Apparatus and method for minimizing waste and improving quality and production in web processing operations by automated threading and re-threading of web materials

Information

  • Patent Grant
  • 9387131
  • Patent Number
    9,387,131
  • Date Filed
    Wednesday, June 15, 2011
    13 years ago
  • Date Issued
    Tuesday, July 12, 2016
    7 years ago
Abstract
Apparatus and methods are provided to minimize waste and improve quality and production in web processing operations. A first non-elastomeric layer is bonded with an elastomeric layer, and to a second non-elastomeric layer. The apparatus and methods provide defect detection in the elastomeric layer and triggers an unthreading/rethreading sequence. Web defect detection may be provided by way of at least one visual inspection station. If defects are detected in the elastic layer, the resulting products may be culled.
Description
BACKGROUND OF THE INVENTION

The invention disclosed herein relates to apparatus and methods for waste reduction and improvements to the quality and production in web processing operations, such as diaper manufacturing. While the description provided relates to diaper manufacturing, the apparatus and method are easily adaptable to other applications.


Generally, diapers comprise an absorbent insert or patch and a chassis, which, when the diaper is worn, supports the insert proximate a wearer's body. Additionally, diapers may include other various patches, such as tape tab patches, reusable fasteners and the like. The raw materials used in forming a representative insert are typically cellulose pulp, tissue paper, poly, nonwoven web, acquisition, and elastic, although application specific materials are sometimes utilized. Usually, most of the insert raw materials are provided in roll form, and unwound and applied in assembly line fashion.


In the creation of a diaper, multiple roll-fed web processes are typically utilized. To create an absorbent insert, the cellulose pulp is unwound from the provided raw material roll and pulverized by a pulp mill. Discrete pulp cores are formed by a core forming assembly and placed on a continuous tissue web. Optionally, super-absorbent powder may be added to the pulp core. The tissue web is wrapped around the pulp core. The wrapped core is debulked by proceeding through a calender unit, which at least partially compresses the core, thereby increasing its density and structural integrity. After debulking, the tissue-wrapped core is passed through a segregation or knife unit, where individual wrapped cores are cut. The cut cores are conveyed, at the proper pitch, or spacing, to a boundary compression unit.


While the insert cores are being formed, other insert components are being prepared to be presented to the boundary compression unit. For instance, the poly sheet is prepared to receive a cut core. Like the cellulose pulp, poly sheet material is usually provided in roll form. The poly sheet is fed through a splicer and accumulator, coated with an adhesive in a predetermined pattern, and then presented to the boundary compression unit. In addition to the poly sheet, which may form the bottom of the insert, a two-ply top sheet may also be formed in parallel to the core formation. Representative plies are an acquisition web material and a nonwoven web material, both of which are fed from material rolls, through a splicer and accumulator. The plies are coated with adhesive, adhered together, cut to size, and presented to the boundary compression unit. Therefore, at the boundary compression unit, three components are provided for assembly: the poly bottom sheet, the core, and the two-ply top sheet.


A representative boundary compression unit includes a die roller and a platen roller. When all three insert components are provided to the boundary compression unit, the nip of the rollers properly compresses the boundary of the insert. Thus, provided at the output of the boundary compression unit is a string of interconnected diaper inserts. The diaper inserts are then separated by an insert knife assembly and properly oriented. At this point, the completed insert is ready for placement on a diaper chassis.


A representative diaper chassis comprises nonwoven web material and support structure. The diaper support structure is generally elastic and may include leg elastic, waistband elastic and belly band elastic. The support structure is usually sandwiched between layers of the nonwoven web material, which is fed from material rolls, through splicers and accumulators.


The present invention relates to disposable hygiene products and to methods and apparatuses for processing components of disposable hygiene products. More specifically, the invention relates to manufacturing a stretchable breathable laminate that is bonded at a plurality of bond sites.


Elastic laminates can be formed of a layer of stretched elastic between two non-stretched layers of non-woven material. Once the stretched elastic layer is bonded with the non-stretched non-woven, a stretch engine is formed once the elastic material is allowed to relax, forming a laminate that can be stretched in the machine direction.


During construction of such laminates, defects in the elastic material supplied to the process can result in snapped or otherwise unacceptable elastic introduced to the system. If such unacceptable elastic is introduced into the laminate, the manufacturing process can require slowing or stoppage in order for properly produced laminate to be re-introduced into the process. One aspect of the present invention relates to an automated method and apparatus to first detect such defects, and to automatically re-thread the elastic material through stretch rollers and continue with the processing sequence using acceptable elastic material resulting in an acceptable formed laminate.


Such automation results in less manual threading and re-threading, and less system downtime and scrapped product (resulting from unacceptable elastic forming unacceptable laminate).


The chassis may also be provided with several patches, besides the absorbent insert. Representative patches include adhesive tape tabs and resealable closures.


The process utilizes two main carrier webs; a nonwoven web which forms an inner liner web, and an outer web that forms an outwardly facing layer in the finished diaper. In a representative chassis process, the nonwoven web is slit at a slitter station by rotary knives along three lines, thereby forming four webs. One of the lines is on approximately the centerline of the web and the other two lines are parallel to and spaced a short distance from the centerline. The effect of such slicing is twofold; first, to separate the nonwoven web into two inner diaper liners. One liner will become the inside of the front of the diaper, and the second liner will become the inside of the back of that garment. Second, two separate, relatively narrow strips are formed that may be subsequently used to cover and entrap portions of the leg-hole elastics. The strips can be separated physically by an angularly disposed spreader roll and aligned laterally with their downstream target positions on the inner edges of the formed liners.


After the nonwoven web is sliced, an adhesive is applied to the liners in a predetermined pattern in preparation to receive leg-hole elastic. The leg-hole elastic is applied to the liners and then covered with the narrow strips previously separated from the nonwoven web. Adhesive is applied to the outer web, which is then combined with the assembled inner webs having elastic thereon, thereby forming the diaper chassis. Next, after the elastic members have been sandwiched between the inner and outer webs, an adhesive is applied to the chassis. The chassis is now ready to receive an insert.


To assemble the final diaper product, the insert must be combined with the chassis. The placement of the insert onto the chassis occurs on a placement drum or at a patch applicator. The inserts are provided to the chassis on the placement drum at a desired pitch or spacing. The generally flat chassis/insert combination is then folded so that the inner webs face each other, and the combination is trimmed. A sealer bonds the webs at appropriate locations prior to individual diapers being cut from the folded and sealed webs.


Roll-fed web processes typically use splicers and accumulators to assist in providing continuous webs during web processing operations. A first web is fed from a supply wheel (the expiring roll) into the manufacturing process. As the material from the expiring roll is depleted, it is necessary to splice the leading edge of a second web from a standby roll to the first web on the expiring roll in a manner that will not cause interruption of the web supply to a web consuming or utilizing device.


In a splicing system, a web accumulation dancer system may be employed, in which an accumulator collects a substantial length of the first web. By using an accumulator, the material being fed into the process can continue, yet the trailing end of the material can be stopped or slowed for a short time interval so that it can be spliced to leading edge of the new supply roll. The leading portion of the expiring roll remains supplied continuously to the web-utilizing device. The accumulator continues to feed the web utilization process while the expiring roll is stopped and the new web on a standby roll can be spliced to the end of the expiring roll.


In this manner, the device has a constant web supply being paid out from the accumulator, while the stopped web material in the accumulator can be spliced to the standby roll. Examples of web accumulators include that disclosed in U.S. patent application Ser. No. 11/110,616, which is commonly owned by the assignee of the present application, and incorporated herein by reference.


As in many manufacturing operations, waste minimization is a goal in web processing applications, as products having spliced raw materials cannot be sold to consumers. Indeed, due to the rate at which web processing machines run, even minimal waste can cause inefficiencies of scale. In present systems, waste materials are recycled. However, the act of harvesting recyclable materials from defective product is intensive. That is, recyclable materials are harvested only after an identification of a reject product at or near the end of a process. The result is that recyclable materials are commingled, and harvesting requires the extra step of separating waste components. Therefore, the art of web processing would benefit from systems and methods that identify potentially defective product prior to product assembly, thereby eliminating effort during recyclable material harvesting.


Furthermore, to improve quality and production levels by eliminating some potentially defective product, the art of web processing would benefit from systems and methods that ensure higher product yield and less machine downtime.


SUMMARY OF THE INVENTION

Provided are method and apparatus for minimizing waste and improving quality and production in web processing operations.


Importantly, the methods taught in the present application are applicable not only to diapers and the like, but in any web based operation. The waste minimization techniques taught herein can be directed any discrete component of a manufactured article, i.e., the methods taught herein are not product specific. For instance, the present methods can be applied as easily with respect to diaper components as they can for feminine hygiene products, as they can for face masks in which components such as rubber bands and nose pieces are used.


For instance, by practicing the methods of the present invention, waste of staples and elastic bands can be avoided during manufacture of face masks, for instance those disclosed in U.S. Pat. No. 7,131,442. One of the objectives is simply to recognize product during manufacture that ultimately would fail quality control inspection, and avoid placing material on to that product during the manufacturing processes.


As another example, the amount of adhesive applied to certain products can be reduced by not applying adhesive to products that have already been determined to be defected or assigned to rejection. For instance, in U.S. Pat. No. 6,521,320, adhesive application is shown for example in FIG. 11. By assigning or flagging product that has already been determined to end up in a scrap or recycling pile, the adhesive flow can be stopped or minimized.


