Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates to hydraulic pumps, and more particularly to techniques for detecting wear of hydraulic pumps.
2. Description of the Related Art
Hydraulic pumps are used in a wide variety of equipment to provide a source of pressurized hydraulic fluid that then is controlled to operate hydraulic actuators, such as hydraulic motors and hydraulic cylinder and ram assemblies. Over time, the internal components of a pump may wear, thereby leaking fluid which decreases the magnitude of fluid flow produced by the pump. Such leakage not only slows the motion of the hydraulic actuator, it wastes power and raises the temperature of the hydraulic fluid which also are disadvantageous. Over time, the actuator operation degrades to a point where either maintenance or replacement of the pump is necessary.
It is, therefore, desirable to detect if excessive wear of a pump occurs and be able to take remedial action.
Previous techniques for determining excessive pump wear involved sensing an amount of fluid flowing through a drain outlet in the case of the pump. Because pump wear introduces metal particles into the hydraulic fluid, another method periodically measured the size and concentration of solid particles in the fluid. The noise produced by a pump also has been used to detect excessive leakage.
A pump is connected to a hydraulic actuator that moves a member on a material handling vehicle. Pump wear is estimated by operating the pump to drive the hydraulic actuator to move the member. The actual speed of the member is determined, such as by one or more sensors, and the speed of the pump also is detected. Pressure of fluid conveyed from the pump to the hydraulic actuator is sensed.
The speed of the pump and the pressure of the fluid are employed to calculate a predicted speed. The temperature of the fluid optionally also may be used to calculate a predicted speed. The predicted speed is compared to the actual speed of the member. As the pump wear increases, a difference between the predicted speed and the actual speed increases. An indication of a degree of wear of the pump is produced in response to the comparison of the speeds.
Referring initially to
The material handling vehicle 10 includes a vertical mast 30 secured to the body 14 with a carriage 32 is slideably mounted to the mast for vertical movement between different positions. A pair of forks 34 extends from the carriage 32 to support a load 50 (
With reference to
The traction motor control 46 activates an electric traction motor 54 which is connected to the wheel 16 to provide motive force to the material handling vehicle 10. The speed and direction of the traction motor 54 are selected by operation of the multi-function control handle 22. The wheel 16 is also connected to friction brake 56 through the traction motor 54, providing both a service and parking brake function for the material handling vehicle 10. The steer motor control 48 is connected to operate a steer motor 58 and associated steerable wheel 59, in response to the operator rotating the steering wheel 28. The direction of rotation of the steerable wheel 49 and the travel control command from multi-function control handle 22 determine the direction of motion of the material handling vehicle.
Of particular significance to the present invention is that the lift motor control 44 controls application of electric current to a hydraulic lift motor 60 which is connected to a hydraulic circuit 62. The hydraulic circuit 62 propels the carriage 32 and forks 34 along the mast 30, thereby moving the load 50 up or down, depending on the direction selected at the multi-function control handle 22. The lift motor 60 drives a fixed positive displacement pump 64 that produces flow of fluid from a reservoir 66 to a hydraulic cylinder and ram assembly 68 connected between the body 14 of the material handling vehicle and the carriage 32. A solenoid operated, bidirectional control valve 67 couples the outlet of the hydraulic pump 64 to the hydraulic cylinder and ram assembly 68. A pressure relief valve 65 provides a release path to the reservoir 66 in the event that excessive pressure exists in the pump outlet line.
The hydraulic circuit 62 includes a pressure sensor 70 and a temperature sensor 72 that respectively sense the pressure and temperature of the fluid flowing between the hydraulic pump 64 and the hydraulic cylinder and ram assembly 68. The pressure sensor 70 and a temperature sensor 72 produce electrical signals that are applied to inputs of the vehicle controller 42. A speed sensor 74 is connected to the lift motor 60 and provides a measurement of the speed of the pump to the vehicle controller 42. Because the pump 64 is connected directly to the lift motor 60, the rotational speed of both devices is the same. That may not be true for other transmissions that couple the motor to the pump, in which situations the speed sensor 74 is attached directly to the hydraulic pump 64.
Lower and upper mast switches 76 and 78 are located along the path of travel of the carriage 32 on the mast 30 and are closed when the carriage is at the respective position of the switch. The lower mast switch 76 is closed when the carriage 32 is at the lower extremity of travel along the mast. The distance between lower and upper mast switches 76 and 78 is known and fixed. As will be described, the mast switches 76 and 78 provide a means by which the actual speed of travel of the carriage 32 can be measured by the vehicle controller 42.
