1. Field of the Invention
The invention relates generally to communication headsets, and relates in particular to communication headsets that provide active noise cancellation.
2. Description of the Related Art
Communication headsets typically include a speaker assembly in one or both earpieces of a headset. The earpieces may include, for example, ear domes that surround an ear and are urged against a user's head, ear pads that contact and are urged against the outer helix of a user's ear, or earplugs that engage the inner helix or canal of a user's ear.
Communication headsets that provide active noise cancellation typically include a microphone assembly in one or both earpieces that converts ambient noise to electrical signals and provides those electrical signals to an electronic circuit in an effort to cancel the background signal from the environment. For example, U.S. Pat. No. 4,455,675 discloses a headset system that includes active noise cancellation in which signals received by a microphone are inverted and amplified, and are then electrically combined with a communication signal prior to being sent to the speaker. In certain situations, however, such systems may cancel a portion of the communication signal itself or may not effectively remove noise as a result of mixing the communication signal with the cancellation signal by an electronic means.
Other prior art systems may direct inverted and amplified feedback signals to a second speaker within an earpiece. In such systems, the acoustic signal output by the second speaker is used to acoustically cancel noise from the environment. A drawback to such multiple-speaker headsets is that they may be larger and heavier than single-speaker headsets, and may be relatively more expensive to produce.
The present invention is directed to a device for canceling noise in a speaker. The device includes first and second speaker coils. The first speaker coil receives a communication signal, and the second speaker coil receives an active noise cancellation signal. Each of the first and second speaker coils co-acts with a magnetic field causing a diaphragm to move responsive to each of the applied signals.
In one embodiment, the first and second speaker coils are concentrically wound. In another embodiment, the first and second speaker coils are helically wound. Further, in another embodiment, the first and second speaker coils are wound in layers.
In one embodiment, the device for canceling noise includes a microphone that provides signals to be used to cancel-noise. The microphone provides a background signal to a feedback network. The active noise cancellation signal is produced responsive to the background signal.
In one embodiment, the feedback network includes a communication equalizer for preconditioning an input signal. The feedback network can further include a digital signal processor. The digital signal processor can include a digitally created analog output signal, a pulse width modulated output signal, or a pulse width and frequency modulated output signal.
In another embodiment, the device for canceling noise further includes a low impedance passive network. The low impedance passive network equalizes the communication signal before the communication signal is applied to the first speaker coil.
In one embodiment, the magnetic field extends radially outward from a magnet through the first and second speaker coils and then returns to the magnet through a magnetic structure. The magnetic structure can include the magnet, a cup shaped structure, and a plate. The magnet is positioned between the cup shaped structure and the plate. The first and second speaker coils can be positioned to pass through an annular opening in the magnetic structure.
In accordance with another aspect of the invention, the invention is directed to a speaker with noise cancellation. The speaker includes first and second speaker coils and a magnet. The first speaker coil receives a communication signal and is coupled to a diaphragm. The second speaker coil receives an active noise cancellation signal and is also coupled to the diaphragm. The magnet is positioned such that a magnetic field extends through the first and second speaker coils.
In one embodiment, the first and second speaker coils are concentrically wound. In another embodiment, the first and second speaker coils are helically wound. Further, in another embodiment the first and second speaker coils are wound in layers.
In one embodiment, the speaker includes a microphone. The microphone provides a background signal to a feedback network. The active noise cancellation signal is produced in response to the background signal. The feedback network can include a loop equalizer that filters and amplifies the background signal. The feedback network can include a communication equalizer that preconditions an input signal. The feedback network can include a digital signal processor. The digital signal processor can include a digitally created analog signal, a pulse width modulated output signal, or a pulse width and frequency modulated output signal.
In one embodiment, the speaker further includes a low impedance passive network that equalizes the communication signal before the communication signal is applied to the first speaker coil.
In one embodiment, the magnetic field extends radially outward from the magnet through the first and second speaker coils and then returns to the magnet through a magnetic structure. The magnetic structure can include the magnet, a cup shaped structure, and a plate. The magnet is positioned between the cup shaped structure and the plate. The first and second speaker coils can be positioned to pass through an annular opening in the magnetic structure.
