1. Field of the Disclosure
The present disclosure relates generally to apparatus and methods for formation fluid collection and testing.
2. Description of the Related Art
During both drilling of a wellbore and after drilling, fluid (oil, gas and water) from the formation (“formation fluid”) is often extracted to determine the nature of the hydrocarbons in hydrocarbon-bearing formations using a formation testing tool that contains one or more chambers or tanks for collecting fluid samples. The fluid samples are tested downhole during collection process and at the surface to determine various properties of the extracted formation fluid. During drilling of a well, a drilling fluid is circulated through a drill string and the annulus between the drill string and the wellbore diameter. The pressure of the drilling fluid on the formation is greater than the pressure of the formation in which the well is drilled. The drilling fluid invades into the formation surrounding the wellbore to varying depths, referred to as the invaded zone, which contaminates the original or connate fluid present in the invaded zone. To collect samples of the original fluid present in the formation, either during drilling or post drilling, a formation testing tool is conveyed into the wellbore. A probe having a fluid line is sealingly pressed against the wellbore wall. A pump typically extracts the fluid from the formation into the probe. The initially extracted fluid is discarded into the wellbore while testing it for contamination. When the extracted fluid is sufficiently clean, fluid samples are collected in one or more chambers (tanks) for analysis. Single and multiple probes have been utilized for extracting formation fluid.
Each sample chamber is typically placed in a tank carrier in the body of the formation testing tool. The chamber is connected to a flow line for receiving fluid inside the chamber. A manual valve is placed inside the chamber while a hydraulically-operated valve is placed outside the chamber in the tank carrier for controlling the flow of the formation fluid into the chamber. The manual valve is set in the open position at the surface, while the hydraulically-operated valve is in the closed position. To collect a sample in the chamber, the pump is operated to withdraw the formation fluid and the hydraulically-operated valve is opened to allow the fluid to enter into the chamber. Upon retrieval of the chamber to the surface, the manual valve is closed to ensure no fluid leakage from the chamber, the hydraulically-operated valve disconnected and then the chamber is removed from the tank carrier. The manual valve is made of metal and includes a single seal point, which is prone to a common problem known as jetting which is caused by a combination of a high pressure differential across the seal and small flow areas across the seal. Jetting causes abrasive materials in the formation fluid to deteriorate the quality of the seal, which in turn may cause leakage. Any leakage from a sample chamber can negatively affect the quality of the collected sample. The manual valve's sensitivity to jetting makes it necessary to leave the valve open while down hole in addition to including the hydraulically-operated valve to control the flow of the formation fluid into the sample chamber.
The disclosure herein provides a formation evaluation system that utilizes a dual-seal valve that addresses some of the above-noted issues and may also be utilized inside a sample chamber, replacing the manual valve and eliminating the need of the hydraulically-operated valve.
In one aspect, an apparatus for use in a wellbore formed in a formation is disclosed that in one embodiment includes a probe for obtaining a formation fluid into a flow line, a pump for extracting formation fluid from a formation into the flow line, a chamber for receiving the formation fluid from the probe, and a flow control device that controls the formation fluid flow from the flow line into a chamber, wherein the flow control device includes a movable member that moves between a first seal position and a second seal position, wherein the flow control device is closed when the movable member is in the first seal position and the second seal position and is open when the movable member is between the first seal position and the second seal position.
In another aspect, a method of collecting a formation fluid sample is disclosed that in one non-limiting embodiment may include: conveying a formation testing tool in a wellbore that includes a probe for obtaining a formation fluid into a flow line, a pump for extracting formation fluid from a formation into the flow line, a chamber for receiving the formation fluid from the probe, and a flow control device that controls the formation fluid flow from the flow line into a chamber, wherein the flow control device includes a movable member that moves between a first seal position and a second seal position, wherein the flow control device is closed when the movable member is in the first seal position and the second seal position and is open when the movable member is between the first seal position and the second seal position; positioning the formation testing tool at a selected location in the wellbore; positioning the movable member of the flow control device to one of the first seal position and the second seal position; placing the probe against the wellbore; extracting the formation fluid into the flow line by the pump, moving the movable member of the flow control device from one of the first seal position and the second seal position to a position between the first seal position and the second seal position to allow the formation fluid to enter into the chamber; collecting the formation fluid in the chamber; moving the movable member to the other of the first seal position and the second seal position to close the flow control device; and retrieving the formation testing tool to the surface.
Examples of certain features of the apparatus and methods disclosed herein are summarized rather broadly in order that the detailed description thereof that follows may be better understood. There are, of course, additional features of the apparatus and methods disclosed hereinafter that will form the subject of the claims.