In yet another exemplary application of the methods of the present invention, discrete components or raw material carried on products that have already been determined to be defected or assigned to rejection can also be removed and recycled prior to commingling with other discrete components or raw material. For instance, if an absorbent pad, such as shown at reference numeral 40 of U.S. Pat. No. 6,521,320 is destined for application to a product that has already been determined to be defected or assigned to rejection, the absorbent pad can be withdrawn from the product, or never introduced in the first instance. For example, during startup or shutdown of high speed diaper manufacturing operations, a certain number of products is routinely discarded into recycling. By identification of the start up or shut down routine, avoidance of introduction of absorbent pads can be achieved. Alternatively, during stand-by, the absorbent pads often degrade by accumulation of dust. By identifying which products would bear the dust, the absorbent pads can be withdrawn from further manufacture, and no additional components would be applied to such a product.


In one embodiment, a method for assembling a plurality of continuous webs is provided, including defining first web inspection parameters and inspecting at least one of the plurality of continuous webs to determine whether the at least one web conforms to the first web inspection parameters. Further, the method involves providing a chassis web which is adapted to receive a patch and providing a patch web from which the patch is cut. Finally, the cut patch is applied to the chassis web if the inspected web conforms to the first web inspection parameters. In another embodiment, the method also includes steps of defining first patch inspection parameters and inspecting a cut patch to determine whether the patch conforms to the first patch inspection parameters. While the patch inspection may provide interesting diagnostic information related to a web processing machine, the application of the patch may be limited to those patches that conform to the first patch inspection parameters.


Another embodiment of the method of the present invention involves defining first web inspection parameters and a product pitch. Generally in any web process, a web is provided, which is traveling at a web velocity. This embodiment involves inspecting the web to determine whether the web conforms to the first web inspection parameters and producing an inspection value as a result of the inspecting step. This value is then recorded once per sample time interval. The sample time interval may be calculated by dividing the defined product pitch by the web velocity. While the inspection value may be as simple as a bivalent value, a more informational multivalent value may be used.


In addition to the web process provided, an apparatus for carrying out the process is provided. An embodiment of the apparatus includes a continuous web supply providing continuous web material from an upstream position to a downstream position and a means for providing a patch spaced from a first side of the continuous web material. A patch applicator is provided to alter the space between the patch providing means and the continuous web material and a web inspection device is positioned upstream from the patch applicator. Additionally, a programmable controller receives an input from the web inspection device and provides an output to the patch applicator. The web processing apparatus may also include a patch inspection device that provides an output to the programmable controller. A patch reject conveyor may be positioned to receive defective patches from the patch providing means. In another embodiment of a web processing apparatus, a product inspection device may be located downstream from the patch applicator to provide an output to the programmable controller. Also, a product reject conveyor could be adapted to divert defective product as indicated by the product inspection device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a representative web processing system;



FIG. 2A-2C are schematic representations of a web processing system incorporating principles of the present invention;



FIG. 3 is an elevation view of a patch inspection;



FIG. 4 is a perspective view of a patch indexer, a patch applicator and a patch reject conveyor;



FIG. 5 is a schematic of a second embodiment of a representative web processing system;



FIG. 6A-6C are additional schematic representations of a web processing system incorporating principles of the present invention.



FIG. 7 is a perspective view of a layered stretch bond laminate, with an elastomeric layer sandwiched between two non-elastomeric layers of material;



FIG. 8 is a cross-sectional view of the laminate shown in FIG. 7;



FIG. 9 is a cross-sectional view of the laminate shown in FIG. 7, with a bond-site shown;



FIG. 10 is a schematic view of a two-station apparatus for forming a stretch bonded laminate;



FIG. 11 is a schematic view of an apparatus for forming a stretch bonded laminate, the apparatus equipped with a series of air knives to urge an elastic layer in the machine or the reverse machine direction through a stretch wheel array;



FIGS. 12A-C are schematic views of the apparatus shown in FIG. 11, operating in a threading sequence to thread the elastic layer through the stretch wheel array;



FIGS. 13-15 are schematic views of the apparatus shown in FIG. 11, operating in an unthreading or retreating sequence to unthread the elastic layer through the stretch wheel array, after which the machine will operate in the threading sequence shown in FIGS. 12A-C;



FIG. 16 is a plan view of a laminate formed during operating and threading/rethreading periods, with the laminate having elastic in the laminate during the operating timeframes, and no elastic in the threading/rethreading time periods;



FIGS. 17 and 18 are a drive-side view of the stretch wheel array operating in a closely spaced operating position (FIG. 17) and a spaced apart, threading/unthreading position (FIG. 18).





DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.


It is noted that the present waste minimization techniques and apparatus are described herein with respect to products such as diapers, but as previously mentioned, can be applied to a wide variety of processes in which discrete components are applied sequentially.


Referring to FIG. 1, a web processing operation starts with incorporating raw materials such as paper pulp and super absorbent polymer (SAP) in a pulp mill. The mixture is sent to a core forming drum, where cores are formed for retaining liquids. A core can be placed on a tissue and processed as shown. Eventually, an additional tissue layer is formed, sandwiching the core.


The process continues through debulking, core cutting and spacing, optionally, compression, and application of tape and elastics. The process then proceeds with application of outer and inner non-woven layers, and waist elastic. The web can undergo folding, extraction and trimming of excess material, and application of material to tighten the diaper about the waist. Eventually, the product is folded and packaged.


As seen on FIG. 1, the symbol is shown at locations of introductions of discrete components into the process. At these locations, inspection can take place to determine the presence or absence of acceptable product introduction. In addition to visual inspection, operational characteristics such as startup/ramp-up/shutdown operations can trigger waste minimization techniques as will be described later.


At each of these operations shown in FIG. 1, diagnostics can be performed to indicate whether the product meets acceptable criteria. If so, discrete elements, such as the core, tissue layers, elastic, etc., continue to be applied in a sequence such as shown in FIG. 1. If not, no additional discrete elements need be applied.


Referring now to FIGS. 2a-c, a web processing operation incorporating the present invention is shown.


Referring now to FIG. 2, an additional schematic of processes of the present invention is shown. As indicated, pulp rolls 200 feed raw pulp 201 into a pulp mill 204, where the pulp is pulverized. Super absorbent polymer is added from station 206. The SAP laced pulp is fed onto core forming roller 208. Cores 210 from core forming roller 208 are applied to the tissue back sheet 214 which has been introduced through tissue back sheet feeder 212. Following debulking station 216 and core cutting and spacing station 218, an infeed of poly layer 220, elastic layer 222 is applied to the carrier web, in addition to non woven layer 224 and two ply top sheet woven 226. This web then is cut at cutting station 228 into discrete inserts 230, which are then typically placed on a article transfer and placement apparatus with active puck 230. This device is disclosed in U.S. patent application Ser. No. 11/357,546, owned by the same assignee as the present case, and which is incorporated herein by reference.


The process utilizes two main carrier webs; a nonwoven web 11 which forms an inner liner web, and a web 12 that forms an outwardly facing layer in the finished diaper 50. In this embodiment, the nonwoven web 11 is slit, at slitter station 15, by rotary knives 14 along three lines. One of these lines is preferably on approximately the centerline of web 11 and the other two lines are parallel to and spaced a short distance from the centerline. The effect is twofold; first, to separate web 11 into two inner liners 20. One liner will become the inside of the front of the diaper 50 and the second liner will become the inside of the back of that garment. Second, two separate, relatively narrow strips 22 and 24 are formed which are subsequently used to cover and entrap portions of leg-hole elastics 26. Strips 22 and 24 are separated physically by an angularly disposed spreader roll 23 and aligned laterally with their downstream target positions on the inner edges of the liner webs 20.


Adhesive patterns are applied to the liner webs 20 in target areas for the leg-hole elastics 26. A spray gun assembly 29 of a type known in the art is preferably used to apply the adhesive patterns. Two sets of leg-hole, elastic strands 26 are introduced through laydown guides 30, which reciprocate from side to side past each other. The strands 26 are glued to the web sections 20, their laydown patterns following a serpentine path. Given the absence of adhesive in the area separating the inner liners 20, for some portion of each successive diaper product, the strands 26 each track parallel to the inner slit edges of the web sections 20. Laydown guides 30 then apply the strands 26, which form leg-hole elastics as the web sections 20 are carried along the face of a drum or roll 32. Those parts of the elastic patterns which are near the inner slit edges of webs 20 are then covered by the introduction of an adhesive lamination thereover of the strips 22 and 24 of nonwoven web also against the drum 32.


The side-to-side excursions of the leg-hole elastic laydown guides 30 result in arcuate segments of elastic strands extending on each side of the web centerline. After the nonwoven strips 22 and 24 have been applied to cover and entrap those parts of the elastics 26 that run nearest to and parallel to the inner edges of the webs 20, a second pair of slitter knives 34 is used to trim away a portion of the narrow nonwoven strips 22, 24, along with that part of the inner liner webs 20 to which they are laminated. This also removes those portions of the elastic strands 26 which are contained within the laminations. The resultant trimmed scrap strips 36 are removed from the process for disposal elsewhere.


The effect of the last-described step is to remove the cut away portions of the elastic, eliminating its corresponding unwanted gathering effect from the crotch region of the garments 50. The remaining portions of the curved elastic strands create a gathering effect around the leg openings of the finished garments 50.


Subsequent to the combining and trimming of the inner webs 20 and the cover strips 22, 24, the combining drum 32 carries the webs to a nip with a second combining drum 38, where the web sections 20, with their respective curved elastic patterns exposed, are transferred to and laminated adhesively against the inside face of outer liner web 12. This process entraps the curved elastic patterns 26 between the inner liners 20 and outer web 12 thereby forming a composite web 39.


The composite web 39 is then provided with a pattern of adhesive in preparation to receive an absorbent insert or patch 46. The patch 46 is cut from a provided patch web 40 by a cooperation of a cutter 41 and an anvil surface on a vacuum roll 42 and rotated into position for transfer to the composite web 39 by a patch applicator 105. If the patch 46 is to be applied to the web 39—a determination explained more fully below—the patch applicator 105 forces the web 39 against the patch 46, thereby adhering the patch 46 to the web 39.