In one embodiment, the diaphragm is coupled to an outer shell and includes folds in the diaphragm. The folds in the diaphragm facilitate protrusion and retraction of the diaphragm with respect to the outer shell.
In one embodiment, the diaphragm includes a center and an annular diaphragm. Alternatively, the diaphragm can include a single unitary diaphragm.
In one embodiment, the first and second speaker coils co-acting with the magnetic field cause the diaphragm to move responsive to both the communication signal and the active noise cancellation signal.
In one embodiment, the speaker includes a microphone. The microphone provides background noise to a feedforward network. The active noise cancellation signal is produced in response to the background signal.
In one embodiment, the speaker is a headset speaker.
In accordance with another aspect of the invention, the invention is directed to a communication headset including a speaker assembly. The speaker assembly includes first and second speaker coils. The first speaker coil receives a communication signal. The second speaker coil receives an active noise cancellation signal. Each of the first and second speaker coils co-acts with a magnetic field causing a diaphragm to move responsive to each of the applied signals.
In one embodiment, the first and second speaker coils are concentrically wound. In another embodiment, the first and second speaker coils are helically wound. Further, in another embodiment, the first and second speaker coils are wound in layers.
In one embodiment, the speaker assembly further includes a microphone. The microphone provides a background signal to a feedback network. The active noise cancellation signal is produced in response to the background signal. The feedback network can include a communication equalizer that preconditions an input signal. The feedback network can include a digital signal processor. The digital signal processor can include a digitally created analog signal, a pulse width modulated output signal, or a pulse width and frequency modulated output signal.
In one embodiment, the speaker assembly further includes a low impedance passive network. The low impedance passive network equalizes the communication signal before the communication signal is applied to the first speaker coil.
In one embodiment, the magnetic field extends radially outward from the magnet through the first and second speaker coils and then returns to the magnet through a magnetic structure. The magnetic structure can include the magnet, a cup shaped structure, and a plate. The magnet is positioned between the cup shaped structure and the plate. The first and second speaker coils can be positioned to pass through an annular opening in the magnetic structure.
The foregoing and other objects, features and advantages of the invention will be apparent from the more particular description of preferred aspects of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
The electrical input signal 12 (or 16) is also provided to a communication equalizer circuit 20, and the output signal 22 from the communication equalizer is provided to a processor 24. The communication equalizer preconditions the electrical input signal 12 (or 16), so that when the processor 24 attempts to remove the electrical input signal, it removes the conditioning.
Referring again to
Referring again to
During operation, a portion of the communication signal 12 (or 16) is supplied to the processor 24 via the communication equalizer circuit 20 to ensure that the sound that is produced by the speaker assembly 18 responsive to the communication signal itself is not cancelled. The use of two separate and independent coils 40 and 42 in the speaker assembly 18 of the invention permits the voice or communication signal 16 and the noise cancellation signal 11 to be supplied to the same speaker without requiring that the two signals be electrically combined prior to being delivered to a single speaker. Although the first coil 40 is described above as being the communication coil or voice coil and the second coil 42 is described as being the noise cancellation coil, either coil 40, 42 may receive either signal and may perform either function. This aspect of the invention provides a failsafe mode of operation, in that a failure of the processor 24 such as in not producing and delivering a noise cancellation signal, will not prevent the communication signal from being provided to the user of the speaker. It also allows either or both of the communication signal 16 and the noise cancellation signal to be purely analog, or to be an analog signal represented by a digital signal. The digital signal may be a pseudo-analog signal, as from a digital-to-analog converter, or a pulse width modulated, or a frequency and pulse width modulated signal, for example, in a class D amplifier in which a digital signal is pulsed at a predetermined rate and duration. In the latter cases, the speaker would perform a mathematical integration, generating the signal represented by the modulation of the aforementioned digital signals.
When either or both coils 40, 42 receive a signal, the coils 40, 42 move with respect to the cup shaped structure 43, magnet 45 and top plate 47, and specifically move in and out of the enclosure formed by the structure 43 and the top plate 47. As the coils 40 and 42 move, the diaphragm 50 and center diaphragm 44 move, thus producing sound. Each of the coils 40 and 42 may, therefore, separately or simultaneously drive the speaker 18. The diaphragm 50 preferably includes folds 54 that generally extend radially, providing greater flexibility of the diaphragm.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.