This invention relates to devices and methods for monitoring cardiac pumping, and more particularly to a new device and method for noninvasively detecting the quality of cardiac pumping resulting from cardiopulmonary resuscitation (CPR) or from automatic external defibrillation.
CPR is a well known and valuable emergency procedure for reviving a person suffering cardiac arrest. When the heart stops pumping blood, the resulting lack of fresh oxygen to the brain can cause brain damage within minutes and death can soon follow. CPR involves repetitive chest compression coordinated with mouth-to-mouth breathing, and its effectiveness depends on coordinated delivery of adequate chest compressions and rescue breaths and, to a large extent, on the quality and timing of the chest compressions. Much attention has been devoted to the subject and particularly to techniques for training emergency medical personnel as well as ordinary citizens how to perform CPR properly even under stress associated with treating a life-threatening condition and even if fatigued from a sustained effort.
A pressure-sensitive chest pad has been proposed as a feedback tool for a rescuer administering chest compressions during CPR. For example, an automatic external defibrillator (AED) recently introduced by Zoll Medical Corporation, the Zoll AED PLUS, is available with a chest pad with which it is said to monitor rate and depth of chest compressions when the rescuer presses on the pad. Voice and visual prompts encourage a compression depth of 1½-2 inches. However, the AED gives no indication of the effectiveness of pumping of blood. One of the rescuers is prompted to check the victim for the presence of a pulse or other signs of circulation such as normal breathing, movement, coughing or color of the lips or skin. Such methods do not give the typical human rescuer feedback fast enough to enable the rescuer to vary the style of chest compression in order to optimize blood pumping.
Perfusion monitors designed to measure blood gases, such as the monitor proposed in U.S. Pat. No. 5,579,763 to Weil et al., can take minutes to respond and thus also fail to provide sufficiently rapid feedback, e.g., beat-by-beat feedback, for a typical human rescuer.
A need exists for a simple and practical device which can give a positive indication of the effectiveness of blood pumping in response to chest compression during CPR. There is also a need for a simple and practical way to noninvasively detect cardiac pumping following defibrillation with an AED.
Electromechanical dissociaton (EMD) is a condition in which the R waves of the ECG either do not produce ventricular contractions or produce extremely weak contractions, resulting in little or no blood pumping. The condition is sometimes known as pulseless electrical activity (PEA). It occurs frequently because ventricular fibrillation is often not treated with CPR for a period of time or the CPR is inadequately performed. In such situations, the heart muscle, being deprived of oxygenated blood because there is no blood pumping, becomes injured and consequently beats weakly or not at all after successful defibrillation. Thus, even though an AED may indicate that the criterion for successful defibrillation has been met, namely abolishing the high-frequency fibrillation waves in the ECG, the heart muscle cannot respond adequately to the resulting R waves and the victim is likely to die as a result if other intervention is not promptly provided.
Another postdefibrillation situation for failure of the ventricles to contract is atrioventricular (A-V) block. A-V block is not uncommon immediately after successful ventricular defibrillation and no ventricular pulses are produced.
The appropriate therapy for EMD and A-V block is the prompt application of effective CPR.
According to one aspect of the present invention, a beat-by-beat auditory pulse monitor allows a rescuer who is administering CPR to evaluate the effectiveness of each chest compression to pump blood. The inventive device detects the arterial pulse resulting from each chest compression and generates an audible tone indicating the amplitude of each pulse. An optical sensor including a light source and photodetector is applied to a skin surface of a subject over a tissue bed containing an artery, preferably where there is a substantially planar underlying bone surface, such as the forehead, which reflects incident radiation. In a preferred embodiment, the frequency of the audible tone is proportional to the instantaneous amplitude of the pulse generated by that chest compression, varying continuously over a cardiac cycle. Thus, the rescuer has an immediate feedback signal that informs him/her of the effectiveness of each chest compression and he/she can modify the compression style to obtain the largest amplitude pulse, identified by the tone with the highest pitch.
