The eye is a complex organ with a variety of specialized tissues that provide the optical and neurological processes for vision. Accessing the eye for medical treatment is hindered by the small size and delicate nature of the tissues. Surgical access must not affect the optical clarity or alignment of the tissues in the visual axis to preserve vision. In addition, the eye is immunologically privileged, rendering it susceptible to severe infection, especially when the intraocular space is challenged by both pathogens and trauma.
Minimally invasive surgical methods to access and treat tissues of the eye are desired to minimize trauma and introduction of pathogens. Dissection of the eye during surgery may affect the optical alignment of tissues involved in vision and typically results in scarring which makes subsequent surgery more difficult. Minimally invasive surgical methods are advantageous in that they minimize potential alterations to the optical alignment of the tissues in the visual axis. Minimally invasive surgical methods may also allow for the use of small incisions, thereby limiting scarring and allowing subsequent surgical procedures to be performed.
Within the eye there are two chambers, the anterior and posterior chambers, into which surgical instruments may be introduced through small incisions and manipulated under direct vision by the surgeon through a surgical microscope. Small incisions are made through the cornea and appropriately sized surgical instruments introduced and used within the anterior chamber for the treatment of cataracts. The anterior chamber can be directly viewed through the surgical microscope, except for the peripheral anterior chamber angle which may be viewed with the additional use of a gonioprism lens. Minimally invasive methods are also used in retinal surgery, involving the introduction of instruments into the posterior chamber of the eye through small incisions in the pars plana region of the sclera. Direct visualization through the cornea and lens with a surgical microscope allows the surgeon to manipulate instruments to treat the retina and macula. The central and posterior retina are directly viewed, and the peripheral retina viewed with the addition of a wide view or prismatic lens.
The eye also has two virtual spaces between the tissue layers of the eye, the suprachoroidal space between the sclera and the underlying choroid (or uvea), and the sub-tenon space between the outer tenon's capsule (fascial sheath or vagina bulbi) and the underlying sclera. These spaces are not normally open spaces but become spaces due to the introduction of fluid from injury, disease or fluid injection for medical purposes. Research using corrosion casting of the suprachoroidal space shows that it is unusual in that the opposing tissue layers are not connected except for connecting vessels from the ciliary body in the anterior region of the space near the limbus and the posterior border near the vortex veins. The sub-tenon space has been found to have some fibrous connections to the underlying sclera resulting in a close adherence, particular in regions near the muscle insertions.
The present invention describes microsurgical tools and methods of use thereof, particularly, flexible microsurgical tools adapted to enable minimally invasive surgical access to the eye from within the suprachoroidal space. The suprachoroidal space is a potential space between the sclera and choroid, due to the close apposition of the two tissues from the intraocular pressure of the eye. Although the suprachoroidal space is delicate in nature and is adjacent to numerous choroidal blood vessels, the present invention provides a flexible, catheter-like tool that may be safely placed in the suprachoroidal space and maneuvered anteriorly to the region near the ciliary body as well as posteriorly to the area of the retina and optic nerve. Such tools may be used to surgically treat the uveal scleral drainage pathway to increase aqueous outflow in the treatment of glaucoma, to deliver tamponading agents for the treatment of retinal detachment, to surgically treat the macula and choroidal vasculature in the treatment of macular degeneration, as well as to deliver drugs to the posterior tissues of the eye in the treatment of macular degeneration or optic nerve damage. The device is adapted to achieve a desired flexibility to minimize potential damage to the adjacent vascular choroid and any blood vessels within the suprachoroidal space.
The present invention provides a composite microcannula device or microcatheter device with proximal and distal ends for access and advancement within the suprachoroidal space of the eye comprising, a flexible tubular sheath having an outer diameter of up to about 1000 microns and configured to fit within the suprachoroidal space of the eye; a proximal assembly configured for introduction and removal of materials and tools through the proximal end; and a signal-producing beacon at the distal end to locate the distal end within the eye, wherein the signal-producing beacon is detectable visually or by non-invasive imaging. A useful range for the outer diameter of the flexible tubular sheath is about 100 to 500 microns. The flexible tubular sheath of the microcannula or microcatheter device is adapted to be suitably flexible to enable minimally invasive surgical access to the eye from within the suprachoroidal space.