As noted previously, the vehicle controller 42 responds to input signals via devices 22 and 28 from the operator indicating functions to be performed by the material handling vehicle 10. One of those functions is to raise and lower the load 50 by moving the carriage 32 along the mast 30 as commanded by the operator manipulating the multi-function control handle 22. The vehicle controller responds to that operator command by appropriately operating the lift motor control 44 and the solenoid operated, bidirectional control valve 67. To raise the carriage 32, the control valve 67 is opened and the lift motor control 44 is commanded to apply electric current to the lift motor 60 which drives the pump 64 to send fluid from the reservoir 66 through the control valve 67 to the cylinder and ram assembly 68. To lower the carriage 32, the control valve 67 is opened which allows fluid to be forced from the cylinder and ram assembly 68 by gravity acting on the carriage and any load that is present. The fluid flows backward through the pump to the reservoir 66. Alternatively a three-position, three-way control valve may be used to provide a separate direct path from the cylinder and ram assembly 68 to the reservoir 66.
In addition to controlling the pump 64, the vehicle controller 42 executes a pump monitoring routine that examines the performance of the hydraulic system to determine whether the pump has experienced an excessive amount of wear and thereby requires maintenance or replacement. With reference to
At step 105, the vehicle controller 42 reads the input signal from the upper mast switch 78 to determine whether that switch is closed, as occurs when the carriage 32 reaches the position of that switch. It should be understood that the upper mast switch 78 is located at a position along the mast to which the carriage 32 is frequently raised. If the switch is not found closed, the program execution branches to step 106 to determine whether the value of the timer is greater than an predefined amount of time T. That amount of time T is longer than the maximum time that it should ever take the carriage 32 to be raised to the position of the upper mast switch 78 under the heaviest allowable load and worst case normal operating conditions expected for the hydraulic system. This test at step 106 resets the pump monitoring routine 100 when the carriage 32 is not being raised sufficiently high to reach the upper mast switch 78. In that event, the process returns to step 101 to wait for the lower mast switch 76 to close, which occurs when the carriage 32 has been lowered to the bottom of the mast 30. From that point, the process will resume again when another operator command to raise the carriage is received.
If, however, the timer has not reached the value of T at step 106, the program execution returns to step 105 to examine the status of the upper mast switch 78. Thus, while the mast is raising, the pump monitoring routine 100 continues to loop through steps 105 and 106 until the closure of the upper mast switch 78 is detected or until the timer times out, i.e., reaches the value of T.
Assuming that the carriage 32 continues raising upward and eventually reaches the upper mast switch 78, the closure of that switch causes the pump monitoring routine to branch from step 105 to step 108 where the timer is stopped and its elapsed time recorded.
Although the remaining steps of the pump monitoring routine 100 can be performed by the vehicle controller 42, alternatively the recorded time can be uploaded into a computer in the facility where the material handling vehicle 10 is operating. In that latter case, the computer performs those remaining steps.
The monitoring of pump wear is premised on the concept that the lift speed of the carriage 32 is a function of the pump output flow minus any leakage which is expressed as Lift Speed=Pump Output−Leakage. For some pumps, the leakage can be modeled as flow through an orifice. In that case, a Predicted Lift Speed value is calculated at step 110 according to the equation:
where K is the pump displacement, RPM is the measured speed of the pump 64 from sensor 74, M is a constant, PRESSURE is the pressure at the outlet of the pump 64 as measured by sensor 70, and TEMPERATURE is the temperature of the fluid at the pump outlet as measured by sensor 72. The values for K and M are derived for a specific type of pump on a particular model of material handling vehicle and stored in the memory of the vehicle controller 42 of each material handling vehicle 10 of that model. Alternatively, values for K and M can be derived for each particular material handling vehicle 10 at time of manufacture.
For other pump designs the leakage flow can be modeled flow down a narrow tube instead of through orifice. In this case, the Predicted Lift Speed value is calculated at step 110 according to the alternative equation:
PREDICTED LIFT SPEED=K*RPM−M*TEMPERATURE*√{square root over (PRESSURE)} (2).
The appropriate equation and values for terms K and M are derived for a specific type of pump on a particular model of material handling vehicle and stored in the memory of the vehicle controller 42 of each material handling vehicle 10 of that model. Alternatively, values for K and M can be derived for each particular material handling vehicle 10 at time of manufacture. Those values are derived as follows.
K is the pump displacement that results from one cycle of the pump, e.g., produced by one rotation of the pump shaft. The pump displacement depends on the volume change of the hydraulic actuator, such as the cylinder and ram assembly 68. So for a particular cylinder diameter and piston displacement of the cylinder and ram assembly 68, each meter of motion is equivalent to a volume of fluid that flows into the cylinder. If to lift the carriage 32 one meter per minute (Lift Speed) requires X amount of fluid per minute and one pump rotation produces Y amount of fluid, then the pump speed (RPM) needed to provide that fluid flow rate is given by X/Y. The values of X and Y can be determined empirically for a given model of material handling vehicle while lifting its carriage one meter per minute. Therefore, for a new pump with zero leakage, the expression Lift Speed=K*RPM is rewritten as K=(Lift Speed)/RPM=(Lift Speed)/(X/Y) and the latter equation is solved using the measured values.
