The field of the invention relates generally to systems and methods for suppressing the propagation of electromagnetic waves in parallel plate structures and, more particularly, to suppress parasitic modes, spurious modes, or electromagnetic noise in microwave and millimeterwave packages.
a) illustrates a generic microwave or millimeterwave integrated circuit (MMIC) package fabricated as a shielded package and containing at least two microstriplines 140 and 150. This package also includes a cover 110 and a substrate 120 with conductive sidewalls 165 which, when sealed together with a conductive seal 130, create an enclosed cavity 115 of sufficient volume to accommodate one or more MMICs. The substrate and cover are dielectric materials of relative permittivity ∈r5 and ∈r1 respectively. The cavity formed therebetween may be an air filled region where the permittivity of the air is denoted as ∈0. Package materials may include semiconductors (Si, SiGe, GaAs), ceramics (Al2O3, AlN, SiC, BeO), metals (Al, Cu, Au, W, Mo), and metal alloys (FeNiCo (Kovar), FeNiAg (SILVAR), CuW, CuMo, Al/SiC) and many others. The substrate and cover need not be made of the same materials.
The package may be shielded with conductive surfaces 160, 170 to prevent radiation from internal sources (transmitters) and to protect internal receivers from undesired coupling with fields external to the package. The conductive surfaces 160, 170 form a parallel-plate waveguide (PPW) that allows a quasi-TEM (transverse electromagnetic) mode to be supported inside the package. The TEM mode has a vertical (z-directed) electric field which propagates in any x or y direction inside the package, and has a phase velocity of (ω/c)√{square root over (eeff)} where ω is the angular frequency, c is the speed of light in a vacuum; and, the effective dielectric constant of the PPW is given by
where t1, t3, and t5 are the thicknesses of the cover, air region, and substrate, respectively. A parasitic or unintentional PPW mode is generated at discontinuities of the microstriplines such as at ends, gaps, and bends. This results in crosstalk between otherwise isolated microstriplines. The parasitic mode will also reflect at the sides of the package and result in undesired package resonances or parasitic resonances. Package resonances may exist at frequencies near
where W and L are the width and length of the rectangular package.
A conventional means of suppressing the parasitic resonances is to add lossy ferrite-loaded materials as thin layers inside the package. This is a relatively expensive method of mode suppression. Also, the ferrite layers need to be adhesively attached to a conductive surface to obtain the expected attenuation, and conducting surfaces may not be readily available inside of every package. Millimeterwave packages tend to be very small which exacerbates the assembly challenges of installing ferrite-loaded materials.
An apparatus for controlling parallel-plate waveguide (PPW) modes is described, having a first conductive surface, and a second conductive surface, disposed parallel to the first conductive surface; a first anisotropic magneto-dielectric layer comprising a first sub-layer and a second sub-layer; an isotropic dielectric layer, where the first anisotropic magneto-dielectric layer and the isotropic dielectric layer are disposed between the first conductive surface and the second conductive surface. Such a structure may be used to design and fabricate a MMIC package that capable of suppressing parasitic resonances over at least some desired frequency band while serving as a shielded package for EMI (electromagnetic interference) and EMC (electromagnetic compatibility).
In an aspect, an apparatus for controlling parallel-plate waveguide (PPW) modes may have a first and a second conductive surface sized and dimensioned to form a parallel plate waveguide (PPW); and a first and a second dielectric layer disposed in the PPW, where at least one of the dielectric layers includes an array of conductive obstacles.
In another aspect, an electromagnetic bandgap structure includes a dielectric slab having a conductive surface on one surface thereof; and an array of conductive vias embedded in the dielectric slab; and, where the vias have a non-uniform cross sectional shape and are connected to the conductive surface.
A two-dimensional layered magneto-dielectric structure forming a package may control PPW mode propagation within the package by creating an electromagnetic bandgap (EBG). In an aspect, such structures may act as a distributed omni-directional microwave or millimeterwave (MMW) bandstop filter to suppress the PPW mode over a desired frequency range. The attenuation properties of the EBG structure may be controlled by the tensor permittivity and tensor permeability values of the individual magneto-dielectric layers. For example, a stopband may be achieved for frequencies well below the Bragg scattering limit frequency by designing the magneto-dielectric sublayers closest to the parallel plates to have a negative normal permittivity value and by designing the next innermost sublayers to have a high and positive transverse permittivity values. The Bragg scattering limit is the frequency at which the spacing of periodic obstacles in layers of the PPW are separated by a distance of about λ/(2√{square root over (∈eff)}) where λ is the free space wavelength or, equivalently, where the electrical length between adjacent periodic obstacles is about 180°.