Leg-hole materials 48, if not previously removed, are cut at a cutting station 47, thereby removing the material 48 contained within an approximate perimeter defined by the curved pattern of the elastics 26. The running composite chassis web 39 is folded, before or after cutting out of the leg holes, longitudinally along its centerline, thereby generally aligning its front waist edge with its back waist edge. The regions 53 which are to become the side seams 54 of the garments 50 are then welded by a sealing device 49 either ultrasonically or by heat. Note that the leg holes are preferably cut out before this point, leaving only a narrow zone for welding. The weld pattern is preferably wide enough to extend into both the left side seam of one garment and the right side seam of the adjacent garment. The garments 50 are then separated by passing through a cut-off knife assembly 55, which severs the web along the transverse axis of the side seam weld 53.


In addition to the exemplary components generally found in a web processing apparatus, the present device and methods further include an advanced defect detection system. An embodiment of the defect detection system preferably comprises at least one visual inspection station 101, but preferably a plurality of visual inspection stations 101. Each visual inspection station 101 may include a vision sensor, such as an In-Sight Vision Sensor available from Cognex Corporation of Natick, Mass. Since each component part of a product resulting from a web process has a point of incorporation into the product, visual inspection of each component part preferably occurs prior to the point of incorporation. The results of the visual inspections that occur are relayed from each visual inspection station 101 to a programmable logic controller (PLC) 103. Each visual inspection station 101 may provide diagnostic capability by monitoring lighting, focus and positioning.


Machine vision systems typically require digital input/output devices and computer networks to control other manufacturing equipment, in this case the splicing unit.


A typical machine vision system will consist of several among the following components:

  • One or more digital or analog camera (black-and-white or colour) with suitable optics for acquiring images
  • Lighting
  • Camera interface for digitizing images (widely known as a “frame grabber”)
  • A processor (often a PC or embedded processor, such as a DSP)
  • Computer software to process images and detect relevant features.
  • A synchronizing sensor for part detection (often an optical or magnetic sensor) to trigger image acquisition and processing.
  • Input/Output hardware (e.g. digital I/O) or communication links (e.g. network connection or RS-232) to report results
  • Some form of actuators used to sort or reject defective parts.


The sync sensor determines when a part (often moving on a conveyor) is in position to be inspected. The sensor triggers the camera to take a picture of the part as it passes by the camera and often synchronizes a lighting pulse. The lighting used to illuminate the part is designed to highlight features of interest and obscure or minimize the appearance of features that are not of interest (such as shadows or reflections).


The camera's image can be captured by the framegrabber. A framegrabber is a digitizing device (within a smart camera or as a separate computer card) that converts the output of the camera to digital format (typically a two dimensional array of numbers, corresponding to the luminous intensity level of the corresponding point in the field of view, called pixel) and places the image in computer memory so that it may be processed by the machine vision software.


The software will typically take several steps to process an image. In this case, the image processing will result in either detection of the indicator material, or non-detection of the indicator material.


Commercial and open source machine vision software packages typically include a number of different image processing techniques such as the following:

  • Pixel Counting: counts the number of light or dark pixels
  • Thresholding: converts an image with gray tones to simply black and white
  • Segmentation: used to locate and/or count parts
  • Blob Discovery & Manipulation: inspecting an image for discrete blobs of connected pixels (e.g. a black hole in a grey object) as image landmarks. These blobs frequently represent optical targets for machining, robotic capture, or manufacturing failure.
  • Recognition-by-Components: extracting geons from visual input
  • Robust Pattern Recognition: location of an object that may be rotated, partially hidden by another object, or varying in size
  • Barcode Reading: decoding of 1D and 2D codes designed to be read or scanned by machines
  • Optical Character Recognition: automated reading of text such as serial numbers
  • Gauging: measurement of object dimensions in inches or millimeters
  • Edge Detection: finding object edges
  • Template Matching: finding, matching, and/or counting specific patterns.


In most cases, a machine vision system will use a sequential combination of these processing techniques to perform a complete inspection. A system that reads a barcode may also check a surface for scratches or tampering and measure the length and width of a machined component.


Additionally, machine downtime can be minimized by the provision of systems and methods for warning a machine operator of expected machine troubles so that scheduled maintenance can occur.


The PLC 103 includes software adapted to run several routines that may be initiated by some triggering event, such as an automatic detection of a defined condition or manual input by a machine operator. Some routines are run during machine setup while other routines are run during machine operation, while still other routines are run during machine diagnostics at some point during machine downtime.


The PLC 103 generally receives inputs 120 from the visual inspection stations 101, from the various machine components, or from manual input by a machine operator on an operator interface, or human machine interface (HMI) 115. Some of the inputs can also be from stations near the pulp rolls, pulp mills, forming rollers, or elsewhere in the system where inspection is present.


The HMI 115 provides an interface for user interaction with the web processing machinery and may comprise a pressure sensitive touch screen, a keyboard, a computer mouse, or even a wireless device providing such an interface. The PLC 103 preferably provides controlling outputs 121 to the patch applicator 105, the cutter 41 and vacuum roll 42, a patch reject conveyor 107 and a product reject conveyor 109.


The input to the PLC 103 from each inspection station 101 preferably comprises a defect indicator 111 that represents a detected web defect at a position in the process a number of patch placements from the patch applicator 105. That is, at any given time during machine operation, between any inspection station 101 and any patch applicator 105 in a web process, there exists material sufficient to produce a determinable number of products having a patch applied thereto. Therefore, a defect may be detected and flagged as corresponding to a specific product location throughout the process.


In determining whether a patch should be applied to a product by a patch applicator 105, the PLC 103 stores a product status indicator for each product in the process, preferably for each product between the product reject conveyor 109 and most remote visual inspection station 101. The status indicator accumulates defect indicators 111 from the inspection stations 101 to track the progress of a product through the process.


A preferred product status indicator is a byte of digital data, with each bit reflecting the defect indicator 111 for the tagged product from an inspection station 101. For example, the least significant bit in the status indicator may represent the defect indicator for the most remote visual inspection station 101. As the bit significance increases, so does the proximity of the respective inspection station 101 to the product reject conveyor 109. A byte of data would provide for the possibility of eight inspection stations, and specific tracking of defects at those inspection stations. To store the product status indicator, the PLC 103 preferably includes some volatile and some nonvolatile computer memory. The volatile memory may provide quicker access times during machine operation, while the nonvolatile memory could be used to store product status indicators when the machine is paused. The minimum amount of memory required by the PLC 103 is at least partly determined by the number of visual inspection stations 101 and the number of potential products in queue between the first visual inspection station 101 and the product reject conveyor 109. For example, if a web process utilizes eight visual inspection stations 101 and two hundred products could be in queue in any given time, a volatile memory of at least two hundred bytes would be required.


The visual inspection station outputs may be sampled synchronously, or the outputs may be asynchronously analyzed by the PLC 103. If synchronous, the outputs may be sampled at a rate equal to the speed of the traveling webs divided by the product pitch, or product size. To enable use of different product sizes in a given process, the sample timing of the inspection station results may be varied, accordingly.


In addition to synchronous sampling of the inspection station results, the results could be analyzed asynchronously, which may be advantageous if various materials are incorporated into the process at different rates. Asynchronous analysis of the outputs, however, may provide less visibility into the specific defects included in a completed product.


Prior to operating or running a web process, the machinery must be threaded with raw patch web material. The PLC 103 may provide a software routine, such as an automatic web threading routine, for aiding such setup. An operator threads the patch web material 40 through the machine to the patch applicator 105. The operator then initiates the automatic threading routine by using the HMI 115. The HMI 115 is coupled to the PLC 103 and the PLC 103 controls the patch applicator 105, patch cutter 41, vacuum roll 42, and patch reject conveyor 107. A first number of patches 46 are cut by the patch cutter 41 and culled via the patch reject conveyor 107. The culled patches 46a may be a predetermined number from the start of the threading routine, or cut patches 46 could be inspected by a visual inspection station 101, and culled until the patches 46 meet visual inspection parameters 108, as seen in FIG. 3.


Also, if the machine was shut down or paused with existing patch web material loaded through the patch cutter, but a vacuum remains drawn through the vacuum anvil drum, the patch web material on the vacuum anvil drum will act as an air filter. The longer the patch web material is on the drum, the dirtier it will get. Such soiled material may not be used in the construction of products for sale. Therefore, the PLC 103 could provide a software routine for clearing the vacuum anvil drum of soiled web material. Patches that have been on the anvil for a predetermined amount of time, and therefore may have dust built up, are culled through the reject prior to machine startup. Like the automatic threading routine, a predetermined number of patches may be culled, or the patches may be inspected for dust build-up.


In addition to threading and anvil clearing, a placement accuracy routine could be provided, for use on machine startup, or when the product configuration is changed. In a representative placement accuracy routine, patches are placed to several startup reject products, and relevant dimensions are taken by a visual inspection station 101 placed downstream from the patch applicator 105. The inspection results indicate if and when the patch placement meets specified patch placement parameters.


During machine operation, the PLC 103, through software algorithms, determines whether a patch 46 should be placed by the patch applicator 105, whether the patch 46 should be culled, or whether the web 39 should be allowed to continue to run without patch placement. A patch 46 is placed on the moving chassis web 39 only if both the patch 46 and web 39 are in condition for satisfactory placement.


After machine setup and threading of any materials, the PLC 103 begins verifying status indicators at the <application> position in memory. Generally, during machine operation, the PLC 103 controls whether a patch 46 is applied by a patch applicator 105. For each product, the PLC 103 determines the action of the patch applicator 105, the patch reject conveyor 107, and the product reject conveyor 109. For each product presented to a patch applicator 105, the PLC 103 issues one of the following commands to the patch applicator 105 and patch cutter: (1) apply patch; (2) cull patch; or (3) cull web.