To derive a value for the constant M, the leakage flow for a new pump is modeled by flow through a small orifice in a larger pipe which is given by the expression:
where Q is the amount of flow through the orifice, Cd is a coefficient of discharge, A is the area of the orifice, β is the ratio of the diameter of the orifice to the diameter of the pipe in which the orifice is located, (P1-P2) is a pressure drop across the orifice, and ρ is the density of the hydraulic fluid.
Applying this model to pump leakage, the change in fluid density is relatively small for the range of pressures and temperatures experienced by a typical material handling vehicle. As a result, the effects of pressure and temperature may sometimes be ignored, thereby making fluid density a constant within a nominal range of temperatures. In addition, the ratio β of the leakage orifice diameter to the overall diameter of the pump outlet is relatively small and its effect becomes an even smaller factor when raised to the fourth power. Therefore, the square root term containing β can be considered as a constant value of one. As a consequence, the pump leakage is a strong function of the area (A) of the leakage path and that area is a squared term, e.g., if the pump wear increases a leakage gap by a factor of two, the influence on leakage flow increases by a factor of four. As with most turbulent flows, the leakage flow is a function of the square root of the pressure drop (P1-P2) across the leakage orifice. That pressure drop in a typical pump is the difference between the inlet and outlet pressure and the inlet pressure in many systems can be considered equal to atmospheric pressure. Therefore, the leakage pressure drop (P1-P2) in Equation (3) can be considered as only the outlet pressure (PRESSURE) of the pump 64. This enables the leakage equation to be simplified to:
Q=M√{square root over (PRESSURE)} (4)
where M incorporates the values of A, Cd, β, and √{square root over (2/ρ)}.
As noted M is derived for a new pump. Over time as the leakage area A increases, the actual value of M changes. By keeping the value of M constant when calculating the Predicted Lift Speed in Equation (1) or (2), an indication of pump wear is provided by comparing the Predicted Lift Speed to the actual measured lift speed.
Referring again to the flowchart of
At step 112, the difference ΔS between the Predicted Lift Speed and the Actual Lift Speed is calculated. Then, the newly calculated lift speed difference ΔS is applied to a rolling average of a plurality of lift speed differences to derive the average lift speed difference ΔSAVE at step 114. For a new pump, the average lift speed difference is near zero, i.e., within a relatively small standard deviation. Over time, wear of the hydraulic pump 64 results in an increase in the difference between the Predicted Lift Speed and the Actual Lift Speed. As a result, the average lift speed difference increase provides an indication of the amount of pump wear. Furthermore, average lift speed difference ΔSAVE reaching a predefined threshold value ΔSMAX denotes that excessive wear has occurred. That threshold value ΔSMAX can be determined empirically by intentionally operating the vehicle hydraulic circuit 62 until the actual lift speed fails to meet the minimum requirements set by the model specifications. During that operation the parameters of the pump monitoring system are recorded to provide a series of values for the average lift speed difference.
This enables, the pump wear to be indicated as a percentage based on the amount that the presently derived value for the average speed difference ΔSAVE is of the threshold value ΔSMAX. That wear percentage is calculated at step 116 of the pump monitoring routine 100. Next at step 118, the new wear percentage is compared to determine whether it exceeds a given percentage amount S % at which it is desirable to provide a warning to the operator of the material handling vehicle or to maintenance personnel at the facility where the vehicle is operating. The warning indicates that significant pump wear has occurred and that the personnel should consider performing maintenance or replacement of the pump before a catastrophic failure occurs. Such a warning, if necessary, is issued at step 120 before the pump monitoring routine ends. For example the warning can be a message presented on the information display 41 of the material handling vehicle 10, however other visual or audible annunciators can be used.
The rate of change of the difference AS between the Predicted Lift Speed and the Actual Lift Speed or the rate of change of the average lift speed difference ΔSAVE also can be used as an indication of excessive pump wear. Typically those rates of change increase as the amount of wear becomes more severe. A high rate of change indicates that preventative maintenance (new filter, flush & replace hydraulic oil, etc.) should be done to reduce over all costs.
Alternatively, the use of temperature in the previously described pump monitoring method may be eliminated and still provide an indication of the amount of pump wear. In this alternative, the temperature sensor 72 can be eliminated from the hydraulic system and the pump monitoring routine simplified by not having to read and utilize the temperature in calculating the predicted lift speed in Equation (1). In this alternative embodiment, the equation used to calculate the Predicted Lift Speed becomes:
PREDICTED LIFT SPEED=K*RPM−M*√{square root over (PRESSURE)} (5)
The remaining steps of the process, such as in the pump monitoring routine 100, are the same as described previously.
The foregoing description was primarily directed to a preferred embodiment of the invention. Although some attention was given to various alternatives within the scope of the invention, it is anticipated that one skilled in the art will likely realize additional alternatives that are now apparent from disclosure of embodiments of the invention. Accordingly, the scope of the invention should be determined from the following claims and not limited by the above disclosure.