In some aspects, the magneto-dielectric layers may be ordered or periodic arrangements of metal and dielectric materials. In an aspect where some layers are comprised of periodic obstacles in the PPW, the lateral distance between obstacles may be substantially less than a guide wavelength λg where λg=λ/√{square root over (∈eff)}.
In other aspects, the magneto-dielectric layer may be conductive vias, connected to one of the conductive parallel plates, where the vias have non-uniform cross sectional shapes. Such non-uniform vias may be formed by combining or connecting higher aspect ratio vias with lower aspect ratio vias. An example of a non-uniform via is a right circular cylindrical via that terminates in the base of a rectangular cavity that is open at the top. Another example may be a right circular cylindrical via that connects to a pyramidal via whose pyramidal base is open at the top.
In yet another aspect, the parallel-plate waveguide (PPW) may contain an EBG structure comprised of two magneto-dielectric layers with at least one isotropic dielectric layer disposed therebetween. The magneto-dielectric layers may be disposed adjacent to the conductive planes inside the PPW. The isotropic dielectric layer located between the magneto-dielectric layers may be, for example, an air gap as may be found within a microwave or millimeterwave package. The first magneto-dielectric layer may be part of the base of the package, and the second magneto-dielectric layer may be part of the lid or cover of the package.
A method for controlling parallel-plate waveguide (PPW) modes is disclosed, including: providing a first conductive surface, and a second conductive surface, disposed parallel to the first conductive surface; and the first conductive surface and the second conductive surface form a part of a electronic circuit package. Providing a first anisotropic magneto-dielectric layer having a first sub-layer and a second sub-layer and an isotropic dielectric layer where the first anisotropic magneto-dielectric layer and the isotropic dielectric layer are disposed between the first conductive surface and the second conductive surface; and selecting the thickness of the first sub-layer and the second sub-layer, the permittivity and permeability of the first sub-layer and the second sub-layer, and the thickness and dielectric constant of the isotropic dielectric layer such that a transverse magnetic (TM) wave amplitude is suppressed over a frequency interval.
A method for controlling parallel-plate waveguide (PPW) modes in a shielded electronic package is disclosed, including: providing a first and a second conductive surface sized and dimensioned to form part of an electronic circuit package. Disposing a first and a second dielectric layer between the first and second conductive surfaces, where at least one of the dielectric layers including an array of conductive obstacles having a non-uniform cross-sectional shape; and, selecting the dimensions of the conductive obstacles such that the propagation of a transverse magnetic (TM) wave is controlled in at least one of amplitude or phase over a frequency interval.
a) shows one embodiment of the present invention using an EBG structure with non-uniform vias in proximity to a covered microstrip transmission line, (b) shows another embodiment of an EBG structure using non-uniform vias and fabricated into the shielded cover of a CPW transmission line;
a) shows an effective medium model for another example; and, (b) shows the corresponding equivalent transmission line model;
Reference will now be made in detail to several examples; however, it will be understood that claimed invention is not limited to such examples. Like numbered elements in the same or different drawings perform equivalent functions. In the following description, numerous specific details are set forth in the examples in order to provide a thorough understanding of the subject matter of the claims which, however, may be practiced without some or all of these specific details. In other instances, well known process operations or structures have not been described in detail in order not to unnecessarily obscure the description.
When describing a particular example, the example may include a particular feature, structure, or characteristic, but every example may not necessarily include the particular feature, structure or characteristic. This should not be taken as a suggestion or implication that the features, structure or characteristics of two or more examples should not or could not be combined, except when such a combination is explicitly excluded. When a particular feature, structure, or characteristic is described in connection with an example, a person skilled in the art may give effect to such feature, structure or characteristic in connection with other examples, whether or not explicitly described.
b) is a MMIC package that is the same as that shown in
The EBG structures in
Herein, a PPW is considered to be a pair of parallel conductive planes whose area is sufficient to encompass at least a 3×3 array of unit cells associated with an EBG structure. These parallel planes may have holes or voids in the conductive surfaces thereof, but such holes or voids should not have an area greater than about one fourth of the area of a given unit cell so as to have a small influence on the local value of the stopband properties of the EBG structure. A person of skill in the art will appreciate that such holes, voids or apertures may be needed in to accommodate the circuitry and other structures which may be part of a MMIC package. The figures and descriptions herein therefore may be considered to represent an ideal situation, which may be adapted to the design of specific product. When a coupling or radiating slot is introduced into one of the conductive planes of the PPW, one may improve the efficiency of microwave or millimeterwave transitions and the efficiency of slot radiators. The height of the PWW may be reduced without heavy excitation of PPW modes which may have the effect of lowering efficiency.