The signal-producing beacon may be configured to emit visible light at an intensity that is visible externally through interposing tissues or the beacon may comprise markers identifiable by non-invasive imaging, such as, ultrasound imaging, optical coherence tomography or opthalmoscopy. The marker, for example may be an optical contrast marker. The beacon may provide illumination from the distal end at an angle of about 45 to about 135 degrees from the axis of the device to be coincident with the area of intended tissue treatment.
The tubular sheath may be curved in the range of 12 to 15 mm radius or may be suitably flexible and may accommodate at least one additional signal-producing beacon detectable visually or by non-invasive imaging to aid in judging placement and location. Typically, the sheath comprises a lubricious outer coating and may have an atraumatic distal tip.
Whether curved or suitably flexible, the device should preferably have a minimum length in the range of about 20 to about 30 mm to safely reach the posterior region of the eye from an anterior dissection into the suprachoroidal space without damaging or causing undue distension of the choroid or other tissues.
The device may comprise an optical fiber for imaging tissues within or adjacent to the suprachoroidal space and an energy-emitting source for treating blood vessels within or adjacent to the suprachoroidal space. The source may be capable, for example, of emitting laser light, thermal energy, ultrasound, or electrical energy. Preferably the source is aligned with the location of the beacon to facilitate tissue targeting.
The device may further comprise an implant deliverable at the distal end. The implant may comprise a space-maintaining material or a drug.
The device may further comprise a sustained release drug formulation deliverable at the distal end.
In another embodiment, the device additionally comprises an inner member with a proximal end and a distal end, wherein the sheath and inner member are sized such that the inner member fits slidably within the sheath and the distal end of the inner member is adapted to provide tissue treatment to the eye through one or more openings in the distal end. The distal end of the inner member may be adapted for tissue dissection, cutting, ablation or removal. The inner member may comprise a multi-lumen tube and/or an optical fiber. In some embodiments, the inner member may be curved in the range of 12 to 15 mm radius. The inner member may be made of a flexible polymer or a metal in a flexible configuration, such as steel, nickel titanium alloy or tungsten, such as a small wire or cable. The flexible tubular sheath and flexible inner member preferably have flexural rigidity defined by a flexural modulus of equal to or less than about 5.16E-9 kNm2. An useful flexural rigidity modulus is equal to or less than about 1.02E-9 kNm2.
In another embodiment, a device is provided for implantation in the suprachoroidal space of an eye for delivery of fluids or other materials to the posterior region of the eye comprising, a flexible tubular sheath having proximal and distal ends with an outer diameter of up to about 1000 microns configured to fit within the suprachoroidal space of the eye; a self-sealing proximal fitting capable of receiving injections of fluids or materials into the device, wherein the distal end of the sheath is adapted for release of fluids or materials from the device into the eye. An useful range for the outer diameter of the flexible tubular sheath is about 100 to 500 microns.
The device may comprise a signal-producing beacon to locate the distal end within the suprachoroidal space during implantation wherein the signal-producing beacon is detectable visually or by non-invasive imaging. The device may be adapted for slow release of fluids or materials, such as drugs, from the distal end.
In another embodiment, a method is provided for treating the suprachoroidal space of an eye comprising
a) inserting a flexible tubular sheath having proximal and distal ends and an outer diameter of up to about of 1000 microns and an atraumatic distal tip into the suprachoroidal space;
b) advancing the sheath to the anterior region of the suprachoroidal space; and
c) delivering energy or material from the distal end to form a space for aqueous humor drainage.
The energy may comprise mechanical, thermal, laser, or electrical energy sufficient to treat or remove scleral tissue in the vicinity of the distal end. The material may comprise a space-maintaining material.
In another embodiment, a method is provided for treating the posterior region of an eye comprising
a) inserting a flexible tubular sheath having proximal and distal ends and an outer diameter of up to about 1000 micron into the suprachoroidal space;
b) advancing the sheath to the posterior region of the suprachoroidal space; and
c) delivering energy or material from the distal end sufficient to treat the macula, retina, optic nerve or choroid.