The apply patch command is issued if no component part has been flagged as defective in the composite web 39 that is presented to the patch applicator 105 and the patch 46, itself, satisfies inspection parameters. When the apply patch command is issued, the vacuum anvil drum 42 remains relatively stationary while the composite web 39 having a deposited adhesive is forced by the patch applicator 105 against the patch 46. After the patch 46 is applied, the PLC awaits the arrival of the next patch attachment site or product pitch.


The cull patch command is issued if a patch 46a does not meet inspection parameters. Representative parameters can be seen in FIG. 4. Culling a defective patch 46a involves cooperation of the vacuum roll 42 and the patch reject conveyor 107. The vacuum roll 42 preferably has a vacuum manifold that allows a release of the vacuum draw at a certain point around the rotation path of the roll 42. The patch reject conveyor 107 may be a simple conveyor belt positioned just below the point where the vacuum draw may be removed, such that gravity causes the unapplied patch 46a to fall onto the conveyor 107.


The cull web command is issued if any component part of the composite web 39 is flagged as defective.


The PLC 103 may also contain a unit diagnostics program, which monitors parameters of the patch on the anvil to determine the health of the cutting knives and anvils. The unit diagnostics program involves the use of defined patch parameters measured by a vision inspection station and compared to expected values. Information that is gathered by the diagnostics program is stored and processed in a database. Where measured parameters are approaching acceptable limits, alerts are sent to the machine operator, indicating that potential problems are developing. The HMI may automatically present the Unit Diagnostics Screen for the operator to assess the situation. Furthermore, the HMI may provide graphics and charts to assist the operator by showing trend data, measured data, and comparable data. Thus, an operator is given advance notice of a problem so that any corrections can be made during the next machine downtime. Specifically, as the knives on the patch cutter age, the patches tend to skew. Furthermore, the deviation between subsequent patch cut lengths is another indicator that a knife blade may require replacement.


In an effort to prolong machine run-time between service and to reduce start-up rejects, an automatic anvil adjustment program may be provided. Such adjustment allows the anvil drum and knife roll to move relative to one another. Startup and shutdown rejects can result in rejections of many products. The movements are preferably in one millimeter increments over a five millimeter range. The adjustments are made as the machine is running to prevent wear on a single spot as well as to minimize buildup of cut web material on the anvil. In addition to the automatic adjustment, a manual override adjustment may be provided for troubleshooting.


If the unit diagnostics program detects a pair of patches that have parameters outside of acceptable limits, which is usually caused by a catastrophic failure of a knife or anvil, the machine operator is alerted and the HMI preferably automatically presents the Unit Diagnostics Screen for the operator to assess the situation. For every knife or anvil that fails, two patches will be affected. Therefore, if the anvil roller can accompany eight patches, twenty-five percent of the patches will fall out of acceptable limits. All patches that fall out of the acceptable limits are culled by way of the reject patch conveyor. All patches that fall within acceptable limits will continue to be placed on a composite web that is otherwise indicated as appropriate for receiving a patch. After being notified of the problem, the machine operator will observe the HMI to verify problem. In an attempt to correct the problem, the operator may try an electronic anvil shift, which, if successful, will allow the process to continue. If the electronic anvil shift does not correct the problem, the operator will request that the machine stop. To aid in repair or replacement of the failed knife or anvil, the cutter and anvil drum will stop in a position allowing easy access to the failed components. As a convenience and to enable more efficient repair of the failed components, a rapid change out (RCO) tool or kit could be provided, such as a set of hex wrenches. The operator changes the failed part and prepares the machine to restart. The routine for automatically clearing the anvil drum may then run, and the unit begins attaching patches to the composite web. The alarm that first alerted the operator of the problem is then reset, either automatically, or manually by the operator through the use of the HMI.


There may arise a situation where multiple anvils or knives appear to have failed. In this situation, the operator is alerted to the problem, but no patches are culled. Rather, a visual inspection station downstream from the patch applicator is examined to determine if there truly is a problem. If the problem is verified by the placement accuracy check, the operator shuts down the machine and proper maintenance is performed. If an examination of the placement accuracy inspection station does not confirm the purported problem, the unit diagnostics program may be suspended until it can be repaired.


Referring now to FIGS. 5 and 6a-c, an additional embodiment of a representative web processing system is shown schematically and incorporating principles of the present invention. It is noted that throughout the web processing, inspection systems can be incorporated virtually anywhere, particularly at locations of raw material input into the process.


AUTOMATED DEFECT DETECTION, ELASTIC THREADING AND RE-THREADING


FIGS. 7-15 generally describe a waste minimization technique wherein system shutdown is eliminated by first detecting a defect in a web component of a disposable product, then sequentially repairing the defect during operation of web processing machinery. The repair can be done why the machine as a whole continues operation, with a minimal number of products scrapped just prior to, during and just following the repaired portion of the web component.


Elastic laminates can be formed of a layer of stretched elastic between two non-stretched layers of non-woven material. Once the stretched elastic layer is bonded with the non-stretched non-woven, a stretch engine is formed once the elastic material is allowed to relax, forming a laminate that can be stretched in the machine direction.


Referring now to FIG. 7, a perspective view of a layered stretch bond laminate 310 is shown, with an elastomeric layer 314 sandwiched between two non-elastomeric layers 312a and 312b. A plurality of bond sites 320 are provided about an elasticized area 308, and the stretch bond laminate 310 can also be provided with a non-elasticized area 306. The non-elasticized area 306 is a preferred location for bonding the stretch bond laminate 310 to other portions of a diaper product, as the elasticized area 308 is characterized by a soft, yet discontinuous topography due to the presence of gathered areas in the elasticized area 308.


Referring now to FIG. 8, a cross-sectional view of the laminate 310 shown in FIG. 7 is shown. This view shows that the elastomeric layer 314 is sandwiched between the non-elastomeric layers 312a and 312b. In preferred embodiments, the elastomeric layer 314 can comprise a single layer, or can itself comprise a series of elastomeric materials laminated or provided together, depending on the desired elastic characteristics of the finished laminate 310.


Referring now to FIG. 9, a cross-sectional view of the laminate 10 shown in FIG. 7 is shown, with particular emphasis on a typical bond-site 320. It is preferred that the elastomeric layer 314 be chosen with good resistance to heat bonding or to ultrasonic bonding, such that when the laminate 310 is processed, the elastomeric layer 314 would behave predictably and consistently at bond sites 320. Particularly, an elastomeric layer 314, if itself formed of a lamination of several layers (not shown) can be provided, the different layers of the elastomeric layer 314 can be designed to remain somewhat intact through bond site 320. By providing a multi-layered elastomeric layer 314, the degree of flexibility in intended use, and control over reaction to heat, adhesive, or ultrasonic bonding at bond sites 320 can be more closely controlled and predicted.


As can be seen, on a microscopic level, fibrous elements 322 of non-elastomeric layers 312a and 312b remain in bond sites 320. Further, at least a portion of the elastomeric layer 314 can remain commingled with fibrous elements 322 at the bond sites, in order to provide a smooth, yet structurally stable bond at the bond site 320.


Referring now to FIG. 10, a schematic view of a two-station apparatus for forming the stretch bonded laminate 310 is shown. Elastomeric layer 14 is unwound from drum 18 and ultimately sandwiched between the non-elastomeric layers 312a and 312b, which themselves are being unwound from primary supply wheels 316.


The unwinding process preferably incorporates web accumulator device 322. A common use of a web accumulator 322 is where a web is fed from primary supply wheel 316s and it is necessary to splice the leading edge of the webs 312a or 312b from a standby supply wheel (not shown) to the trailing edge of the webs 32a and 12b from the primary supply wheel 316 in a manner that will not cause interruption of the web supply to a web consuming or utilizing device.


In one known type of accumulator, the swinging dancer arm type, there is a set of spaced apart rollers on a swingable dancer arm cooperating with another set of rollers on an arm that may be stationary or swingable. A web is looped back and forth between the sets of rollers on opposed arms in a serpentine fashion. When the swingable arm is swung away from the other arm a substantial length of web is accumulated. During normal running of the web the arms will be urged to their maximum practical separation from each other to accumulate the maximum length of web. If the infeed web is slowed or stopped for a short time the tension in the web urges the arms to the minimum separation position in order to make the accumulated web available to the machine. After infeed to the accumulator is resumed the arms separate again and return to their original position to accumulate and store another length of web.


In another known type of accumulator, the linear sliding carriage type, there is a set of rollers mounted on a movable carriage which can run linearly toward or away from a set of corresponding rollers which may either be stationary or similarly slidably mounted. During normal operation of the accumulator, the two sets of rollers will be slid to their maximum practical separation to accumulate the maximum amount of web. If the infeed supply to the web accumulator is slowed or stopped, the rollers will be slid toward each other to allow the stored web to be paid out. As the web infeed is returned to regular operational speed the movable rollers slide back toward the original position to accumulate another length of web. Metering stations 332 can be provided to analyze the speed of the infeed of the layers 312a and 312b, and to assist in determining how much material remains on infeed rolls.


Referring still to FIG. 10, a blocking isolation s-wrap 330 can be provided for carrying and tensioning elastomeric layer 314. Elastomeric layer 314 enters a first cross machine direction stretch wheel 334 on one side of the web 314 in the direction of travel, and then a second cross machine direction stretch wheel 336 on the other side of the web 14 in the direction of travel. First, second and third stretch rollers 338, 340, and 342 are provided. In conjunction with the stretch wheels 334 and 336, and the stretch rollers 338, 340 and 342, the elastomeric layer 314 is stretched in a direction and tension that is user defined based on preference of the elasticity of the lamination 310. It is noted that stretching can be supplied to elastic layer 314 in any of the cross machine direction, the machine direction, or a combination of both, depending on the desired end result.