Five Layer Effective Medium Model of the Inhomogeneous PPW
For computation and description of the examples, a coordinate system is used in which the in-plane directions are the x and y Cartesian coordinates, and the z axis is normal to the layered structure.
Each magneto-dielectric layer in
In this analytic model, which may be termed an effective medium model of
If the PPW of
For the inhomogeneous PPW of
Also, ∈zi for i=1 and 5 may be negative over a range of frequencies that includes the stopband of the EBG structure. The transverse tensor components ∈xi and ∈yi may have permittivity values near the host or background medium ∈ri. The non-zero components of tensor permeability, μxi, μyi, and μzi for i=1 and 5 may have values near the host or background medium permeability defined as μri for layers i=1 and 5. For nonmagnetic host media, μri=1.
The anisotropic magneto-dielectric layers 202 and 204 may be characterized by a high transverse capacitance Ci where i=2 and 4. The transverse permittivity of layers 202 and 204 may be expressed as ∈xi=∈yi=Ci/(∈0t)>>1. Note that these two layers may be chosen by design to have a relative transverse permittivity that is substantially greater than unity. To simplify the description herein, we shall assume that the transverse capacitances in layers 202 and 204 are substantially constant, but this is not intended to be a limitation. In general, the transverse capacitance may be frequency dependent and defined as Yi=jωCi where Yi is a admittance function expressed in a second Foster canonical form as taught by Diaz and McKinzie in U.S. Pat. No. 6,512,494, U.S. Pat. No. 6,670,932, and U.S. Pat. No. 6,774,867, which are incorporated herein by reference.
Magneto-dielectric layers 202 and 204 may have a normal permittivity ∈zi for i=2 and 4 substantially equal to unity. The layers may also have relative transverse permeability μxi and μyi which is also close to unity. However, as a consequence of the desired high transverse permittivity ∈trans,i, the normal permeability may be depressed in these layers. This is because layers 202 and 204 model physical layers having conductive inclusions introduced to create high electric polarization in the transverse directions. However, these inclusions allow eddy currents to flow thereon in the x-y plane, which may suppress the ability of magnetic flux to penetrate in the normal direction. Hence,
where ∈trans,i=∈xi=∈yi>>1, and ∈avg is the average relative dielectric constant of the host media for layers 202 and 204. If layers 202 and 204 model arrays of thin coplanar patches, then the parameter ∈avg may be approximately the arithmetic average of the host relative dielectric constants on either side of the coplanar patches. If the inclusions modeled as layers 202 and 204 are more elaborate and have physical extent in the z direction, then ∈avg may be as large as the host or background dielectric material located between the inclusions. The mathematical differences for simulation may not change the analysis procedure used to determine the fundamental stopband. Both cases will be shown in later examples.
The desired electromagnetic constituent parameters of the magneto-dielectric layers 201, 202, 204, and 205 of
Where, for all four layers, ∈ri is typically between about 2 and about 10, and μri is typically unity. For layers 202 and 204, the transverse relative permittivity ∈i,trans=Ci/(∈0ti) may be between about 100 and about 3000.
To calculate the existence of TM mode stopbands within the inhomogeneous PPW of
The equivalent transmission line (TL) model for the inhomogeneous PPW of
Zleft(ω)+Zright(ω)=0. (6)
The roots of the transverse resonance equation yield the modal propagation constant kx which may be real, imaginary, or complex. The transverse resonance equation may be applied at any reference plane along the multi-section TL, and for example, the transverse resonance plane may be the interface between TL 302 and TL 303, for mathematical convenience. For TM-to-x modes, the impedance Ex/Hy may be written as
where kzi is the frequency dependent propagation constant in the normal or z direction:
For the isotropic dielectric layer 203, the z-directed propagation constant reduces to
From equations (7) through (9) the TM mode impedances Zleft(ω) and Zright(ω) are:
To predict the existence of TE modes within the inhomogeneous PPW of
For TE waves, the z-directed propagation constants are:
The transverse resonance equation may equivalently be expressed using admittances as
Yleft(ω)+Yright(ω)=0. (18)
From equations (15) through (17) one may calculate the TE mode admittances Yleft(ω) and Yright(ω):
To illustrate the use of the effective media model shown in
In
Vias 421 and 425 are illustrated as blind vias that terminate on patches closest to the conducting 407 and 409. Alternatively, these vias may be through vias that connect to the overlay patches 413 and 419, in which case the vias would not be electrically connected to patches 411 and 417. The transverse relative permittivity ∈i,trans=Ci/(∈0ti) for layers 202 and 204 may remain unchanged under these conditions.