The energy may comprise mechanical, thermal, laser, or electrical energy sufficient to treat tissues in the vicinity of the distal end. The material may comprise a drug or a drug and hyaluronic acid. The drug may comprise a neuroprotecting agent, an anti-angiogenesis agent and/or an anti-inflammatory agent. A typical anti-inflammatory agent comprises a steroid.
In another embodiment, a method is provided for treating the tissues within or adjacent to the suprachoroidal space of an eye comprising
a) inserting a composite flexible microcannula device having proximal and distal ends and an outer diameter of up to about 1000 microns into the suprachoroidal space, the device comprising an atraumatic distal tip and an optical fiber to provide detection of tissues in the vicinity of the distal tip;
b) advancing the device to the posterior region of the suprachoroidal space;
c) detecting and characterizing tissues in the suprachoroidal space to identify target tissues; and
d) delivering energy from the distal end to treat the target tissues.
The flexible microcannula device preferably has flexural rigidity defined by a flexural modulus of equal to or less than about 5.16E-9 kNm2, typically equal to or less than about 1.02E-9 kNm2.
The energy may comprise laser light, thermal, ultrasound or electrical energy. Typical target tissues comprise blood vessels.
The present invention provides tools, materials and related methods to surgically access the suprachoroidal space of an eye for the purpose of performing minimally invasive surgery or to deliver sterile materials or drugs to the eye. Specifically, the invention provides a flexible microcannula or microcatheter device that may be placed into the suprachoroidal space through a small incision of the overlying tissues, maneuvered into the appropriate region of the space, and then activated to treat tissues adjacent to the distal tip of the device. The device may also include features for treating tissues adjacent a region along the length of the device. The treatments accomplished by the invention include mechanical modification of adjacent tissues, the delivery of energy to adjacent tissues, the delivery of tamponading agents, drugs or drug delivery materials from the distal end of the device, or the delivery of an implant.
Referring to
In one embodiment, a predetermined curvature may be applied to the microcannula device to approximate the curvature of the eye, the curvature being in the range of 12 to 15 mm radius. The length of the microcannula is preferred to be long enough to reach the posterior region of the suprachoroidal space from an anterior access point, approximately 20 to 30 mm. Suitable materials for the elongated element include metals, polymers such as polyetheretherketone (PEEK), polyimide, polyamide or polyether-block co-polyamide (Pebax), polysulfone, fluoropolymers, polypropylene, polyethylene or similar materials. Preferred materials for the sheath include flexible polymers such as polyamide, polyimide, polyether block amide, polyethylene terephthalate, polypropylene, polyethylene or fluoropolymer. The microcannula device may also comprise surface treatments such as lubricious coatings or markings on the exterior for assessment of depth in the suprachoroidal space.
In one embodiment the microcannula comprises an inner member which fits and slides within the elongated element, the inner member having a proximal end and a distal tip. Advancement or withdrawal of the inner member may be used to change the shape of the distal tip of the microcannula, or alternatively to effect a mechanical action at the distal tip to manipulate tissues or deliver an implant.
The microcannula of the present invention incorporates features that enable it to be placed into and maneuvered in the suprachoroidal space. A key feature is to have the appropriate combination of axial stiffness and compliance. To achieve this, referring to
For optimal use in the suprachoroidal space, the microcannula is flexible at the distal end, but may transition to more rigid mechanical compliance toward the proximal end. The transition may comprise one or more steps in mechanical compliance, or a gradient of compliance along the length of the microcannula. It is preferred that the distal tip of the device be atraumatic. The distal tip may incorporate a rounded shape, a rounded tip that is larger than the shaft diameter of the elongated tubular element, or comprises a highly flexible material to prevent tissue damage during advancement of the device within the suprachoroidal space. The microcannula may also incorporate mechanical elements along its length to direct the shape and orientation of the distal tip, allowing the surgeon to steer the microcannula while placing it in the suprachoroidal space.