Another aspect of this invention is an improvement in automated or automatic external defibrillators (AEDs). An improved AED according to the present invention detects arterial pulses after delivering a defibrillation shock and signals the need for CPR if it detects inadequate cardiac pumping following successful defibrillation.
Other objects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments in conjunction with the accompanying drawings.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates.
Referring to
Although the specific placement of the optical sensor on the forehead of a human subject is not critical, the maximum amplitude for pulse detection has been found to occur on or near the center of the forehead, slightly above the eyebrows. With the LEDs equally spaced about a photodetector as in
Circuit 12 includes a first amplifier 20 connected to a voltage-controlled oscillator (VCO) 22 the output of which is connected to a second amplifier 24 and a loudspeaker 26 as shown in
Arterial pulses are detected by reflectance from the tissues in the tissue bed under the optical pickup. The photodetector may be AC-coupled via capacitor 28 and amplifier 20 to the VCO, which produces a frequency proportional to the voltage applied to it, and may also be DC-coupled as shown. The circuit is designed such that, with no arterial pulse, it produces a low-frequency tone when the pickup is on the forehead to indicate that the pickup is in place. The circuit also provides a characteristic tone that indicates that the sensor is not on the body, i.e., a sensor-off tone.
The LEDs may be pulsed on and off to reduce power consumption. For example, in one embodiment having two PDI-E801 LEDs connected in series, the LEDs are pulsed on at a pulse repetition rate of 100 Hz with a pulse width of 200 μS, resulting in a 2% duty cycle, and at a current level of approximately 400 mA. A high speed op-amp, e.g., Analog Devices AD823, may be connected as a buffer between the phototransistor, e.g., Fairchild QSD723, and a sample-and-hold, e.g., Maxim MAX394. The phototransistor output signal is preferably sampled near the end of the LED ON time, e.g., beginning at 190 μS after the start of the LED ON pulse, with a sampling interval of 2.5 μS as one example. The sampling delay compensates for the relatively slow response time of the phototransistor, and, by sampling only near the end of the LED ON time, output ripple is minimized. The sampled signal is filtered with first order reconstruction filters, e.g., Analog Devices AD823, with a bandwidth from 0.5 Hz to 30 Hz, and the resulting analog signal, representing the pulsatile changes in blood volume adjacent to the sensor's optics, may be supplied to a VCO and audible device as described above.
In operation, each time the subject's chest is compressed and blood is pumped, the frequency of the tone increases in proportion to the instantaneous amplitude of the arterial pulse produced by that chest compression. The tone frequency varies continuously over a cardiac cycle. Thus, with each chest compression, the higher the tone frequency attained, the larger the arterial pulse produced. In this way a rescuer can vary his/her style of chest compression to obtain the highest pitch tone for each chest compression and thereby maximize the effectiveness of blood pumping. The rescuer hears a variable-frequency whistling sound due to the varying pulse amplitude during chest compression.