This example of an EBG structure has been simulated using Microstripes™, a three dimensional (3D) electromagnetic simulator licensed from Flomerics in Marlborough, Mass. A wire frame view of the solid model used is illustrated in
The transmission response from the Microstripes simulation of
The rodded media of dielectric layers 401 and 405 may be modeled, for example, with formulas given by Clavijo, Diaz, and McKinzie in “Design Methodology for Sievenpiper High-Impedance Surfaces: An Artificial Magnetic Conductor for Positive Gain Electrically-Small Antennas,” IEEE Trans. Microwave Theory and Techniques, Vol. 51, No. 10, October 2003, pp. 2678-2690, which is incorporated herein by reference. The permeability tensors for magneto-dielectric layers 201 and 205 may be written as:
where the parameter α is the ratio of via cross sectional area to the unit cell area A:
and
The parameter α is typically much less than unity making the main diagonal elements in (24) slightly diamagnetic for the case of a non-magnetic host dielectric: μr1=μr5=1.
The permittivity tensor for magneto-dielectric layers 201 and 205 may be written as
where the plasma frequency of the rodded media may be expressed as
and c is the speed of light in a vacuum. Using the design parameters for the Microstipes model of
The permittivity and permeability tensors for the magneto-dielectric layers 202 and 204 are given above in equations (4) and (5). To calculate the effective capacitance Ci one may use the parallel-plate capacitor formula to obtain a lower bound:
Here, for simplicity, the square patches on opposite sides of dielectric layer 402 are assumed to be the same size (s1=s2), and the same assumption holds for dielectric layer 404 (s3=s4).
The parallel-plate formula may be suitable for cases where the dielectric layer thickness ti is much less than the gap g between patches. However, when the dielectric layer thickness of layers 402 and 404 are comparable to the gap dimensions, the fringe capacitance between edges may become significant. For the geometry of
Finally, the desired shunt capacitance may be calculated from
For the example shown in
for i=2 and 4. The procedure described in
Using the calculated effective capacitance of 0.109 pF/sq. for both layers 402 and 404 in the example yields the transverse permittivity of ∈xi=∈yi=Ci/(∈0ti)=494 for magneto-dielectric layers 202 and 204. In the example of
for magneto-dielectric layers 202 and 204. This completes the mapping of the physical example of
Application of the TRM to
In
At low frequencies, below about 20 GHz, only one TM mode exists, labeled as 902, and it is asymptotic to the light line 930. Forward propagating modes are characterized by kx curves of positive slope. Conversely, backward propagating modes are characterized by kx curves of negative slope. Slow waves (phase velocity relative to the speed of light c) are plotted below the light line 920 while fast waves are plotted above line 920. The group velocity of a given mode is proportional to the slope of its dispersion curve, varying over the range of zero to c. Hence, the dominant mode is a slow forward wave that cuts off near 22 GHz where its group velocity (and slope) goes to zero at point A. There is a backward TM mode (curve 904) that is possible between about 15 GHz and 22 GHz. There is another distinct backward TM mode (curve 906) that is asymptotic to curve 904 at high wavenumbers, and it is cut off above approximately 23.6 GHz. There exists a forward fast wave (curve 912) whose low frequency cutoff is near 30 GHz. This fast TM mode is asymptotic to the light line 920 at high frequency.