An important feature of the device is the capability of being visualized within the suprachoroidal space to allow guidance by the surgeon. The use of high resolution, non-invasive medical imaging, such as high frequency ultrasound imaging, optical coherence tomography (OCT), or indirect opthalmoscopy, may be used in conjunction with the microcannula device of the invention. The patient eye may be imaged to determine suitable avascular sites on the overlying tissues for introduction of the device. The suprachoroidal space may also be imaged to determine the best regions for introducing or advancing the microcannula device to minimize potential trauma. The use of an ultrasound or optical contrast agent, either delivered directly to the suprachoroidal space or systemically to the subject, may facilitate imaging. Material selection and the use of contrast markers at the distal end and along the length of the microcannula device may be utilized to provide the desired imaging properties for the device and facilitate image guidance.
Visualization of the microcannula in-situ may also be accomplished by direct imaging via an endoscope placed in the suprachoroidal space. A flexible endoscope may be used to track alongside the microcannula as it advances. The endoscope should be constructed on a similar size scale to the microcannula and may be a separate device used in conjunction with the microcannula or fabricated as part of the microcannula. In one embodiment of the invention, an imaging element such as a fiber optic bundle or gradient index lens imaging rod is fabricated to be co-linear with the elongated element, creating a device with an oval cross section. Due to the shape of the suprachoroidal space, the long axis of the combined device may be significantly larger in dimension than the short axis, as long as the long axis is maintained parallel to the surface of the scleral and choroidal tissues during advancement.
A signal-emitting beacon incorporated into the microcannula enhances guidance of the device. Referring to
In one embodiment, a plastic optical fiber (POF) may be incorporated to provide a bright visual light source at the distal tip 8 while maintaining flexibility of the device. The distal tip of the POF is positioned near or slightly beyond the end of the sheath of the microcannula and the emitted signal may be detected visually through either the scleral tissues on the outside of the eye or through the choroidal tissues and the pupillary aperture. Such a signaling beacon allows the distal end to be placed by the surgeon into the suprachoroidal space and advanced under visual guidance through the sclera to confirm proper introduction and placement. The microcannula may then be advanced within the suprachoroidal space to the area of desired tissue treatment under direct visualization. For treatment of posterior regions of the eye, the signaling beacon may be visualized through the pupillary aperture and directed to the desired area. The POF may also comprise a tip which is beveled, mirrored or otherwise configured to provide for a directional beacon. A directional beacon may be configured in the range of about 45 to about 135 degrees from the microcannula axis to align with the direction and region of tissue treatment from the distal end of the device. The beacon may be illuminated by a light source 10, such as a laser, laser diode, light-emitting diode, or an incandescent source such as a mercury halogen lamp. The beacon may also extend the along the length of the microcannula to indicate the orientation of the microcannula to aid surgical placement. The microcannula device may be used to perform surgery at the distal end of the device. The distal end of the device may incorporate elements that allow for therapeutic intervention to the tissues. For example, the distal end may be advanced near the anterior region of the suprachoroidal space and the device activated to treat tissues adjacent to the distal tip. The tissue treatment may comprise the cutting or removal of tissues to form a cyclodialysis cleft, the ablation of tissues to enhance uveal scleral drainage or the placement of an implant to increase uveal scleral drainage. The distal end may also be advanced to any region of the suprachoroidal space requiring treatment of the choroid, macula, or retina. The tissue treatment may comprise the application of suction to drain suprachoroidal hemorrhage or choroidal effusion, the delivery of tamponading agents for retinal detachments or the treatment of the optic nerve sheath to relieve retinal vein occlusion. The tissue treatment may also comprise the application of energy or surgical tools to treat choroidal neovscularization, melanoma or nevus. Various forms of energy application may be accomplished using suitably adapted microcannulae, including laser, electrical such as radio frequency ultrasound, thermal and mechanical energy. In such a case, the device additionally comprises an inner member with a proximal end and a distal end, wherein the sheath of the microcannula and inner member are sized such that the inner member fits slidably within the sheath and the distal end of the inner member is adapted to provide tissue treatment to the eye through one or more openings in the distal end. The distal end of the inner member may be adapted for tissue dissection, cutting, ablation or removal. The inner member may comprise a multi-lumen tube and/or an optical fiber. The inner member may be made of a flexible polymer or metal in a flexible configuration such as a wire or cable.
