Not Applicable.
This disclosure relates to the field of snow sports and particularly to alpine touring (AT), which is a snow skiing sport where both uphill and downhill travel by the human sports participant is required. Even further, this disclosure relates to a novel electric motorized traction device that assists the user to more easily travel uphill in a wide variety of snow conditions.
Alpine touring (AT) typically uses bindings that allow a skier's boot heel to release and pivot at the toe for moments of uphill travel. The boot heel then locks down for downhill travel. In addition, traction structures must be provided on the bottom surface of the ski when making human powered uphill travel to minimize undesirable backward travel. This is achieved with either a permanent modification to the bottom ski surface as is the case with a nordic style ski or a removable material is adhered temporarily to the bottom of an alpine ski. This material, often referred to as “skins,” is composed of natural or artificial animal hair that allows forward movement, but resists backward movement.
When traveling uphill, a skier employs their strength to alternate left and right forward ski movement and walk uphill. The specialized bottom ski traction structure and toe pivot with releasable heel binding allows the skier to approximate a walking motion when traveling uphill on the surface of the snow even in steep terrain. Often, to help the skier travel uphill, when traveling steep snow sections, a removable binding insert is placed between the ski and the binding such that the heel portion of the binding is raised from the ski. This provides more ski edge control and facilitates steep uphill assents.
Disadvantageously, with the present state of the art, uphill ski travel is cumbersome and laborious. The state of the art has focused on minimizing equipment weight and improve designs to make alpine touring as energy efficient as possible for the skier. Against this background, it would be desirous to provide an innovation that assists the skier in their uphill travel.
The present disclosure comprises a novel set of devices that attach to a typical AT ski setup and provides motorized traction that assists the skier when traveling uphill or horizontal on snow. The device does not propel a non-active skier, but rather only assists to propel the unweighted ski forward as the skier initiates a step.
In an embodiment, the device attaches near the tail portion of each snow ski. Each device is composed of a primary housing, that rests on the top surface of the snow ski, that consists of an electronic circuit board and a removable battery. The battery and circuitry power the hub motor that is situated below the ski. The hub motor engages various cylindrical traction surfaces (depending on snow conditions) to propel the unweighted ski forward for the duration of the step. The device is firmly attached to the ski with a circumferential clamping device and an arm that connects to one side of the hub motor.
When a skier initiates forward movement of the ski, the motor engages and assists the ski forward until the completion of that step by powering the hub motor and cylindrical traction surface. The length of time the motor engages is preset by the user depending upon the stride desired. Alternatively, motor engagement and disengagement can be caused by a sensor in the toe piece or heel of the binding that communicates appropriate timing of motor engagement. A combination of these structures can also be implemented within the scope of the present disclosure. Also, the motor engagement structure can be set to a predetermined cadence and not initiated by sensing a step of the skier.
The device on each ski, including the housing, clamping system, and hub motor with the cylindrical traction surface, would be completely removed from the skis for downhill travel.
Some embodiments of the present disclosure are illustrated as examples and the scope of the present disclosure is not limited by the figures in the accompanying drawings, in which like references may indicate similar elements and in which:
For the purposes of promoting an understanding of the principles in accordance with this disclosure, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the disclosure as illustrated herein, which would normally occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the disclosure claimed.
Before the devices, systems, processes and methods will be disclosed and described, it is to be understood that this disclosure is not limited to the particular configurations, process steps, and materials disclosed herein as such configurations, process steps, and materials may vary somewhat. It is also to be understood that the terminology employed herein is used for the purpose of describing particular illustrative embodiments only and is not intended to be limiting since the scope of the disclosure will be limited only by the appended claims and equivalents thereof.
In describing and claiming the subject matter of the disclosure, the following terminology will be used in accordance with the definitions set out below.
It must be noted that, as used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
As used herein, the terms “comprising,” “including,” “containing,” “characterized by,” “having” and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps.
For convenience in describing the method and use of the current disclosure, singular masculine or feminine pronouns have been used to describe the person executing the methods described. It is to be understood that no limitation of the invention to use by one gender or the other is intended by such use.