A first ultrasonic bonding station 326a achieves breathability by joining the non-elastomeric layer 312b with the stretched elastomeric layer 14. Because the elastomeric layer 314 has been stretched, yet the non-elastomeric layer 312b has not been stretched, when the two layers are joined, the elastomeric layer 314 still will have stored the stretch.


Next, the second ultrasonic bonding station 326b bonds the pre-bonded combination of the non-elastomeric layer 312b and elastomeric layer 314 with the non-elastomeric layer 312a, achieving thee elastic lamination 310. Next, the elastomeric layer 314 is taken off of tension, which results in a gathering of the elastomeric layer 314 to create the ripple like appearance of the material as seen in FIG. 7.


One advantage of two station bonding is that it offers flexibility for different anvil patterns at each station. For instance, a chicken feet pattern at the first station 326a, and a dot pattern anvil at the second station 326b, results in good breathability as well as good elastic retention forces at smaller bond sites. Additionally, because ultrasonic bonding station 326a is not required to penetrate three layers 312a, 314 and 312b, flexibility is offered with the degree of energy supplied.


Alternatively, the two non-woven layers 312a and 312b can be brought together with the elastomeric layer 314 sandwiched between, and the elastomeric layer 314 can be bonded to both non-woven layers 312a and 312b simultaneously (see FIG. 11). This has the advantage of only requiring one bonding station.


During construction of such laminates, defects in the elastic material 314 supplied to the process can result in snapped or otherwise unacceptable elastic introduced to the laminate. If such unacceptable elastic is introduced into the laminate, the manufacturing process can require slowing or stoppage in order for properly produced laminate to be re-introduced into the process and rethreaded in the manner shown in FIG. 11. One aspect of the present invention relates to an automated method and apparatus to first detect such defects, and to automatically re-thread the elastic material through stretch rollers and continue with the processing sequence using acceptable elastic material resulting in an acceptable formed laminate.


Such automation results in less manual threading and re-threading, less system downtime, and and scrapped product resulting from unacceptable elastic forming unacceptable laminate being present in finished product.


Air knives (shown schematically on FIG. 11) are used in the procedure described below in order to urge and thread the elastic layer through stretch rollers in the machine direction as will be described later. Air knives are also used, when necessary, to reverse defected elastic layers in reverse machine direction back out of the stretch rollers, and then again forward in the machine direction through the stretch rollers in the machine direction in order to continue the laminate construction.


An air knife, such as a commercially available EXAIR air knife, is a tool traditionally used to blow off liquid or debris from products as they travel on conveyors. The knife consists of a high intensity, uniform sheet of laminar airflow.


A pressurized air plenum containing a series of holes or continuous slots through which pressurized air exits in a laminar flow pattern characterizes an air knife. The exit air velocity then creates an impact air velocity onto the surface of whatever object the air is directed. This impact air velocity can range from a gentle breeze to greater than Mach 0.6 (40,000 ft/min) to alter the surface of a product without mechanical contact.


Traditional uses of air knives remove liquids, control the thickness of liquids, dry the liquid coatings, remove foreign particles, cool product surfaces or create a hold down force to assist in the mechanical bonding of materials to the surface. The present use of an air knife to transport a loose end of a web material, such as an elastic material is novel. Several air knives are used in succession to guide or thread the loose end of the web material through a series of rollers or in another targeted direction.


Referring now to FIG. 11, a system for threading and re-threading the elastic layer 314 into the stretch wheels 338, 340, 342 and 350 is shown. Stretch wheel 338 travels at the infeed velocity V1 to mach the speed of the incoming elastomeric layer 314. Next, stretch wheels 340, 342 and finally 350 operate at successively faster velocities V2, V3 and V4. V4 is preferably the same speed as incoming non-woven layers 312a and 312b. An air knife 348 is positioned between the incoming web of elastomeric layer 314 and the first stretch wheel 338. A series of air knives 348 are provided at additional downstream locations where it is desired to steer the elastomeric layer 314.


Referring still to FIG. 11, the system is shown in its operating condition, with incoming elastomeric 314 already threaded under stretch wheel 338, over stretch wheel 340, under stretch wheel 342, and finally over stretch wheel 350. The air knives 348 are all shown in phantom on FIG. 11, indicating that air is not being directed through the knives 348, because under normal operating conditions, the air is not necessary to steer the threaded elastic 314. However, should the elastic 314 become deformed or snap, the elastic 314 will need to be re-threaded in the manner shown in FIG. 11 to resume system operation.


If the elastomeric layer 314 should be detected as being unacceptable, a threading/re-threading sequence is initiated. Unacceptable elastomeric 314 infeed conditions can be indicated for instance by the first camera positioned near the infeed of elastomeric layer 314; or missing elastomeric, as determined by the next camera positioned after the non-woven layers have been sandwiched about the elastomeric layer 314; or by a pressure sensor mounted before the first stretch wheel 338.


Depending on the location and nature of the free end of the incoming elastomeric 314, which can be determined by additional vision sensors deployed throughout the stretch wheel array, the elastomeric 314 might require retreatment from the stretch wheel array (for instance if the free end of the incoming elastomeric 314 is within the stretch wheel array). Alternatively, if the free end of the incoming elastomeric 314 is prior to the first stretch wheel 338, retreatment will not be necessary.


The threading/re-threading sequence involves nearly immediate movement of the first and third stretch wheels 338 and 342 (see FIGS. 17 and 18) in order to provide adequate space for the elastomeric 314 to be threaded through all of the stretch wheels, which, in their operating condition, are spaced closely together.


Referring now to FIGS. 12A-12C, if the free end of the incoming elastomeric 314 is prior to the first stretch wheel 338, retreatment will not be necessary, and the threading sequence is shown. As can be seen, the air knives 348 indicated in solid lines are activated with air advancement shown in the machine direction. The first air knife 348 (shown at left) advances the leading edge of the incoming elastomeric 314 being paid in at its V1 velocity, by urging the laminar air flow at the leading edge. The second activated air knife 348 directs more laminar air flow at the leading edge of the elastomeric 314 to urge the leading edge of the elastomeric 314 between the void created by the separated stretch wheels 338 and 340. The third activated air knife 348 directs the leading edge of the elastomeric 314 to urge the leading edge of the elastomeric 314 between the void created by the separated stretch wheels 340 and 342 (see FIG. 12b). The fourth activated air knife 348 directs the leading edge of the elastomeric 314 to urge the leading edge of the elastomeric 314 between the void created by the separated stretch wheels 342 and 350. The last activated air knife 348 directs the leading edge of the elastomeric 314 to urge the leading edge of the elastomeric 314 between the non-woven layers 312a and 312b (FIG. 12c). At this point, the first and third stretch wheels 338 and 342 are returned to their operating spacing, the activated air knives 348 are deactivated, and the system is restored to its original and properly functioning operating condition, identical to shown in FIG. 11.


Referring now to FIGS. 13-15, if the system, through pressure sensors or vision sensors deployed throughout the stretch wheel array has determined that the free end of the incoming elastomeric 314 is within the stretch wheel array (in the illustrated embodiment, about stretch wheel 342 in FIG. 13, a retreatment and threading/rethreading sequence is initiated as shown in FIGS. 13-15. In this sequence, there is also nearly immediate movement of the first and third stretch wheels 338 and 342 as shown in FIG. 14 (see also FIGS. 17 and 18) in order to provide adequate space for the elastomeric 314 to be retreated and then threaded through all of the stretch wheels as previously described. In the retreatment sequence, the air knives 348 shown in bold are activated in order to urge the leading edge of the elastomeric 314 in the reverse machine direction, retreating upstream of the machine direction. The upstream facing air knives 348 remain activated until it is detected that the leading edge of the elastomeric 314 has been removed from the stretch wheel array (see FIG. 15). When the first camera (left side of FIG. 15) detects the leading edge of the elastomeric 314, the threading sequence as described in FIGS. 12A-12C is activated until the system continues in its normal operating condition of FIG. 11.


Referring now to FIG. 16, because the threading or the retreating/threading sequences operate while the non-woven layers 312a and 312b are still being introduced, there exists a gap in the introduction of the elastomeric layer 314 between time 1, the initially operating timeframe and time 3, the operating timeframe after rethreading has taken place (time 2). Material produced during time period 2, during which threading (and possibly retreatment/threading) will not have the elastomeric layer 314 introduced. Material produced during time period 2 will therefore be unacceptable for use in final product. Depending on user preference, the non-elastic laminate produced during time period 2 can still be introduced into downstream products such as diapers, with those products being discarded by the logic system after final production. Alternatively, the logic system can temporarily halt introduction of other diaper components at times downstream matching up with when the non-elastic laminate produced during time period 2 would have been introduced with other components.


Referring now to FIGS. 17 and 18, a drive side view of the stretch array 338, 340, 342, and 350 is shown. In the operating condition shown in FIG. 17, the components are in their closely spaced configuration (see FIG. 11). In the spaced apart condition shown in FIG. 17, the stretch wheels 342 and 338 have been moved linearly away from the stretch wheels 340 and 350 to allow the spacing between stretch wheels adequate for the air driven threading operation.


Although the foregoing description involves the placement of an absorbent insert or patch onto a diaper chassis, it will be apparent to those skilled in the art that the apparatus and process could be used to avoid unnecessary waste in the application of any sort of patch to a moving web. Other examples of patches that may be placed are tape tab patches and reusable fasteners.


