Claims
- 1. An apparatus for multiplying the frequency of a time varying electronic input signal, including in combination a complex to polar means responsive to said input signal to provide a plurality of characteristic signals including a phase signal which is responsive to phase related information of said input signal, a frequency adder means responsive to said phase signal to alter said phase signal to provide an altered phase signal, and a polar to complex conversion means responsive to said altered phase signal and another of said plurality of characteristic signals to output a frequency shifted version of said input signal wherein the amount of said frequency shift is responsive to said altering of said phase signal.
- 2. An apparatus for multiplying the frequency content of a complex electronic input signal, including in combination a complex to polar means responsive to said input signal to provide a plurality of signals including a magnitude signal representative of the magnitude of said input signal and a phase signal which is representative of the phase of said input signal, a frequency adder means responsive to said phase signal to change the value of said phase signal representing phase thereby producing an altered phase signal, and a polar to complex conversion means responsive to said altered phase signal and said magnitude signal to output a changed frequency content version of said input signal wherein said changed frequency content is responsive to said altering of said phase signal.
- 3. An apparatus for changing the frequency of an electronic input signal, including in combination a complex to polar means responsive to said input signal to provide a plurality of signals including a magnitude signal responsive to the magnitude of said input signal, and a phase signal which is responsive to the phase of said input signal, said means including a complex to rectangular conversion means, to provide a plurality of rectangular signals, and further containing a rectangular to polar means responsive to said plurality of rectangular signals to provide said magnitude signal and said phase signal, a frequency adder means responsive to said phase signal to change the phase responsive information of said phase signal thereby producing an altered phase signal, and a polar to complex conversion means responsive to said altered phase signal and said magnitude signal to output a changed frequency content version of said input signal wherein said changed frequency content is responsive to said altering of said phase signal.
- 4. An apparatus for multiplying the frequency of an electronic input signal, including in combination a complex to polar means responsive to said input signal to provide a plurality of signals including a magnitude signal responsive to the magnitude of said input signal, and a phase signal responsive to the phase of said input signal, said means including a complex to rectangular conversion means, responsive to said input signal to provide a plurality of rectangular signals, and further including a rectangular to polar means responsive to said plurality of rectangular signals to provide said magnitude signal and said phase signal, a frequency adder means responsive to said phase signal to change the phase responsive information of said phase signal to and produce an altered phase signal, and a polar to complex conversion means responsive to said altered phase signal and said magnitude signal to output a multiplied frequency version of said input signal wherein said multiplied frequency is responsive to said change of the phase responsive information of said phase signal.
- 5. The apparatus as claimed in claim 1, 2, 3 or 4 wherein said frequency adder means is responsive to a frequency measurement means responsive to said phase signal such that said altered phase signal is altered by an amount which is responsive to said phase signal.
- 6. The apparatus as claimed in claims 1, 2, 3 or 4 including in combination a frequency measurement means responsive to said input signal wherein said frequency adder means is responsive to said frequency measurement means such that said altered phase signal is altered by an amount which is responsive to the frequency of said input signal.
- 7. The apparatus as claimed in claims 1, 2, 3 or 4 including in combination, a frequency measurement means for measuring the rate of change of said phase signal, with said frequency adder means being responsive to said measurement.
- 8. The apparatus as claimed in claims 1, 2, 3 or 4, including in combination a polar to rectangular converter means responsive to said altered phase signal to provide a plurality of altered rectangular signals, and a vector combination means responsive to said altered rectangular signals to provide the output signal which is the altered version of said input signal.
- 9. An apparatus for multiplying the frequency of an electronic input signal, including in combination a complex to polar means responsive to said input signal to provide a plurality of signals including a magnitude signal responsive to the magnitude of said input signal, and a phase signal responsive to the phase of said input signal, said means including a complex to rectangular conversion means responsive to said input signal and providing a plurality of rectangular signals, and further including a rectangular to polar means responsive to said plurality of rectangular signals to provide said magnitude signal and said phase signal, a frequency measurement means responsive to said phase signal for measuring the rate of change thereof and providing a frequency signal in response thereto, a frequency adder means responsive to said frequency signal and said phase signal to change the phase responsive information of said phase signal in response to said frequency signal to produce an altered phase signal, a polar to complex conversion means including a polar to rectangular converter means responsive to said magnitude signal and said altered phase signal to provide a plurality of altered rectangular signals, and a vector combination means responsive to said altered rectangular signals to provide the output signal which is the multiplied frequency version of said input signal.
- 10. A method for changing the frequency of a time changing electronic input signal, including in combination a complex to polar step of converting said input signal to a plurality of signals including a phase signal which represents phase related information of said input signal, a frequency addition step of altering said phase signal to produce an altered phase signal, and a polar to complex conversion step to combine said altered phase signal and one other of said plurality of signals forming a frequency changed version of said input signal wherein the amount of said frequency change is responsive to said altering of said phase signal.
- 11. A method for multiplying the frequency content of a complex electronic input signal, including in combination a complex to polar step of converting said input signal to provide a plurality of signals including a magnitude signal representative of the magnitude of said input signal, and a phase signal which is representative of the phase of said input signal, a frequency addition step to change the phase represented by said phase signal thereby producing an altered version of said phase signal, and a polar to complex conversion step combining said altered phase signal and said magnitude signal to form a multiplied frequency content version of said input signal wherein said multiplied frequency content is responsive to said change of said phase signal.
- 12. The method as claimed in claims 10 or 11 wherein said frequency addition step is responsive to a frequency measurement step operating with said phase signal such that said altered phase signal is altered by an amount which is responsive to said phase signal.
- 13. The method as claimed in claims 10 or 11 including a frequency measurement step operating with said input signal wherein said frequency addition step is responsive to said frequency measurement step such that said altered signal is altered by an amount which is proportional to the frequency of said input signal thereby causing the frequency of the output signal to be linearly related to the frequency of said input signal.
Parent Case Info
The present application is a continuation in part of U.S. patent application Ser. No. 172,283, filed Mar. 23, 1988, now U.S. Pat. No. 4,868,428 issued Sept. 19, 1989 which is a continuation of application Ser. No. 07/016,923 filed Feb. 20, 1987, now U.S. Pat. No. 4,829,257, which applications are incorporated by reference. An understanding of the parent application, especially with respect to the description of FIGS. 1-5 which will aid in the appreciation of the inventive concepts described herein.
US Referenced Citations (4)
Non-Patent Literature Citations (4)
Entry |
"Reference Data for Engineers", 6th ed. (Indianapolis, IN: Howard W. Sams & Co., 1968), p. 23-24. |
Donald G. Fink, "Electronics Engineers' Handbook", (McGraw Hill, 1975) pp. 8-56-8-57. |
Roger Harrison, "A Review of SSB Phasing Techniques", Ham Radio Magazine, Jan. 1978, pp. 52-63. |
"RF/IF Signal Processing Handbook", Mini-Circuits, 85/86 ed., vol. 1, Section 2--pp. 4-7. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
16923 |
Feb 1987 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
172283 |
Mar 1988 |
|