Between 22 GHz and 30 GHz, the effective medium model predicts the existence of a backward wave complex mode and a purely evanescent mode. The complex mode has a real part 908 that extends from point A to point B. It has a corresponding imaginary part 901. This represents a backward propagating TM mode that attenuates as it travels. The evanescent TM mode exists from about 26 GHz to about 30 GHz and the real part is zero, bounded between endpoints B and D. The imaginary part of this evanescent mode is non-zero and has endpoints C and D. The effective medium model predicts an apparent stopband from near 22 GHz to near 30 GHz. It is an apparent stopband because the complex mode (908, 901) does exist in this frequency band, but the mode is attenuating as it travels. Furthermore, the backward TM mode 906 is also possible above 22 GHz, but its group velocity (and slope) is so low that it will be difficult to excite by coupling from another mode. The only other mode possible to couple with it over this frequency range is the complex mode that already has a significant attenuation constant. The frequency most likely for coupling between these two modes is that frequency where curves 906 and 908 intersect, which in this example is near 23 GHz.
A comparison of the full-wave transmission response in
As another comparison, the peak attenuation predicted by the effective medium model is Im{kx}P=0.61 which yields an attenuation of near 5.3 dB per unit cell. As there are 5 complete unit cells (between centers of vias) in the finite structure, the peak attenuation should be on the order of 26.5 dB plus mismatch loss.
The effective medium model thus provides some physical insight into the nature of the possible TM modes, and may be computationally much faster to run compared to a full-wave simulation.
The structures and methods described herein may also be used as a slow-wave structure to control the phase velocity and the group velocity of the dominant PPW mode. Consider curve 902 in
Another example is shown in
This example of
This example contains a rodded medium in dielectric layers 1001 and 1005 which is a periodic array of conductive vias 1021 that extend from the upper conducting plane 1007 to a single layer of upper conductive patches 1011 located at the interface between layers 1001 and 1003, and an array of conductive vias 1025 that connect the lower conducting plane 1009 to a single layer of lower conductive patches 1017 located at the interface between layers 1003 and 1005. These two rodded mediums in host dielectric layers 1001 and 1005 may have a negative z-axis permittivity in the fundamental stopband, as previously described.
The upper conducting vias 1021 connect to a coplanar array of conducting patches 1011. The patches may be, for example, square and form a closely spaced periodic array designed to achieve an effective capacitance given as:
where ∈avg=(1+∈r1)/2 and g=P−s is the gap between patches. The thickness t2 for the effective medium layer 202 may be selected to be arbitrarily small, and the transverse permittivity for this layer may be expressed as:
The effective capacitance C2 will be lower for the single layer of patches used in
Evaluation of the effective capacitance C4 and the transverse permittivity ∈x4=∈y4 of the effective media layer 204 may, for the lower array of patches 1017, be accomplished by using equations (32) and (33) with only a change of subscripts. The upper rodded media need not have the same period, thickness, via diameter, patch size, shape or host dielectric constant as the lower rodded media. That is, each may be designed independently.
The upper and lower conductive patches 1011 and 1017 may be positioned as shown in
The example shown in
Another EBG structure is shown in
b) is an inhomogeneous WG formed by upper and lower conducting planes 1207 and 1209. The periodic structure contained within has a square lattice of period P. In this example, there is an air gap 1203 between dielectric layers 1201 and 1205. Thicknesses of the three dielectric layers 1201, 1203, and 1205 are denoted as t1+t2, t3, t4+t5, respectively, and the relative dielectric constants of these layers are denoted as ∈r1, and ∈r5 respectively.
a) illustrates a detail of the unit cell in which a higher aspect ratio via 1221 of length t1 connects the upper conductor 1207 to a lower aspect ratio via 1222. Via 1221 may have a circular cylindrical shape with a diameter of 2r. The lower aspect ratio via 1222 may have a length of t2 and may have an essentially square footprint whose exterior side length is s. Therefore, the separation distance between adjacent lower aspect ratio vias in an array environment of
The array of higher aspect ratio vias 1221 forms a rodded medium in the upper dielectric layer 1201 which may be mapped into the magneto-dielectric layer 201 in the effective medium model. Similarly, the array of higher-aspect-ratio vias 1225 form a rodded medium in the lower dielectric layer 1205 which may be mapped into magneto-dielectric layer 205 in the effective medium model. These two rodded mediums in host dielectric layers 1201 and 1205 may have a negative z-axis permittivity in the fundamental stopband as described above. The permeability tensor and permittivity tensor for each rodded media may be calculated using equations (24) through (27).