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

Claims
  • 1. An apparatus for threading a material layer through a machine path, the apparatus comprising a forwarding series of blowing air mechanisms aimed at said material layer in a machine direction to guide said material layer in said machine direction forwards through said machine path until an acceptable material state is achieved; a sensor; and a reversing series of blowing air mechanisms aimed at said material layer in a reverse machine direction to guide said material layer in said reverse direction; said sensor operatively coupled with said forwarding series of blowing air mechanisms and operatively coupled with said reversing series of blowing air mechanisms; at most one of said forwarding series of blowing air mechanisms and said reversing series of blowing air mechanisms instantaneously operative upon said material layer.
RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application Ser. No. 61/400,318 filed 26 Jul. 2010. This application is also a continuation-in-part of co-pending U.S. patent application Ser. No. 11/880,261, filed on Jul. 20, 2007.

US Referenced Citations (519)
Number Name Date Kind
35145 Murphy Jan 1873 A
2933353 Purvis Feb 1884 A
312257 Cotton et al. Feb 1885 A
410123 Stilwell Aug 1889 A
432742 Stanley Jul 1890 A
643821 Howlett Feb 1900 A
1393524 Grupe Oct 1921 A
1431315 Le Moine Oct 1922 A
1605842 Jones Nov 1926 A
1629681 Cram May 1927 A
1686595 Belluche Oct 1928 A
1957651 Joa May 1934 A
2009857 Potdevin Jul 1935 A
2054832 Potdevin Sep 1936 A
2117432 Linscott May 1938 A
2128746 Joa Aug 1938 A
2131808 Joa Oct 1938 A
2164408 Joa Jul 1939 A
2167179 Joa Jul 1939 A
2171741 Cohn et al. Sep 1939 A
2213431 Joa Sep 1940 A
2254290 Joa Sep 1941 A
2254291 Joa Sep 1941 A
2282477 Joa May 1942 A
2286096 Joa Jun 1942 A
2296931 Joa Sep 1942 A
2304571 Joa Dec 1942 A
2324930 Joa Jul 1943 A
2345937 Joa Apr 1944 A
2466240 Joa Apr 1949 A
2481929 Joa Sep 1949 A
2510229 Joa Jun 1950 A
2540844 Strauss Feb 1951 A
2584002 Elser et al. Jan 1952 A
2591359 Joa Apr 1952 A
2618816 Joa Nov 1952 A
2627859 Hargrave Feb 1953 A
2695025 Andrews Nov 1954 A
2702406 Reed Feb 1955 A
2721554 Joa Oct 1955 A
2730144 Joa Jan 1956 A
2772611 Heywood Dec 1956 A
2780253 Joa Feb 1957 A
2785609 Billeb Mar 1957 A
2788786 Dexter Apr 1957 A
2811905 Kennedy, Jr. Nov 1957 A
2828745 Deutz Apr 1958 A
2839059 Joa Jun 1958 A
2842169 Joa Jul 1958 A
2851934 Heywood Sep 1958 A
2875724 Joa Mar 1959 A
2890700 Lonberg-Holm Jun 1959 A
2913862 Sabee Nov 1959 A
2939461 Joa Jun 1960 A
2939646 Stone Jun 1960 A
2960143 Joa Nov 1960 A
2990081 De Neui et al. Jun 1961 A
2991739 Joa Jul 1961 A
3016207 Comstock, III Jan 1962 A
3016582 Joa Jan 1962 A
3017795 Joa Jan 1962 A
3020687 Joa Feb 1962 A
3021135 Joa Feb 1962 A
3024957 Pinto Mar 1962 A
3053427 Wasserman Sep 1962 A
3054516 Joa Sep 1962 A
3069982 Heywood et al. Dec 1962 A
3086253 Joa Apr 1963 A
3087689 Heim Apr 1963 A
3089494 Schwartz May 1963 A
3091408 Schoeneman May 1963 A
3114994 Joa Dec 1963 A
3122293 Joa Feb 1964 A
3128206 Dungler Apr 1964 A
3203419 Joa Aug 1965 A
3230955 Joa Jan 1966 A
3268954 Joa Aug 1966 A
3288037 Burnett Nov 1966 A
3289254 Joa Dec 1966 A
3291131 Joa Dec 1966 A
3301114 Joa Jan 1967 A
3318608 Smrekar May 1967 A
3322589 Joa May 1967 A
3336847 Johnson Aug 1967 A
3342184 Joa Sep 1967 A
3356092 Joa Dec 1967 A
3360103 Joa Dec 1967 A
3391777 Joa Jul 1968 A
3454442 Heller, Jr. Jul 1969 A
3463413 Smith Aug 1969 A
3470848 Dreher Oct 1969 A
3484275 Lewicki, Jr. Dec 1969 A
3502322 Cran Mar 1970 A
3521639 Joa Jul 1970 A
3526563 Schott, Jr. Sep 1970 A
3538551 Joa Nov 1970 A
3540641 Besnyo Nov 1970 A
3575170 Clark Apr 1971 A
3607578 Berg et al. Sep 1971 A
3635462 Joa Jan 1972 A
3656741 Macke et al. Apr 1972 A
3666611 Joa May 1972 A
3673021 Joa Jun 1972 A
3685818 Burger et al. Aug 1972 A
3728191 Wierzba et al. Apr 1973 A
3751224 Wackerle Aug 1973 A
3758102 Munn et al. Sep 1973 A
3772120 Radzins Nov 1973 A
3776798 Milano Dec 1973 A
3796360 Alexeff Mar 1974 A
3811987 Wilkinson et al. May 1974 A
3816210 Aoko et al. Jun 1974 A
3847710 Blomqvist et al. Nov 1974 A
3854917 McKinney et al. Dec 1974 A
3883389 Schott, Jr. May 1975 A
3888400 Wiig Jun 1975 A
3901238 Geller et al. Aug 1975 A
3903768 Amberg et al. Sep 1975 A
3904147 Taitel et al. Sep 1975 A
3918698 Coast Nov 1975 A
3960646 Wiedamann Jun 1976 A
3988194 Babcock et al. Oct 1976 A
3991994 Farish Nov 1976 A
4002005 Mueller et al. Jan 1977 A
4003298 Schott, Jr. Jan 1977 A
4009814 Singh Mar 1977 A
4009815 Ericson et al. Mar 1977 A
4053150 Lane Oct 1977 A
4056919 Hirsch Nov 1977 A
4081301 Buell Mar 1978 A
4090516 Schaar May 1978 A
4094319 Joa Jun 1978 A
4103595 Corse Aug 1978 A
4106974 Hirsch Aug 1978 A
4108584 Radzins et al. Aug 1978 A
4136535 Audas Jan 1979 A
4141193 Joa Feb 1979 A
4141509 Radzins Feb 1979 A
4142626 Bradley Mar 1979 A
4157934 Ryan et al. Jun 1979 A
4165666 Johnson et al. Aug 1979 A
4168776 Hoeboer Sep 1979 A
4171239 Hirsch et al. Oct 1979 A
4205679 Repke et al. Jun 1980 A
4208230 Magarian Jun 1980 A
4213356 Armitage Jul 1980 A
4215827 Roberts et al. Aug 1980 A
4222533 Pongracz Sep 1980 A
4223822 Clitheroe Sep 1980 A
4231129 Winch Nov 1980 A
4236955 Prittie Dec 1980 A
4275510 George Jun 1981 A
4284454 Joa Aug 1981 A
4307800 Joa Dec 1981 A
4316756 Wilson Feb 1982 A
4325519 McLean Apr 1982 A
4342206 Rommel Aug 1982 A
4364787 Radzins Dec 1982 A
4374576 Ryan Feb 1983 A
4379008 Gross et al. Apr 1983 A
4394898 Campbell Jul 1983 A
4411721 Wishart Oct 1983 A
4452597 Achelpohl Jun 1984 A
4492608 Hirsch et al. Jan 1985 A
4501098 Gregory Feb 1985 A
4508528 Hirsch et al. Apr 1985 A
4522853 Szonn et al. Jun 1985 A
4543152 Nozaka Sep 1985 A
4551191 Kock et al. Nov 1985 A
4586199 Birring May 1986 A
4589945 Polit May 1986 A
4603800 Focke et al. Aug 1986 A
4608115 Schroth et al. Aug 1986 A
4610097 Kotitschke et al. Sep 1986 A
4610681 Strohbeen et al. Sep 1986 A
4610682 Kopp Sep 1986 A
4614076 Rathemacher Sep 1986 A
4619357 Radzins et al. Oct 1986 A
4634482 Lammers Jan 1987 A
4641381 Heran et al. Feb 1987 A
4642150 Stemmler Feb 1987 A
4642839 Urban Feb 1987 A
4650530 Mahoney et al. Mar 1987 A
4663220 Wisneski et al. May 1987 A
4672705 Bors et al. Jun 1987 A
4675016 Meuli et al. Jun 1987 A
4675062 Instance Jun 1987 A
4675068 Lundmark Jun 1987 A
4686136 Homonoff et al. Aug 1987 A
4693056 Raszewski Sep 1987 A
4701239 Craig Oct 1987 A
4720415 Vander Wielen et al. Jan 1988 A
4723698 Schoonderbeek Feb 1988 A
4726874 Van Vliet Feb 1988 A
4726876 Tomsovic, Jr. Feb 1988 A
4743241 Igaue et al. May 1988 A
4751997 Hirsch Jun 1988 A
4753429 Irvine et al. Jun 1988 A
4756141 Hirsch et al. Jul 1988 A