In describing the embodiments of this disclosure, it will be understood that a number of techniques and steps are disclosed. Each of these has individual benefit and each can also be used in conjunction with one or more, or in some cases all, of the other disclosed techniques. Accordingly, for the sake of clarity, this description will refrain from repeating every possible combination of the individual steps or applications in an unnecessary fashion. Nevertheless, the specification and claims should be read with the understanding that such combinations are entirely within the scope of the claims.
New devices, apparatus, and methods for assisting a skier, or snowboarder, as they travel uphill with a standard AT setup are discussed herein. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.
The present disclosure is to be considered as only exemplary and is not intended to be limiting to the specific embodiments illustrated by the figures or description herein. One of the illustrated embodiments comprises a motorized drive element, a motor, means for securing the motorized drive element and motor to a snow sport device; a snow sport device being a ski or split snowboard appropriate for alpine touring. It is to be understood that a reference to a “ski” in this disclosure may encompass a split snowboard or other snow sport device appropriate for alpine touring as well as any device consisting of one or more runners which are intended to glide over a soft or pliable surface. The device also comprises means for engaging the motor only when the ski is moved forward, as when the user is taking a forward step. In alpine touring, when moving uphill or across level ground, the ski is moved forward much as in walking, so throughout the process weight is removed from each ski alternately as the user propels his/her body forward, and the means for engaging the motor only when the ski is moved forward may comprise a sensor that determines when weight has been removed from the ski. One of the embodiments described herein applies a forward thrust from the motor to the ski through the drive element when the ski is moved forward, thus assisting the user each time the ski is moved forward and reducing the energy a user must expend with each “stride” of the skis and improving a skier's endurance.
The present invention will now be described by referencing the appended figures representing illustrative embodiments.
To use the device, the user installs the housing 14A with the attached drive shafts 15A, suspension systems 17A, and traction belts 16A onto each ski (or split board) 11 that is set up for alpine touring. When the user initiates forward movement of the ski (or split board) 11, the motor engages and assists the ski 11 forward by powering the traction belts 16. The length of time the motor engages is may be preset by the user depending upon the stride desired. Alternatively, motor engagement and disengagement could be as the result of a sensor in the toe piece or heel of the binding 12 that communicates appropriate timing of motor engagement. A combination of these two methods could be used as well.
In one illustrative embodiment, there is a sensor located in the suspension system 17A, which senses when the user takes weight off the ski (so as to move the ski forward), and engages the motor. When the user places weight on the ski again, the sensor in the suspension system 17A causes the motor to disengage. In another embodiment, there is a sensor located in the binding 12 which determines when the user is taking a step forward and engages the motor. In yet a yet another embodiment, a circuit board may be located in the housing 14A and programmed to engage the motor at regular intervals, set to the user's stride.
Once the user reaches their desired location and/or downhill travel is desired, the device on each ski (or split board) 11, including housing 14A and two traction belts 16A, are removed and stored in a backpack or otherwise.
Preferred materials for the device are metal, metal alloys or hard plastics for the structures and mechanisms, and a rubber like material for the tractor belts. While preferred materials for the device have been described, the device is not limited by these materials. Wood, plastics, foam, rubber, fiberglass, metal alloys, carbon fiber, aluminum, vinyl, various fabrics, sand and other material may comprise some or all of the elements of the electric motorized traction devices and apparatuses in various embodiments of the present disclosure.
Another embodiment of an electric motorized traction device to assist alpine touring ski movement, which is illustrated in
The cylindrical traction surface 503, in
In one embodiment, the hub motor 502 is attached to the main housing 501 by a support element 510. In one embodiment, the support element 510 is a tri-arm connector, having three portions. The tri-arm connector may also comprise a spring suspension system 511, embedded within the tri-arm connector 510. In one embodiment, this spring suspension system 511 may also comprise an electronic sensor which communicates with the electronic circuit board in the main housing 501. The sensor in the spring suspension system 511 may cause the electronic motor 502 to engage when the sensor detects that weight is not on the ski. In another embodiment, there may be a sensor in the binding of the ski (11 in
In one embodiment, there may be no sensor which signals the motor. In this embodiment, the circuit board may be programmed to engage the motor in a specific sequence, with timing set to match the stride of the user, in a cadence. In yet another embodiment, there may be a sensor in the motor or on the drive element which detects when a user begins to move the ski forward and engages the motor to assist in that forward movement. In another embodiment, the sensor may determine when the ski is about to move forward by sensing when the user's weight is removed from the ski, as when the user lifts weight off the ski to move it forward.