The array of lower aspect ratio vias 1222 forms an effective capacitance C2 in the upper dielectric layer 1201 which may be mapped into magneto-dielectric layer 202 in the effective medium model. Similarly, the array of lower aspect ratio vias 1224 forms an effective capacitance C4 in the lower dielectric layer 1205 which may be mapped into magneto-dielectric layer 204 in the effective medium model. The permeability tensor and permittivity tensor for layers 202 and 204 may be calculated using equations (4) and (5). The value of ∈avg in (5) is the host permittivity of the background dielectric, namely ∈r1 or ∈r5. To estimate the effective capacitance Ci one may use the parallel-plate capacitor formula to obtain a lower bound:
A more accurate estimate of Ci may be obtained using the procedure described in
The non-uniform vias may be fabricated in a semiconductor wafer by using reactive ion etching (RIE). This process is capable of fabricating substantially vertical sidewalls for 3D structures. Two different masks may be used to fabricate the high aspect ratio holes and the low aspect ratio holes in separate steps. Then the entire via structure may be plated with metal. Shown in
In an example, the structure shown in
The example of
The example of
The EBG structure of
The EBG structure of
The example of
a) illustrates a detail of the unit cell in which an upper conductive via 1521 of length t1+t2 connects the upper conductor 1507 to an upper patch 1511. Via 1521 may have a circular cylindrical shape with a diameter of 2r. The upper patch 1511 is connected to a conductive upper sidewall 1522 that attaches to perimeter of the patch 1511. In this example, the upper patch 1511 is square with side length s and the upper sidewall has a vertical height of t2 buried in the upper dielectric layer 1501. The upper sidewall 1522 is uniform in height around the perimeter of the patch 1511, and the width of the upper and lower sidewalls 1522 and 1524 is denoted as w.
Similarly, in the unit cell of
The patches 1511 and 1517 are square in the example of
The upper and lower patches, sidewalls, and vias need not be mirror images of each other as they are shown in
The upper vias 1521 form a rodded medium in the upper dielectric layer 1501 which may be mapped into magneto-dielectric layer 201 in the effective medium model. Similarly, the array of lower vias 1525 form a rodded medium in the lower dielectric layer 1505 which may be mapped into magneto-dielectric layer 205 in the effective medium model. These two rodded mediums in host dielectric layers 1501 and 1505 may have a negative z-axis permittivity in the fundamental stopband as previously described. The permeability tensor and permittivity tensor for each rodded media may be calculated using equations (24) through (27).
The array of upper patches 1511 and sidewalls 1522 result in an effective capacitance C2 in the upper dielectric layer 1501 which may be mapped into magneto-dielectric layer 202 in the effective medium model. Similarly, the array of lower patches 1517 and sidewalls 1524 result in an effective capacitance C4 in the lower dielectric layer 1505 which may be mapped into magneto-dielectric layer 204 in the effective medium model. The permeability tensor and permittivity tensor for layers 202 and 204 may be calculated using equations (4) and (5). The value of ∈avg in (5) is the host permittivity of the background dielectric, namely ∈r1 or ∈r5. To estimate the effective capacitance Ci one may use the parallel-plate capacitor formula (28) to obtain a lower bound. A more accurate estimate of Ci may be found using the procedure described in
The sidewalls 1522 and 1524 may be fabricated in a semiconductor wafer by using reactive ion etching (RIE) to cut trenches. Then the trenches may be plated with a metal to create conductive sidewalls.
The example shown in
In the example shown in
An EBG structure that uses an alternative shape of low aspect ratio conductive vias is shown in
If the example of
d0=d1+2h tan(θ) (35)
where h=t2=t4 and θ is the half angle of the pyramid. For anisotropically etched silicon, θ≅54°. The high-aspect-ratio vias 1821 and 1825 may be formed, for example, using reactive ion etching (RIE). The entire non-uniform via may then be plated. In an aspect, the height of the pyramidal via may approach the entire thickness of the host dielectric layer: t1+t2 or t4+t5.