For detailed understanding of the present disclosure, references should be made to the following detailed description, taken in conjunction with the accompanying drawings, wherein:
A pump 130 is coupled to the fluid line 112 for withdrawing the formation fluid 111 into the flow line 112. The pump may be driven by a motor 132, such as a hydraulic motor. In one aspect, the flow line 112 from the pump is connected to an inlet of a sample chamber or tank 150, which is carried by or placed in chamber or tank carrier 152. In one non-limiting embodiment, a flow control device, such as valve 160, is connected to the flow line 112 and placed inside the chamber 150. In another aspect, the valve 160 may be operated by an electric motor 164 placed outside the chamber 150 via a shaft member 166. Another flow control device, such as a valve 145, is provided in the flow line 112 between the pump 130 and the valve 160 to enable the formation fluid 111 to flow to the chamber 150 via flow line 112 or to the wellbore via a flow line 147. One or more suitable sensors, collectively labeled 185, include but are not limited to, an optical sensor and a density sensor may be utilized to determine contamination in the fluid 111 in line 112. In one aspect, the valve 160 is closed when the tool 120 is deployed downhole. The tool 120 further includes a controller 170 for controlling certain operations of the tool 120, such as closing and opening valves, operating the pump and processing signals from the sensors 168. In one aspect, the controller 170 may include circuits 172 for preprocessing signals from sensors 168 and operating various components of the tool 120, a processor 174, such as a microprocessor for processing signals and data, a data storage device 176, such as a solid state memory, and programs 178 accessible to the processor 174 for executing instruction contained therein. The system 100 also may include a controller 190 at the surface that contains circuits 192, a processor 194, a data storage device 196 and programs 198 accessible to processor 194 for executing instructions contained therein. Controllers 170 and 190 are in a two-way communication with each other via wireline 103 and either controller alone or in combination may control the operation of the various devices in tool 120.
To obtain a sample of the clean formation fluid, tool 120 is conveyed and placed at a selected depth in the wellbore 101. Pads 140a and 140b are activated to contact the wellbore wall 101a. The probe 110 is activated to urge and seal against the wellbore wall 101a. Pump 130 is activated to draw the formation fluid 111 into flow line 112. The fluid initially drawn through the probe 110 is representative of the fluid present in the invaded zone and is thus contaminated. The fluid evaluation or testing device 185 determines when the fluid 111 being withdrawn from probe 110 is sufficiently clean so that fluid samples may be collected. As long as the contamination in the fluid 111 being withdrawn from the invaded zone is above a threshold or is otherwise not satisfactory, such fluid may be discharged into the wellbore 101 via a flow control device 145 and fluid line 147. Once the fluid 111 is clean (i.e., below a threshold), the valve 160 is opened and valve 145 is closed. The fluid is then collected in sample chamber 150. Once the sample has been collected, valve 160 is closed. The pump 130, valves 145 and 160 and any other device in the tool 120 may be controlled by the controller 170 according to instructions stored in programs 178 and/or instructions provided by the surface controller 190. Alternatively, controller 190 may control the operation of one or more such devices in the tool 120 according to instructions provided by programs 198. Once the sample has been collected, the tool 120 is retrieved to the surface and chamber 150 is detached from the carrier. Because the valve 160 is inside the chamber 150 and is in the closed position, the chamber 150 may simply be detached or removed from the carrier 160 without need to close an external manual or another valve. Certain non-limiting embodiments of a valve suitable for use in the system 100 are described in reference to
Referring to
In aspects, the dual-seal valves 200 and 300 reduce or eliminate a common problem known as “jetting” wherein the combination of high pressure differentials and small flow areas causes abrasive materials in the formation fluid 111 to degrade the quality of the seals. In the case of formation sample tanks, any leakage from a deteriorated seal can negatively affect the quality of the sample collected. In the embodiments of valves 200 and 300, poppets with chamfered seal ends and their corresponding mating seal seats to form metal-to-metal seals, which aid in reducing or eliminating the jetting effect.
While the foregoing disclosure is directed to the embodiments of the disclosure, various modifications will be apparent to those skilled in the art. It is intended that all variations within the scope and spirit of the appended claims be embraced by the foregoing disclosure.
Number | Name | Date | Kind |
---|---|---|---|
820556 | Cooke | May 1906 | A |
916403 | Adamson | Mar 1909 | A |
997681 | Lenderoth | Jul 1911 | A |
1171610 | Hauer | Feb 1916 | A |
2805685 | Jopson | Sep 1957 | A |
3038487 | Gardner | Jun 1962 | A |
3138175 | Chilcoat | Jun 1964 | A |
3379407 | Napolitano | Apr 1968 | A |
3572629 | Clark | Mar 1971 | A |
3954138 | Miffre | May 1976 | A |
4153187 | Marrington | May 1979 | A |
4487222 | Crawford | Dec 1984 | A |
4729545 | Belhustede | Mar 1988 | A |
5156181 | Maalouf et al. | Oct 1992 | A |
5419530 | Kumar | May 1995 | A |
5421358 | Jaeger | Jun 1995 | A |
6244566 | France et al. | Jun 2001 | B1 |
7213613 | Spakowski et al. | May 2007 | B2 |
7303011 | Reid et al. | Dec 2007 | B2 |
7418998 | Aoki | Sep 2008 | B2 |
8360095 | Morgan et al. | Jan 2013 | B2 |
20050155760 | Hill et al. | Jul 2005 | A1 |
20050230118 | Noske et al. | Oct 2005 | A1 |
20060243033 | Freemark | Nov 2006 | A1 |
20080135299 | Fields et al. | Jun 2008 | A1 |
20100038573 | Lucas | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
1282794 | Nov 2012 | EP |
Entry |
---|
All-metal valves, Section 2.5, MDC Vacuum Limited, http://www.caburn.co.uk/resources/downloads/pdfs/sec2.5.1.pdf, 1 sheet. |
PCT International Search Report and Written Opinion; International Application No. PCT/US2014/068815; International Filing Date: Dec. 5, 2014; dated Mar. 25, 2015; pp. 1-20. |
Number | Date | Country | |
---|---|---|---|
20150159483 A1 | Jun 2015 | US |