The record of
Turning now to
The optical blood pulse detector, which may be a sensor such as optical sensor 10 placed on the victim's forehead as described above, supplies pulses corresponding to detected arterial pulses to the control circuit, and the control circuit analyzes the input pulses after delivery of a defibrillation shock. The control circuit may be programmed to analyze the pulses from the optical sensor after first analyzing the ECG and determining that the frequency of the electrogram is within a predetermined range indicative of successful defibrillation. The optical blood pulse detector may be connected to the AED control circuit by a cable or, with appropriate modulation/demodulation circuitry, may be connected by a wireless link, e.g., an RF, infrared or ultrasonic link. The AED preferably has a voice chip, i.e., a voice synthesizer integrated circuit, which may be used to generate a tone with varying pitch proportional to arterial pulse amplitude. Alternatively, the AED may be provided with a microphone and audio circuitry for directly responding to the frequency-modulated audible tone from a stand-alone auditory pulse monitor such as described above. If the defibrillation shock achieves the desired result of eliminating the fibrillation but the detected arterial pulse amplitude indicates weak cardiac pumping or no pumping, the control circuit signals the need for CPR. The control circuit may prompt the rescuer with a voice command such as the following: “Defibrillation achieved, resume CPR.” The control circuit may be further programmed to detect the absence of QRS waves in the post-defibrillation ECG, indicative of A-V block, or the presence of QRS waves in the post-defibrillation ECG, indicative of electromechanical dissociation (EMD) if there is little or no cardiac pumping, and may issue a corresponding voice command, e.g., “Defibrillation achieved, A-V block present, apply CPR” or “Defibrillation achieved, EMD present, apply CPR.” As an alternative to an audible signal, the AED may visually signal the need for CPR, e.g., with an indicator light, preferably a flashing light. Thus, the AED is capable of detecting and appropriately responding to post-defibrillation A-V block and EMD, and could save many lives as a result.
The victim's vulnerability during EMD is illustrated in
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. For example, while discussed in relation to a forehead application, an optical sensor such as disclosed above also performs well over the manubrium (top of the sternum), along the sternum to the xiphoid (bottom end of the sternum), and on other body sites where there is a flat bone underlying a tissue bed.
Number | Name | Date | Kind |
---|---|---|---|
3848574 | Fujikawa et al. | Nov 1974 | A |
3978849 | Geneen | Sep 1976 | A |
4074710 | Tiep | Feb 1978 | A |
4367752 | Jimenez et al. | Jan 1983 | A |
4653498 | New et al. | Mar 1987 | A |
4685464 | Goldberger et al. | Aug 1987 | A |
4819752 | Zelin | Apr 1989 | A |
4860759 | Kahn et al. | Aug 1989 | A |
4867170 | Takahashi | Sep 1989 | A |
4867442 | Matthews | Sep 1989 | A |
5111817 | Clark et al. | May 1992 | A |
5237997 | Greubel et al. | Aug 1993 | A |
5368026 | Swedlow et al. | Nov 1994 | A |
5431170 | Mathews | Jul 1995 | A |
5579763 | Weil et al. | Dec 1996 | A |
5582580 | Buckman et al. | Dec 1996 | A |
5735799 | Baba et al. | Apr 1998 | A |
5776071 | Inukai et al. | Jul 1998 | A |
5782879 | Rosborough et al. | Jul 1998 | A |
5830137 | Scharf | Nov 1998 | A |
6055447 | Weil et al. | Apr 2000 | A |
6071237 | Weil et al. | Jun 2000 | A |
6080110 | Thorgersen | Jun 2000 | A |
6125299 | Groenke et al. | Sep 2000 | A |
6258046 | Kimball et al. | Jul 2001 | B1 |
6340349 | Archibald et al. | Jan 2002 | B1 |
6356785 | Snyder et al. | Mar 2002 | B1 |
6398744 | Bystrom et al. | Jun 2002 | B2 |
6440082 | Joo et al. | Aug 2002 | B1 |
6477406 | Turcott | Nov 2002 | B1 |
6572636 | Hagen et al. | Jun 2003 | B1 |
20010047140 | Freeman | Nov 2001 | A1 |
20010056227 | Gopinathan et al. | Dec 2001 | A1 |
20020165585 | Dupelle et al. | Nov 2002 | A1 |
20020188210 | Aizawa | Dec 2002 | A1 |
20030060723 | Joo et al. | Mar 2003 | A1 |
20040116969 | Owen et al. | Jun 2004 | A1 |
20040158158 | Jensen et al. | Aug 2004 | A1 |
20060264726 | Mannheimer | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
87101135.9 | Aug 1988 | EP |
0305080 | Mar 1989 | EP |
0947163 | Oct 1999 | EP |
1199085 | Apr 2002 | EP |
WO2004073787 | Sep 2004 | WO |