first middle shield; andwherein the second read shield has a polarity opposite the polarity of the third metallic middle shield layer of the second middle shield and the fourth metallic middle shield layer of the second middle shield.
  • 7. The read transducer according to claim 5, further comprising: a first preamp electrically connected to the first metallic middle shield layer of the first middle shield;a second preamp electrically connected to the second metallic middle shield layer of the first middle shield and the third metallic middle shield layer of the second middle shield;a third preamp electrically connected to the fourth metallic middle shield layer of the second middle shield,wherein the first preamp and the second preamp are configured to provide substantially the same polarity to the first metallic middle shield layer of the first middle shield and the second metallic middle shield layer of the first middle shield, respectively; andwherein the second preamp and the third preamp are configured to provide substantially the same polarity to the third metallic middle shield layer of the second middle shield and the fourth metallic middle shield layer of the second middle shield, respectively.
  • 8. The read transducer according to claim 5, further comprising: a first electrical contact provided on a first side of the read transducer, the first electrical contact electrically connected to the first metallic middle shield layer of the first middle shield;a second electrical contact provided on the first side of the read transducer, the second electrical contact overlapping the first electrical contact and electrically connected to the second metallic middle shield layer of the first middle shield;a third electrical contact provided on a second side of the read transducer opposite the first side of the read transducer, the third electrical contact electrically connected to the third metallic middle shield layer of the second middle shield;a fourth electrical contact provided on the second side of the read transducer, the fourth electrical contact overlapping the third electrical contact and electrically connected to the fourth metallic middle shield layer of the second middle shield,wherein the first electrical contact and the second electrical contact have a first polarity provided to the first side of the read transducer; andwherein the third electrical contact and the fourth electrical contact have a second polarity provided to the second side of the read transducer, the second polarity being an opposite polarity from the first polarity.
  • 9. A storage drive comprising: a media;a slider movable relative to the media, the slider including a read transducer having: a first read sensor;a second read sensor disposed in a down track direction from the first read sensor; anda first middle shield disposed between the first read sensor and the second read sensor, the first middle shield including a first metallic middle shield layer disposed between the first read sensor and the second read sensor;a second metallic middle shield layer disposed between the first metallic middle shield layer and the second read sensor; anda first magnetic-spacer layer disposed between the first metallic middle shield layer and the second metallic middle shield layer,wherein the first metallic middle shield layer and the second metallic middle shield layer have substantially the same polarity.
  • 10. The storage drive according to claim 9, further comprising: a first read shield; anda second read shield disposed in a down track direction from the first read shield,wherein the first read sensor, the first middle shield, and the second read sensor are disposed between the first read shield and the second read shield, andwherein both the first read shield and the second read shield have a polarity opposite the polarity of the first metallic middle shield layer and the second metallic middle shield layer.
  • 11. The storage drive according to claim 9, further comprising: a first preamp electrically connected to the first metallic middle shield layer; anda second preamp electrically connected to the second metallic middle shield layer,wherein the first preamp and the second preamp are configured to provide substantially the same polarity to the first metallic middle shield layer and the second metallic middle shield layer respectively.
  • 12. The storage drive according to claim 9, further comprising: a first electrical contact provided on a first side of the read transducer, the first electrical contact electrically connected to the first metallic middle shield layer; anda second electrical contact provided on the first side of the read transducer, the second electrical contact overlapping the first electrical contact and electrically connected to the second metallic middle shield layer,wherein the first electrical contact and the second electrical contact have a first polarity provided to the first side of the read transducer.
  • 13. The storage drive according to claim 9, further comprising: a third read sensor disposed in a down track direction from the second read sensor; anda second middle shield disposed between the second read sensor and the third read sensor, the second middle shield including a third metallic middle shield layer disposed between the second read sensor and the third read sensor;a fourth metallic middle shield layer disposed between the third metallic middle shield layer and the third read sensor; anda second magnetic-spacer layer disposed between the third metallic middle shield layer and the fourth metallic middle shield layer,wherein the second metallic middle shield layer and the third metallic middle shield layer have opposite polarities; andwherein the third metallic middle shield layer and the fourth metallic middle shield layer have substantially the same polarity.
  • 14. The storage drive according to claim 13, further comprising: a first read shield; anda second read shield disposed in a down track direction from the first read shield,wherein the first read sensor, the first middle shield, the second read sensor, the second middle shield, and the third read sensor are disposed between the first read shield and the second read shield, andwherein the first read shield has a polarity opposite the polarity of the first metallic middle shield layer of the first middle shield and the second metallic middle shield layer of the first middle shield; andwherein the second read shield has a polarity opposite the polarity of the third metallic middle shield layer of the second middle shield and the fourth metallic middle shield layer of the second middle shield.
  • 15. The storage drive according to claim 13, further comprising: a first preamp electrically connected to the first metallic middle shield layer of the first middle shield;a second preamp electrically connected to the second metallic middle shield layer and the third metallic middle shield layer of the first middle shield;a third preamp electrically connected to the fourth metallic middle shield layer of the second middle shield,wherein the first preamp and the second preamp are configured to provide substantially the same polarity to the first metallic middle shield layer of the first middle shield and the second metallic middle shield layer of the first middle shield respectively; andwherein the second preamp and the third preamp are configured to provide substantially the same polarity to the third metallic middle shield layer of the second middle shield and the fourth metallic middle shield layer of the second middle shield respectively.