4763822 Mohrsen Aug 1988 A
4764325 Angstadt Aug 1988 A
4765780 Angstadt Aug 1988 A
4776920 Ryan Oct 1988 A
4777513 Nelson Oct 1988 A
4782647 Williams et al. Nov 1988 A
4785986 Daane et al. Nov 1988 A
4795451 Buckley Jan 1989 A
4795510 Wittrock et al. Jan 1989 A
4798353 Peugh Jan 1989 A
4801345 Dussaud et al. Jan 1989 A
4802570 Hirsch et al. Feb 1989 A
4840609 Jones et al. Jun 1989 A
4845964 Bors et al. Jul 1989 A
4864802 D'Angelo Sep 1989 A
4880102 Indrebo Nov 1989 A
4888231 Angstadt Dec 1989 A
4892536 Des Marais et al. Jan 1990 A
4904440 Angstadt Feb 1990 A
4908175 Angstadt Mar 1990 A
4909019 Delacretaz et al. Mar 1990 A
4915767 Rajala et al. Apr 1990 A
4917746 Kons Apr 1990 A
4925520 Beaudoin et al. May 1990 A
4927322 Schweizer et al. May 1990 A
4927486 Fattal et al. May 1990 A
4927582 Bryson May 1990 A
4937887 Schreiner Jul 1990 A
4963072 Miley et al. Oct 1990 A
4987940 Straub et al. Jan 1991 A
4994010 Doderer-Winkler Feb 1991 A
5000806 Merkatoris et al. Mar 1991 A
5021111 Swenson Jun 1991 A
5025910 Lasure et al. Jun 1991 A
5045039 Bay Sep 1991 A
5062597 Martin et al. Nov 1991 A
5064179 Martin Nov 1991 A
5064492 Friesch Nov 1991 A
5080741 Nomura et al. Jan 1992 A
5094658 Smithe et al. Mar 1992 A
5096532 Neuwirth et al. Mar 1992 A
5108017 Adamski, Jr. et al. Apr 1992 A
5109767 Nyfeler et al. May 1992 A
5110403 Ehlert May 1992 A
5127981 Straub et al. Jul 1992 A
5131525 Musschoot Jul 1992 A
5131901 Moll Jul 1992 A
5133511 Mack Jul 1992 A
5147487 Nomura et al. Sep 1992 A
5163594 Meyer Nov 1992 A
5171239 Igaue et al. Dec 1992 A
5176244 Radzins et al. Jan 1993 A
5183252 Wolber et al. Feb 1993 A
5188627 Igaue et al. Feb 1993 A
5190234 Ezekiel Mar 1993 A
5195684 Radzins Mar 1993 A
5203043 Riedel Apr 1993 A
5213645 Nomura et al. May 1993 A
5222422 Benner, Jr. et al. Jun 1993 A
5223069 Tokuno et al. Jun 1993 A
5226992 Morman Jul 1993 A
5246433 Hasse et al. Sep 1993 A
5252228 Stokes Oct 1993 A
5267933 Precoma Dec 1993 A
5273228 Yoshida Dec 1993 A
5275676 Rooyakkers et al. Jan 1994 A
5308345 Herrin May 1994 A
5328438 Crowley Jul 1994 A
5340424 Matsushita Aug 1994 A
5368893 Sommer et al. Nov 1994 A
5389173 Merkatoris et al. Feb 1995 A
5393360 Bridges et al. Feb 1995 A
5407507 Ball Apr 1995 A
5407513 Hayden et al. Apr 1995 A
5415649 Watanabe et al. May 1995 A
5421924 Ziegelhoffer et al. Jun 1995 A
5424025 Hanschen et al. Jun 1995 A
5429576 Doderer-Winkler Jul 1995 A
5435802 Kober Jul 1995 A
5443437 Mack Aug 1995 A
5449353 Watanabe et al. Sep 1995 A
5464401 Hasse et al. Nov 1995 A
5486253 Otruba Jan 1996 A
5494622 Heath et al. Feb 1996 A
5500075 Herrmann Mar 1996 A
5516392 Bridges et al. May 1996 A
5518566 Bridges et al. May 1996 A
5525175 Blenke et al. Jun 1996 A
5531850 Herrmann Jul 1996 A
5540647 Weiermann et al. Jul 1996 A
5545275 Herrin et al. Aug 1996 A
5545285 Johnson Aug 1996 A
5552013 Ehlert et al. Sep 1996 A
5556360 Kober et al. Sep 1996 A
5556504 Rajala et al. Sep 1996 A
5560793 Ruscher et al. Oct 1996 A
5575187 Dieterlen Nov 1996 A
5586964 Chase Dec 1996 A
5602747 Rajala Feb 1997 A
5603794 Thomas Feb 1997 A
5616113 Van Den Bergh Apr 1997 A
5624420 Bridges et al. Apr 1997 A
5624428 Sauer Apr 1997 A
5628738 Suekane May 1997 A
5634917 Fujioka et al. Jun 1997 A
5643165 Klekamp Jul 1997 A
5643396 Rajala et al. Jul 1997 A
5645543 Nomura et al. Jul 1997 A
5659229 Rajala Aug 1997 A
5660657 Rajala et al. Aug 1997 A
5660665 Jalonen Aug 1997 A
5683376 Kato et al. Nov 1997 A
5683531 Roessler et al. Nov 1997 A
RE35687 Igaue et al. Dec 1997 E
5693165 Schmitz Dec 1997 A
5699653 Hartman et al. Dec 1997 A
5705013 Nease Jan 1998 A
5707470 Rajala et al. Jan 1998 A
5711832 Glaug et al. Jan 1998 A
5725518 Coates Mar 1998 A
5725714 Fujioka Mar 1998 A
5743994 Roessler et al. Apr 1998 A
5745922 Rajala et al. May 1998 A
5746869 Hayden et al. May 1998 A
5749989 Linman et al. May 1998 A
5766389 Brandon et al. Jun 1998 A
5788797 Herrin et al. Aug 1998 A
5817199 Brennecke et al. Oct 1998 A
5829164 Kotitschke Nov 1998 A
5836931 Toyoda et al. Nov 1998 A
5858012 Yamaki et al. Jan 1999 A
5865393 Kreft et al. Feb 1999 A
5868727 Barr et al. Feb 1999 A
5876027 Fukui et al. Mar 1999 A
5876792 Caldwell Mar 1999 A
5879500 Herrin et al. Mar 1999 A
5902431 Wilkinson et al. May 1999 A
5932039 Popp et al. Aug 1999 A
5938193 Bluemle et al. Aug 1999 A
5964390 Boerresen et al. Oct 1999 A
5964970 Woolwine et al. Oct 1999 A
6022443 Rajala et al. Feb 2000 A
6036805 McNichols Mar 2000 A
6043836 Kerr et al. Mar 2000 A
6050517 Dobrescu et al. Apr 2000 A
6074110 Verlinden et al. Jun 2000 A
6076442 Arterburn et al. Jun 2000 A
6098249 Toney et al. Aug 2000 A
6123792 Samida et al. Sep 2000 A
6171432 Brisebois Jan 2001 B1
6183576 Couillard et al. Feb 2001 B1
6195850 Melbye Mar 2001 B1
6210386 Inoue Apr 2001 B1
6212859 Bielik, Jr. et al. Apr 2001 B1
6214147 Mortellite et al. Apr 2001 B1
6250048 Linkiewicz Jun 2001 B1
6264784 Menard et al. Jul 2001 B1
6276421 Valenti et al. Aug 2001 B1
6276586 Yeo et al. Aug 2001 B1
6276587 Boerresen Aug 2001 B1
6284081 Vogt et al. Sep 2001 B1
6287409 Stephany Sep 2001 B1
6306122 Narawa et al. Oct 2001 B1
6309336 Muessig et al. Oct 2001 B1
6312420 Sasaki et al. Nov 2001 B1
6314333 Rajala et al. Nov 2001 B1
6315022 Herrin et al. Nov 2001 B1
6319347 Rajala Nov 2001 B1
6336921 Kato et al. Jan 2002 B1
6358350 Glaug et al. Mar 2002 B1
6369291 Uchimoto et al. Apr 2002 B1
6375769 Quereshi et al. Apr 2002 B1
6391013 Suzuki et al. May 2002 B1
6416697 Venturino et al. Jul 2002 B1
6431038 Couturier Aug 2002 B2
6440246 Vogt et al. Aug 2002 B1
6443389 Palone Sep 2002 B1
6446795 Allen et al. Sep 2002 B1
6473669 Rajala et al. Oct 2002 B2
6475325 Parrish et al. Nov 2002 B1
6478786 Glaug et al. Nov 2002 B1
6482278 McCabe et al. Nov 2002 B1
6494244 Parrish et al. Dec 2002 B2
6514233 Glaug Feb 2003 B1
6521320 McCabe et al. Feb 2003 B2
6523595 Milner et al. Feb 2003 B1
6524423 Hilt et al. Feb 2003 B1
6533879 Quereshi et al. Mar 2003 B2
6540857 Coenen et al. Apr 2003 B1
6547909 Butterworth Apr 2003 B1
6551228 Richards Apr 2003 B1
6551430 Glaug et al. Apr 2003 B1
6554815 Umebayashi Apr 2003 B1
6569275 Popp et al. May 2003 B1
6572520 Blumle Jun 2003 B2
6581517 Becker et al. Jun 2003 B1
6585841 Popp et al. Jul 2003 B1
6589149 VanEperen et al. Jul 2003 B1
6596107 Stopher Jul 2003 B2
6596108 McCabe Jul 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605173 Glaug et al. Aug 2003 B2
6637583 Anderson Oct 2003 B1
6648122 Hirsch et al. Nov 2003 B1
6649010 Parrish et al. Nov 2003 B2
6651923 Kinnunen et al. Nov 2003 B2
6656309 Parker et al. Dec 2003 B1
6659150 Perkins et al. Dec 2003 B1
6659991 Suekane Dec 2003 B2
6675552 Kunz et al. Jan 2004 B2
6684925 Nagate et al. Feb 2004 B2