It will be appreciated that all of the structures depicted herein, and particularly those represented in
In one embodiment, still referring to
It will be appreciated that all of the structures depicted herein, and particularly those represented in
In one embodiment of the system, the user attaches the device to the ski in a location between the back of the binding and the tail of the ski, securing the device with a combination of the sliding pin 521 and clamp 523. In one embodiment the device may be attached in a variety of positions behind the binding depending upon the conditions. For example, softer snow would require additional traction, so the user would want to attach the device closer to the binding, so that more weight would be on the device. When traveling on more compact snow, however, the device would be attached closer to the tail of the ski. When the user is traveling on level ground or uphill and the user initiates forward movement of the ski, the motor 502 engages and turns the cylindrical traction surface 503, thus propelling the ski forward and assisting the forward motion of the ski until the completion of the step. Upon completion of the step, the motor disengages. In one embodiment, the electronic circuit board may engage the motor when the sensor in the spring suspension system 511 senses that weight is not being placed on the ski, as when the ski is being moved forwarded in a step, unweighted. The motor may remain engaged for as long as no weight is placed on the ski. In another embodiment, the length of time the motor 502 engages may be preset by the user depending upon the stride desired. Alternatively, motor engagement and disengagement could be as the result of a sensor in the toe piece or heel of the binding that communicates appropriate timing of motor engagement to the electronic circuit board in the main housing. A sensor in the binding may determine when weight is being placed on the binding. Alternatively, a sensor located in the binding may determine when the foot moves in a manner so as to move the ski forward, rather than sensing weight specifically.
It will be understood that a number of different types of sensors could determine appropriate timing for activating the motor on the ski, and the setting forth of specific types of sensors is not meant to limit the instant disclosure. Alternatively, a combination of these methods and structures could be used as well. In yet another embodiment, the motor engagement could be set to a cadence, engaging at set intervals for a set period of time, and not initiated by a step at all. In such embodiment, the cadence is preferably set to match the stride and pace of the skier to the closest degree possible.
In one embodiment the device may be powered by a battery located within the main housing 501. The battery may be removable from the device. In another embodiment, the battery may be rechargeable. Again, the battery may be removable from the device in one embodiment, while yet another embodiment may have the battery permanently secured within the device. In yet another embodiment, the battery may be recharged by solar power. The device itself may comprise a solar panel and charging system in one embodiment, while in another embodiment, a separate solar-powered charging system may be plugged into the device, or the battery may be removed and placed into a separate solar-powered charging system.
In one embodiment, the motor is controlled by a circuit board located in the main housing 501, which contains software that controls the amount of time which the motor engages for when it is engaged. The software may also control the speed at which the motor engages. In one embodiment, the speed and length of time which the ski engages can be easily controlled by the user by adjusting the software. In one embodiment there may be a user interface located on the main housing. In another embodiment, the circuit board may also contain a communication device that allows it to easily communicate with an external control device. The communication device may be a wireless communication device that uses an appropriate wireless protocol, for example, Bluetooth or Wifi. In one embodiment the external control device may comprise a smartphone. In another embodiment, the external control device may comprise a dedicated controller, from which the user can adjust the settings of the motor. These settings may include but are not limited to the period of time that the motor engages for with each step and the speed of the motor. In one embodiment the device also comprises a safety to prevent the device from being activated unless the user is on the ski. This safety may take the form of a program which prevents the devices from being turned on unless both sensors in the devices attached to the ski are weighted.
