The present invention relates to methods and apparatus for moss remediation on buildings. More particularly, the invention relates to moss remediation system using a porous, stretchable tube containing zinc particles.
In many wet climates, particularly in the US Pacific Northwest, for example, moss, fungi, and algae cause roof discoloration which grows over time. Until now remedies have included installing zinc exposed strips which are affixed near the top of a roof ridge, for example. Other solutions have included roofing materials incorporating metallic elements such as in U.S. Pat. No. 3,494,727, issued Feb. 10, 1970.
U.S. Pat. No. 3,479,130, teaches mounting flat bimetallic strips horizontally along a rooftop to inhibit microbial or fungal growths which darken rooftops in semitropical and tropical climates. It is believed that the use of two metals, such as copper and lead, between which an electrolytic action results when rainwater contacts the metals. Such action dissolves ions of the metals into the water to create a solution which kills the microbes and fungus. To obtain adequate coverage of a rooftop multiple strips are used, such strips being vertically spaced four to ten shingles apart.
Unfortunately, these prior attempts at eliminating roof discoloration due to biological growth have several drawbacks. For example, zinc strips have limited periods of effectiveness since they lose effectiveness from exposure to the sun in the summer and tend to warp away from contact with the composition roof becoming “U-shaped”. Installation for zinc strips or bimetallic combination strips is labor-intensive because it typically requires affixing roofing nails spaced approximately every two feet. Microbe resistant roofing materials do not offer much of an advantage since they cannot be easily retrofitted to an existing roof without replacing substantially the entire roof.
In a striking improvement over conventionally available moss remediation devices, the present invention for the first time provides a hose-like mold remediation stretch strip that is easily secured to any existing roof. Further, for many applications, the moss remediation apparatus disclosed herein can be rotated for maximum mold remediation exposure when needed. An added advantage of the instant invention is that roofing nails will not be required as used in installing zinc strips. In a further advantage over rectangular zinc strips, the exposed volume of a spherical particle surface area is roughly at least double the exposed volume of a similar surface area of a rectangular zinc strip.
This summary is provided to introduce, in a simplified form, a selection of concepts that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Disclosed herein is an apparatus for mold remediation on a building roof. At least one porous, stretchable tube includes two opposing folding end elements. A plurality of mold remediation particles is contained within the at least one tube. The porous, stretchable tube comprises a weather resistant material having multiple material openings so as to allow moisture to penetrate to the mold remediation particles while being sized smaller than the mold remediation particles so as to retain them in the at least one tube.
While the novel features of the invention are set forth with particularity in the appended claims, the invention, both as to organization and content, will be better understood and appreciated, along with other objects and features thereof, from the following detailed description taken in conjunction with the drawings, in which:
In the drawings, identical reference numbers call out similar elements or components. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn, are not necessarily intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
The following disclosure describes an apparatus for moss remediation. Several features of methods and systems in accordance with example embodiments are set forth and described in the figures. It will be appreciated that methods and systems in accordance with other example embodiments can include additional procedures or features different than those shown in the figures. Example embodiments are described herein with respect to a porous flexible tube containing zinc particles for mounting on a roof. However, it will be understood that these examples are for the purpose of illustrating the principles, and that the invention is not so limited.
Generally, as used herein, the following terms have the following meanings, unless the use in context dictates otherwise:
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims or the specification means one or more than one, unless the context dictates otherwise. The term “about” means the stated value plus or minus the margin of error of measurement or plus or minus 10% if no method of measurement is indicated. The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or if the alternatives are mutually exclusive. The terms “comprise”, “have”, “include” and “contain” (and their variants) are open-ended linking verbs and allow the addition of other elements when used in a claim.
Reference throughout this specification to “one example” or “an example embodiment,” “one embodiment,” “an embodiment” or combinations and/or variations of these terms means that a feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used herein, “plurality” or “set” are understood to mean more than one. For example, a plurality or set refer to at least two, three, four, five, ten, 25, 50, 75, 100, 1,000, 10,000 or more.