In another aspect, the example shown in
The transmission response S21 through six unit cells of the EBG structure in
Four Layer Effective Media Model
The package cover in
In other design situations there may be a local ground plane from a coplanar waveguide (CPW) that is part of the cover or substrate. An example is shown in
An equivalent TL representation for the inhomogeneous PPW of
The TM mode propagation constants may be calculated using the TRM described above by solving equation (6). However, the equations for impedances Zleft and Zright in
For TM-to-x modes, the characteristic impedance Ex/Hy may be written as
where kzi is the frequency dependent propagation constant in the normal or z direction:
For the isotropic dielectric layer 2201 and 2203, the z directed propagation constant reduces to
The TE mode propagation constants may also be calculated using the TRM by solving equation (18). However, the equations for admittances Yleft=1/Zleft and Yright=1/Zright in
For TE-to-x modes, the admittance Hx/Ey may be written as
For TE waves, the z-directed propagation constants are:
The effective medium model of
Examples of structures whose electromagnetic properties map into the effective medium model of
The 4 layer examples shown in
In some examples, the dielectric layer 2201 of
The dielectric and conducting materials described in the above examples are representative of some typical applications in MMIC packages. Many other material choices are possible, and the selection of materials is not considered a limitation, as each material may be characterized and analyzed to provide design parameters. Dielectric layers may include semiconductors (Si, SiGe, GaAs, InP), ceramics (Al2O3, AlN, SiC, BeO) including low temperature co-fired ceramic (LTCC) materials, and plastic materials such as liquid crystal polymer. Metals may include (Al, Cu, Au, W, Mo), and metal alloys (FeNiCo (Kovar), FeNiAg (SILVAR), CuW, CuMo, Al/SiC) and many others. The substrate and cover (or upper and lower dielectric layers) need not be made of the same materials.
In an aspect, the different dielectric layers used in a given EBG structure can have different electrical or mechanical properties. The patch layers may contain patterns more elaborate than simple square patches, such as circular, polygonal, or inter-digital patches. Some of the patches of the capacitive layers may be left floating rather than being connected to conductive vias. Ratios of key dimensions may differ from illustrations presented.
Furthermore, the EBG structures of the examples may use additional layers to make a manufacturable product or for other purposes, some of which may be functional. For instance, thin adhesion layers of TiW may be used between a silicon wafer and deposited metal such as Au, Cu, or Al. Insulating buffer layers may be added for planarization. Passivation layers or conformal coatings may be added to protect metal layers from oxidizing. All of these additional manufacturing-process related layers are typically thin with respect to the thicknesses of t1 through t5, and their effect may be viewed as a perturbation to the stopband performance predicted by the above analytic methods.
In the preceding figures only a finite number of unit cells are illustrated: fewer than 20 per figure. However EBG structures may contain hundreds or even thousands of unit cells within a particular package. Yet, not all of the available area within the package may be utilized for EBG structures.
Furthermore, it should be understood that all of the unit cells need not be identical in a particular package. The EBG or stopband may be designed to have differing properties in various portions of the package so as to create, for example, a broader band for the mode suppression structure. There may also be EBG designs which are tuned to different stopband frequencies. A package design may be used where there are multiple frequency bands in an electrical circuit and, hence, may employ EBG structures tuned to different stopbands in different physical locations.
In the examples illustrated, the EBG structures are shown as located adjacent to RF transmission lines. However, the EBG structures may also be fabricated over the microstrip, CPW, or other transmission lines, such as in a cover, and the transmission lines may be fabricated into the opposing base.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims.
This application claims priority to U.S. Provisional application Ser. No. 60/964,680, filed on Aug. 14, 2007, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4268803 | Childs et al. | May 1981 | A |
4689585 | Sequeira | Aug 1987 | A |
5126716 | Munger | Jun 1992 | A |
5376901 | Chan et al. | Dec 1994 | A |
5481232 | Wu et al. | Jan 1996 | A |
5801605 | Filakovsky | Sep 1998 | A |