  • 16. The storage drive according to claim 13, further comprising: a first electrical contact provided on a first side of the read transducer, the first electrical contact electrically connected to the first metallic middle shield layer of the first middle shield;a second electrical contact provided on the first side of the read transducer, the second electrical contact overlapping the first electrical contact and electrically connected to the second metallic middle shield layer of the first middle shield;a third electrical contact provided on a second side of the read transducer opposite the first side of the read transducer, the third electrical contact electrically connected to the third metallic middle shield layer of the second middle shield;a fourth electrical contact provided on the second side of the read transducer, the fourth electrical contact overlapping the third electrical contact and electrically connected to the fourth metallic middle shield layer of the second middle shield,wherein the first electrical contact and the second electrical contact have a first polarity provided to the first side of the read transducer; andwherein the third electrical contact and the fourth electrical contact have a second polarity provided to the second side of the read transducer, the second polarity being an opposite polarity from the first polarity.
  • 17. A method of reducing crosstalk between a first read sensor and a second read sensor disposed in a down track direction from the first read sensor in a read transducer of a storage drive, the method comprising: providing a first metallic middle shield layer adjacent the first read sensor, the first metallic middle shield layer being disposed between the first read sensor and the second read sensor;providing a second metallic middle shield layer adjacent the second read sensor, the second metallic middle shield layer being disposed between the first read sensor and the second read sensor;providing a magnetic-spacer layer between the first metallic middle shield layer and the second metallic middle shield layer; andapplying an electrical potential having a first polarity to both the first metallic middle shield layer and second metallic middle shield layer.
  • 18. The method of claim 17, further comprising: providing a first preamp electrically connected to the first metallic middle shield layer; andproviding a second preamp electrically connected to the second metallic middle shield layer,wherein applying an electrical potential having the first polarity to both the first metallic middle shield layer and the second metallic middle shield layer comprises applying the electrical potential having the first polarity to the first preamp and to the second preamp.
  • 19. The method of claim 17, further comprising: providing a first electrical contact connected to the first metallic middle shield layer; andproviding a second electrical contact connected to the second metallic middle shield layer,wherein applying an electrical potential having the first polarity to both the first metallic middle shield layer and the second metallic middle shield layer comprises applying the electrical potential having the first polarity to the first electrical contact and to the second electrical contact.
  • 20. The method of claim 17, further comprising: providing a first read shield adjacent the first read sensor, the first read sensor being positioned between the first read shield and the first metallic middle shield layer;providing a second read shield adjacent the second read sensor, the second read sensor being positioned between the second read shield and the second metallic middle shield layer; andapplying an electrical potential having a second polarity to the first read shield and the second read shield, the second polarity being opposite the first polarity of the first metallic middle shield layer and the second metallic middle shield layer.
US Referenced Citations (649)
Number Name Date Kind
4012781 Lin Mar 1977 A
5229901 Mallary Jul 1993 A
5270892 Naberhuis Dec 1993 A
5309305 Nepela et al. May 1994 A
5388014 Brug et al. Feb 1995 A
5684658 Shi et al. Nov 1997 A
5696654 Gill et al. Dec 1997 A
5721008 Huang et al. Feb 1998 A
5796535 Tuttle et al. Aug 1998 A
5831888 Glover Nov 1998 A
5963400 Cates et al. Oct 1999 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6071007 Schaenzer et al. Jun 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6104562 Ottesen et al. Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6154335 Smith et al. Nov 2000 A
6157510 Schreck et al. Dec 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6191925 Watson Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6216242 Schaenzer Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6271998 Coehoorn et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6311551 Boutaghou Nov 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6362528 Anand Mar 2002 B2
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6449131 Guo et al. Sep 2002 B2
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496333 Han et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6674618 Engel et al. Jan 2004 B2
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6842312 Alstrin et al. Jan 2005 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861756 Saito et al. Mar 2005 B2
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888253 Rogers et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989971 Lin et al. Jan 2006 B2
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7092195 Liu et al. Aug 2006 B1
7106549 Asakura Sep 2006 B2
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193807 Liikanen et al. Mar 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7259927 Harris Aug 2007 B2
7271970 Tsuchiya Sep 2007 B2
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7315072 Watanabe Jan 2008 B2
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372168 Wu et al. May 2008 B2
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7405907 Raastad Jul 2008 B2
7408730 Yamagishi Aug 2008 B2
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436632 Li et al. Oct 2008 B2
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7868362 Randazzo et al. Jan 2011 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8139301 Li et al. Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208228 Maat et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8240545 Wang et al. Aug 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8384220 Saito et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532157 Cole et al. Sep 2013 B2
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
8873204 Gao et al. Oct 2014 B1
8891207 Li Nov 2014 B1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20130277863 Zhong et al. Oct 2013 A1
20130279311 Hurley et al. Oct 2013 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
Non-Patent Literature Citations (4)
Entry
Shaoping Li, et al., U.S. Appl. No. 13/928,799, filed Jun. 27, 2013, 27 pages.
Steven C. Rudy, et al., U.S. Appl. No. 14/045,022, filed Oct. 3, 2013, 31 pages.
Shaoping Li, et al., U.S. Appl. No. 14/046,771, filed Oct. 4, 2013, 43 pages.
Shaoping Li, et al., U.S. Appl. No. 14/097,157, filed Dec. 4, 2013, 38 pages.