A block diagram of the operation of one embodiment a method and apparatus for assisting alpine touring ski movement is shown in
Still referring to
As shown in
The device on each ski, including the housing, clamping system, and hub motor with the cylindrical traction surface, is designed to be easily removable so that the device can be completely removed for downhill travel.
Although the present disclosure has been illustrated and described herein with reference to preferred embodiments and specific examples thereof, it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results. All such equivalent embodiments and examples are within the spirit and scope of the present invention, are contemplated thereby, and are intended to be covered by the following claims.
This application claims the benefit of provisional application No. 63/064,307 for Electric Motorized Traction Device to Assist Alpine Touring Ski Movement, filed Aug. 11, 2020, which is hereby incorporated by reference herein in its entirety, including but not limited to those portions that specifically appear hereinafter, this incorporation by reference being made with the following exception: In the event that any portion of the above-referenced provisional application is inconsistent with this application, this application supersedes said above-referenced provisional application.
Number | Name | Date | Kind |
---|---|---|---|
2455920 | Ebbley, Jr. | Dec 1948 | A |
2611624 | Gurvich | Sep 1952 | A |
2625405 | Staff | Jan 1953 | A |
3148891 | Heuvel | Sep 1964 | A |
3295860 | Hoven | Jan 1967 | A |
3568787 | Gremeret | Mar 1971 | A |
3601421 | Ris | Aug 1971 | A |
3761106 | Schwarz | Sep 1973 | A |
3804429 | Rovatti | Apr 1974 | A |
3863943 | Giannotti | Feb 1975 | A |
3863944 | Waddel | Feb 1975 | A |
3910593 | Schwarz | Oct 1975 | A |
3951421 | Brangenberg | Apr 1976 | A |
3951425 | Lohr | Apr 1976 | A |
3953043 | Hinterholzer | Apr 1976 | A |
RE29366 | Giannotti | Aug 1977 | E |
4106787 | Thon | Aug 1978 | A |
4108454 | Schwarz | Aug 1978 | A |
4131291 | Thon | Dec 1978 | A |
4135729 | Brangeberg | Jan 1979 | A |
4154457 | Auer et al. | May 1979 | A |
4168077 | Grass | Sep 1979 | A |
4174114 | Hinterholzer | Nov 1979 | A |
4189163 | Schweizer et al. | Feb 1980 | A |
4219206 | Kjesbo | Aug 1980 | A |
4304421 | Kuhbier | Dec 1981 | A |
4526402 | Schwarz | Jul 1985 | A |
4546650 | Cameron | Oct 1985 | A |
4799710 | Bamett | Jan 1989 | A |
4837494 | Maier | Jun 1989 | A |
5397153 | Dutaut et al. | Mar 1995 | A |
8991541 | Maier | Mar 2015 | B1 |
9737785 | Burger | Aug 2017 | B2 |
10130836 | Madion | Nov 2018 | B2 |
10213678 | Mattiangeli | Feb 2019 | B2 |
10538298 | Blocker et al. | Jan 2020 | B1 |
11021218 | Blocker et al. | Jun 2021 | B1 |
11400360 | Crockett | Aug 2022 | B1 |
20020167136 | Lehr et al. | Nov 2002 | A1 |
20060012096 | Geldert | Jan 2006 | A1 |
20090270001 | Crispin | Oct 2009 | A1 |
20110012335 | Jones | Jan 2011 | A1 |
20130274078 | Andrews | Oct 2013 | A1 |
20130283541 | Cridlebaugh | Oct 2013 | A1 |
20130344757 | Wojcik | Dec 2013 | A1 |
20160135554 | Green | May 2016 | A1 |
20170113119 | Burger | Apr 2017 | A1 |
20170361202 | Mattiangeli | Dec 2017 | A1 |
20190247734 | Wood | Aug 2019 | A1 |
20210299547 | Naumov | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
201800006186 | Nov 2019 | IT |
WO2015104663 | Jul 2015 | WO |
WO2016151318 | Sep 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20220203210 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63064307 | Aug 2020 | US |