6262495 | Yablonovitch et al. | Jul 2001 | B1 |
6337661 | Kondoh et al. | Jan 2002 | B1 |
6580395 | Koshizaka et al. | Jun 2003 | B2 |
6710745 | Koshizaka et al. | Mar 2004 | B2 |
6756932 | Barker et al. | Jun 2004 | B1 |
6774867 | Diaz et al. | Aug 2004 | B2 |
6906674 | McKinzie, III et al. | Jun 2005 | B2 |
6919862 | Hacker et al. | Jul 2005 | B2 |
6949707 | Tonomura | Sep 2005 | B1 |
6967282 | Tonomura et al. | Nov 2005 | B2 |
7123118 | McKinzie, III | Oct 2006 | B2 |
7142822 | Tanaka et al. | Nov 2006 | B2 |
7157992 | McKinzie, III | Jan 2007 | B2 |
7197800 | Sievenpiper et al. | Apr 2007 | B2 |
7215007 | McKinzie, III et al. | May 2007 | B2 |
7239222 | Nagaishi et al. | Jul 2007 | B2 |
7250835 | Higgins et al. | Jul 2007 | B2 |
7342471 | McKinzie, III | Mar 2008 | B2 |
7414491 | Higgins | Aug 2008 | B2 |
7586444 | Berlin et al. | Sep 2009 | B2 |
20050007289 | Zarro et al. | Jan 2005 | A1 |
20060038639 | McKinzie, III | Feb 2006 | A1 |
20080102565 | Zeng et al. | May 2008 | A1 |
20090244874 | Mahajan et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2003008309 | Jan 2003 | JP |
2003-060101 | Feb 2003 | JP |
2003304106 | Oct 2003 | JP |
WO 9400892 | Jan 1994 | WO |
Entry |
---|
Clavijo et al., “Design Methodology for Sievenpiper High-Impedance Surfaces: An Artificial Magnetic Conductor for Positive Gain Electrically Small Antennas”, Oct. 2003, IEEE, vol. 51, No. 10, p. 2678-2690. |
Zadeh, A., et al., “Capacitive Circuit Method for Fast and Efficient Design of Wideband Radar Absorbers,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 8, Aug. 2009, pp. 2307-2314. |
US 2007/0077401, 04/2007, Pinto (withdrawn). |
Bongard, F., et al., “Enhanced Periodic Structure Analysis Based on a Multiconductor Transmission Line Model and Application to Metamaterials,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 11, Nov. 2009, pp. 2715-2726. |
Luukkonen, O., et al., “An Efficient and Simple Analytical Model for Analysis of Propagation Properties in Impedance Waveguides,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, No. 7, Jul. 2008, pp. 1624-1632. |
Rotman, W., “Plasma Simulation by Artificial Dielectrics and Parallel-Plate Media,” IRE Transactions on Antennas and Propagation, January, Authorized licensed use limited to: William Mckinzie, Downloaded on Dec. 10, 2009 at 14:46 from IEE Xplore, pp. 82-95, yr 1962. |
Tretyakov, S., et al., “Thin composite radar absorber operational for all incidence angles,” 33rd European Microwave Conference—Munich 2003, Authorized licensed use limited to: William Mckinzie, Downloaded on Oct. 27, 2009 at 12:40 from IEE Xplore, pp. 1107-1110, yr 2003. |
International Search Report for International Application No. PCT/US2010/025396, dated Mar. 23, 2011, 5 pages. |
Written Opinion of the International Searching Authority from the International Search Report from PCT application No. PCT/ US2010/025396 dated Mar. 23, 2011, 6 pages. |
Clavijo, S., et al., “Design Methodology for Sievenpiper High-Impedance Surfaces: An Artificial Magnetic Conductor for Positive Gain Electrically-Small Antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, No. 10, Oct. 2003, pp. 2678-2690. |
PCT Notification of Transmittal of the International Preliminary Report on Patentability from PCT International Application No. PCT/US2008/073096 dated Feb. 16, 2010 (6 pages). |
Abhari et al., “Suppression of the Parallel-Plate Noise in High Speed Circuits Using a Metallic Electromagnetic Band-Gap Structure,” 2002 IEEE Microwave Theory and Techniques International Symposium, pp. 493-496. |
Abhari et al., “Metallo-Dielectric Electromagnetic Bandgap Structures for Suppression and Isolation of the Parallel-Plate Noise in High Speed Circuits,” IEEE, Trans. MTT, vol. 51, No. 6, Jun. 2003, pp. 1629-1639. |
Elek et al., “Dispersion Analysis of the Shielded Sievenpiper Structure Using Multiconductor Transmission-Line Theory,” IEEE Microwave and Wireless Components Letters, vol. 14, No. 9, Sep. 2004, pp. 434-436. |
Ziroff et al., “A Novel Approach for LTCC Packaging Using a PBG Structure for Shielding and Package Mode Suppression,” 33rd European Microwave Conference, Munich 2003, pp. 419-422. |
Written Opinion of the International Searching Authority from the International Search Report from PCT application No. PCT/US2008/073096 dated Feb. 11, 2009, 4 pages. |
International Search Report for International Application No. PCT/US2008/073096, dated Feb. 11, 2009, 3 pages. |
Sievenpiper, Daniel Frederic, “High-Impedance Electromagnetic Surfaces,” University of California, Los Angeles, 1999, pp. 1-4. |
Response to Final Office Action filed Oct. 18, 2012, for related U.S. Appl. No. 12/711,923. |
Number | Date | Country | |
---|---|---|---|
20090051467 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60964680 | Aug 2007 | US |