6722494 Nakakado Apr 2004 B2
6730189 Franzmann May 2004 B1
6743324 Hargett et al. Jun 2004 B2
6750466 Guha et al. Jun 2004 B2
6758109 Nakakado Jul 2004 B2
6766817 da Silva Jul 2004 B2
6808582 Popp et al. Oct 2004 B2
D497991 Otsubo et al. Nov 2004 S
6814217 Blumenthal et al. Nov 2004 B2
6820671 Calvert Nov 2004 B2
6837840 Yonekawa et al. Jan 2005 B2
6840616 Summers Jan 2005 B2
6852186 Matsuda et al. Feb 2005 B1
6875202 Kumasaka et al. Apr 2005 B2
6893528 Middelstadt et al. May 2005 B2
6913718 Ducker Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6942759 Mohrsen et al. Sep 2005 B2
6946059 Mohrsen et al. Sep 2005 B2
6976521 Mlinar Dec 2005 B2
6978486 Zhou et al. Dec 2005 B2
7017820 Brunner Mar 2006 B1
7045031 Popp et al. May 2006 B2
7066586 da Silva Jun 2006 B2
7077393 Ishida Jul 2006 B2
7130710 Popp et al. Oct 2006 B2
7144356 Harnish Dec 2006 B2
7172666 Groves et al. Feb 2007 B2
7195684 Satoh Mar 2007 B2
7201345 Werner Apr 2007 B2
7214174 Allen et al. May 2007 B2
7214287 Shiomi May 2007 B2
7247219 O'Dowd Jul 2007 B2
7303708 Andrews et al. Dec 2007 B2
7380213 Pokorny et al. May 2008 B2
7398870 McCabe Jul 2008 B2
7449084 Nakakado Nov 2008 B2
7452436 Andrews Nov 2008 B2
7533709 Meyer May 2009 B2
7537215 Beaudoin et al. May 2009 B2
7587966 Nakakado et al. Sep 2009 B2
7618513 Meyer Nov 2009 B2
7638014 Coose et al. Dec 2009 B2
7640962 Meyer et al. Jan 2010 B2
7703599 Meyer Apr 2010 B2
7708849 McCabe May 2010 B2
7770712 McCabe Aug 2010 B2
7771407 Umebayashi Aug 2010 B2
7780052 McCabe Aug 2010 B2
7809179 Singh et al. Oct 2010 B2
7811403 Andrews Oct 2010 B2
7861756 Jenquin et al. Jan 2011 B2
7871400 Sablone et al. Jan 2011 B2
7909956 Coose et al. Mar 2011 B2
7975584 McCabe Jul 2011 B2
7987964 McCabe Aug 2011 B2
8007484 McCabe et al. Aug 2011 B2
8007623 Andrews Aug 2011 B2
8011493 Giuliani et al. Sep 2011 B2
8016972 Andrews et al. Sep 2011 B2
8257535 Yamamoto Sep 2012 B2
20010012813 Bluemle Aug 2001 A1
20010017181 Otruba et al. Aug 2001 A1
20020046802 Tachibana et al. Apr 2002 A1
20020059013 Rajala et al. May 2002 A1
20020096241 Instance Jul 2002 A1
20020125105 Nakakado Sep 2002 A1
20020162776 Hergeth Nov 2002 A1
20030000620 Herrin et al. Jan 2003 A1
20030015209 Gingras et al. Jan 2003 A1
20030051802 Hargett et al. Mar 2003 A1
20030052148 Rajala et al. Mar 2003 A1
20030066585 McCabe Apr 2003 A1
20030083638 Molee May 2003 A1
20030084984 Glaug et al. May 2003 A1
20030089447 Molee et al. May 2003 A1
20030121614 Tabor et al. Jul 2003 A1
20030135189 Umebayashi Jul 2003 A1
20040007328 Popp et al. Jan 2004 A1
20040016500 Tachibana et al. Jan 2004 A1
20040044325 Corneliusson Mar 2004 A1
20040087425 Ng et al. May 2004 A1
20040112517 Groves et al. Jun 2004 A1
20040164482 Edinger Aug 2004 A1
20040182497 Lowrey Sep 2004 A1
20050000628 Norrby Jan 2005 A1
20050022476 Hamer Feb 2005 A1
20050077418 Werner et al. Apr 2005 A1
20050139713 Weber et al. Jun 2005 A1
20050196538 Sommer et al. Sep 2005 A1
20050230056 Meyer et al. Oct 2005 A1
20050230449 Meyer et al. Oct 2005 A1
20050233881 Meyer Oct 2005 A1
20050234412 Andrews et al. Oct 2005 A1
20050257881 Coose et al. Nov 2005 A1
20050275148 Beaudoin et al. Dec 2005 A1
20060021300 Tada et al. Feb 2006 A1
20060137298 Oshita et al. Jun 2006 A1
20060224137 McCabe et al. Oct 2006 A1
20060265867 Schaap Nov 2006 A1
20070045461 Sartain et al. Mar 2007 A1
20070074953 McCabe Apr 2007 A1
20080223537 Wiedmann Sep 2008 A1
20090020211 Andrews et al. Jan 2009 A1
20100078119 Yamamoto Apr 2010 A1
20100078120 Otsubo Apr 2010 A1
20100078127 Yamamoto Apr 2010 A1
20100193138 Eckstein Aug 2010 A1
20100193155 Nakatani Aug 2010 A1
Foreign Referenced Citations (101)
Number Date Country
1007854 Nov 1995 BE
1146129 May 1983 CA
1153345 Sep 1983 CA
1190078 Jul 1985 CA
1210744 Sep 1986 CA
1212132 Sep 1986 CA
1236056 May 1988 CA
1249102 Jan 1989 CA
1292201 Nov 1991 CA
1307244 Sep 1992 CA
1308015 Sep 1992 CA
1310342 Nov 1992 CA
2023816 Mar 1994 CA
2404154 Oct 2001 CA
2541194 Oct 2006 CA
2559517 Apr 2007 CA
2337700 Aug 2008 CA
2407867 Jun 2010 CA
60123502 Oct 2006 DE
60216550 Dec 2006 DE
102005048868 Apr 2007 DE
102006047280 Apr 2007 DE
0044206 Jan 1982 EP
0048011 Mar 1982 EP
0089106 Sep 1983 EP
0099732 Feb 1984 EP
0206208 Dec 1986 EP
0304140 Feb 1989 EP
0439897 Aug 1991 EP
0455231 Nov 1991 EP
510251 Oct 1992 EP
0652175 May 1995 EP
0811473 Dec 1997 EP
0901780 Mar 1999 EP
0990588 Apr 2000 EP
1132325 Sep 2001 EP
1199057 Apr 2002 EP
1272347 Jan 2003 EP
1366734 Dec 2003 EP
1504738 Feb 2005 EP
1571249 Sep 2005 EP
1619008 Jan 2006 EP
1707168 Oct 2006 EP
1726414 Nov 2006 EP
1302424 Dec 2006 EP
1801045 Jun 2007 EP
1941853 Jul 2008 EP
2233116 Sep 2010 EP
2238955 Oct 2010 EP
509706 Nov 1982 ES
520559 Dec 1983 ES
296211 Dec 1987 ES
200601373 Jul 2009 ES
2311349 Sep 2009 ES
2177355 Nov 1973 FR
2255961 Jul 1975 FR
1132325 Oct 2006 FR
2891811 Apr 2007 FR
191101501 Jan 1912 GB
439897 Dec 1935 GB
856389 Dec 1960 GB
941073 Nov 1963 GB
1096373 Dec 1967 GB
1126539 Sep 1968 GB
1346329 Feb 1974 GB
1412812 Nov 1975 GB
2045298 Oct 1980 GB
2115775 Sep 1983 GB
2288316 Oct 1995 GB
1374910 May 2010 IT
1374911 May 2010 IT
428364 Jan 1992 JP
542180 Feb 1993 JP
576566 Mar 1993 JP
626160 Feb 1994 JP
626161 Feb 1994 JP
6197925 Jul 1994 JP
9299398 Nov 1997 JP
10035621 Feb 1998 JP
10-277091 Oct 1998 JP
0602047 May 2007 SE
0601003-7 Jun 2007 SE
0601145-6 Oct 2009 SE
WO2008155618 Dec 1988 WO
WO9403301 Feb 1994 WO
WO9732552 Sep 1997 WO
WO9747265 Dec 1997 WO
WO9747810 Dec 1997 WO
WO9821134 May 1998 WO
WO9907319 Feb 1999 WO
WO9913813 Mar 1999 WO
WO9932385 Jul 1999 WO
WO9965437 Dec 1999 WO
WO0143682 Jun 2001 WO
WO0172237 Oct 2001 WO
WO2004007329 Jan 2004 WO
WO2005075163 Aug 2005 WO
WO2007029115 Mar 2007 WO
WO2007039800 Apr 2007 WO
WO2007126347 Nov 2007 WO
WO2008001209 Jan 2008 WO
Non-Patent Literature Citations (7)
Entry
International Search Report dated Nov. 3, 2011 regarding EP Application No. 11250672.0, 4 pages.
USPTO Office Action regarding U.S. Appl. No. 11/880,261, dated Jul. 23, 2009, 14 pages.
USPTO Office Action regarding U.S. Appl. No. 11/880,261, dated Mar. 10, 2010, 11 pages.
USPTO Office Action regarding U.S. Appl. No. 11/880,261, dated Nov. 9, 2010, 14 pages.
USPTO Office Action regarding U.S. Appl. No. 11/880,261, dated Jun. 23, 2011, 10 pages.
“Reciprocating Mechanisms”, Franklin Jones, vol. 1, date unknown, 2 pp.
European Search Report regarding Application No. EP11250709, dated Oct. 17, 2014, 9 pages.
Related Publications (1)
Number Date Country
20120159753 A1 Jun 2012 US
Provisional Applications (1)
Number Date Country
61400318 Jul 2010 US
Continuation in Parts (1)
Number Date Country
Parent 11880261 Jul 2007 US
Child 13160932 US