Referring now to
In one example, the tube 10 may be made from porous material such as porous fabric, nylon, sun resistant fabrics, plastic mesh, plastic netting and combinations thereof or the like. As indicated by double headed arrow 32, the tube 10 is made of a stretchable fabric. The fabric may comprise a weave or mesh with openings sized to allow rain or other precipitation to penetrate the mold remediation particles. When in use, the tube 10 may be stretched in the vertical and horizontal directions. In one example the tube is packed with zinc particles at a packing density that allow stretching of the material up to 2.5 inches in width. The tubes may also come in lengths of about 50 feet up to about 60 feet, which is in turns stretchable up to about 55 feet and about 65 feet respectively. Multiple tubes may be joined together for longer roofs. The tubes may also be sectioned along the cutting lines 12 to adjust for length. Cutting lines 12 may be perforations, marked lines, simple depressions or the like.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Having described the configuration of the example embodiments, it will now be useful to the understanding of the invention to describe how the various components are manufactured. The devices can be constructed from any material having properties that make the material satisfactory for use on a roof with constant exposure to weather. In some instances, it may be desirable to rotate the mold remediation filled tubes on a periodic basis, such as annually, in order to enhance the mold remediation effects. Zinc pellets, particles, buttons or balls may be purchased or fabricated. For example, zinc button sized discs may be fabricated by punching zinc sheets with a ¼ inch punch. Further, the material may be selected in various colors to match roof materials for aesthetic purposes. Matching colors will blend in more easily with a roof and may be more pleasing to the eye. In one alternate embodiment, a perforated tube such as a flexible garden hose or the like may be used in place of nylon or other reason weather resistant materials.
The invention has been described herein in considerable detail to comply with the Patent Statutes and to provide those skilled in the art with the information needed to apply the novel principles of the present invention, and to construct and use such exemplary and specialized components as are required. However, it is to be understood that the invention may be carried out by different equipment, and devices, and that various modifications, both as to the equipment details and operating procedures, may be accomplished without departing from the true spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
927132 | Duenwald | Jul 1909 | A |
2329429 | Weaver | Sep 1943 | A |
2807807 | Harper | Oct 1957 | A |
3254828 | Lerner | Jun 1966 | A |
3479130 | Rapaport | Nov 1969 | A |
3494727 | Rapaport | Feb 1970 | A |
3566832 | Williams | Mar 1971 | A |
3613309 | Coburn | Oct 1971 | A |
3696623 | Heine | Oct 1972 | A |
4100104 | Katzen et al. | Jul 1978 | A |
4112409 | Jacquelin | Sep 1978 | A |
4276732 | Nielsen | Jul 1981 | A |
4416854 | Nielsen | Nov 1983 | A |
4554862 | Wolfert | Nov 1985 | A |
4616055 | Mason | Oct 1986 | A |
4817214 | Stuessy | Apr 1989 | A |
4832206 | Cunningham | May 1989 | A |
5119604 | Peterson et al. | Jun 1992 | A |
5216864 | Urgero | Jun 1993 | A |
5253616 | Voss | Oct 1993 | A |
5579794 | Sporta | Dec 1996 | A |
6749085 | Garrant et al. | Jun 2004 | B2 |
7329069 | Slater | Feb 2008 | B2 |
7354596 | Banovetz et al. | Apr 2008 | B1 |
7788870 | Spencer | Sep 2010 | B1 |
8333639 | Collister | Dec 2012 | B2 |
8524359 | Tsunemori et al. | Sep 2013 | B2 |
8656562 | Yang | Feb 2014 | B2 |
20030150170 | Weber | Aug 2003 | A1 |
20060168899 | Buckenmaier, Jr. | Aug 2006 | A1 |
20100109318 | Mulligan | May 2010 | A1 |