In one embodiment of the invention, the microcannula device incorporates an imaging element to allow the surgeon to view, characterize, and treat blood vessels from the suprachoroidal space. For example, the device may incorporate an endoscope to image the local tissues and blood vessels. The imaging may incorporate non-visual wavelengths of light such as infra-red to aid tissue penetration. When energy is delivered by the microcannula, the area of energy delivery may be aligned to coincide with a specific area of the imaging means to facilitate specific tissue targeting by the surgeon. The imaging may also include elements to characterize blood flow, such as Doppler flow methods, to identify target vessels for treatment. The treatment method may also incorporate the use of localized labeling of target vasculature with photosensitive agents such as used in photodynamic therapy. After characterization and identification of target blood vessels, the microcannula may be used to deliver energy such as laser light or radio frequency energy to the vessels to reduce neovascularization or blood vessel leakage.
The microcannula may also be used to deliver drugs or drug delivery implants from the distal end of the device. Referring to
Referring to
The invention also provides methods to treat an eye by surgically accessing the suprachoroidal space. The following methods are provided as explanatory and do not constitute the entire scope of methods which may be used in conjunction with the devices described herein. In a first example, the surgeon accesses the suprachoroidal space and places a microcannula device having an atraumatic distal end within the space. A microcannula device comprising a sheath with an inner member and beacon signal is used, wherein the inner member has a distal tip configured to treat or excise tissue. The device is advanced within the space while visualizing the beacon signal to position the device tip to a location desired for surgical treatment. The device is actuated to treat a controlled amount of tissues adjacent to the distal tip. The energy may comprise mechanical, thermal, laser, or electrical energy sufficient to treat or remove scleral tissue in the vicinity of the distal end. The surgical treatment may include: formation of a space for aqueous humor drainage; treatment of the macula, retina, optic nerve or choroid in the posterior region of the suprachoroidal space; treating blood vessels within or adjacent to the suprachoroidal space. To treat blood vessels, the device preferably is adapted with an optical fiber to provide the capability of detecting and characterizing tissues and identifying target vessels before delivery of the treatment. After the surgical treatment, the device is removed and the access site is then sealed by any requisite method.
In another embodiment, the suprachoroidal space is surgically accessed and a microcannula device placed within the space. A microcannula device comprising a tubular sheath incorporating a beacon signal at the distal end is used. The device is advanced within the suprachoroidal space while visualizing the beacon signal first through the scleral tissues and second through the pupillary aperture to position the device tip to a posterior location desired for drug treatment. Drugs, drug-containing materials or space-maintaining materials are delivered through the microcannula. The device is removed and the access site is then sealed by any requisite method.
The procedure may also be performed at more than site per eye as may be required. In practice, the procedure may be performed on one or more sites, and the patient monitored post-surgically. If more treatment is required, then a subsequent procedure may be performed.
The following examples are presented for the purpose of illustration and are not intended to limit the invention in any manner.
A flexible microcannula comprising a polyimide infusion lumen, a stainless steel anti-kink core wire and a plastic optical fiber to create a beacon signal at the device tip was fabricated. The components were bound together in a co-linear fashion using very thin walled heat shrink tubing of polyethylene terephthalate (PET). The assembled microcannula was approximately 300 microns in outer diameter, 75 microns inner diameter and with a working length of 25 mm. An atraumatic ball-shaped distal tip of approximately 370 microns diameter was produced by heating the end of the PET shrink tubing to its melt point prior to assembly. The surface tension of the melt results in the creation of a rounded ball-shaped tip. A fluoropolymer (Teflon) coated stainless steel wire was placed in the lumen to maintain the lumen during the melting of the tip. The proximal end of each microcannula consisted of an infusion tube connected proximally to a luer fitting and distally to the cannula shaft, and a flexible plastic fiber optic light pipe connected distally to the plastic optical fiber in the shaft lumen and proximally to a 25 mW laser diode illumination source. The infusion tube luer fitting was attached to an injector filled with a surgical viscoelastic (Healon GV, Advanced Medical Optics, Irvine, Calif.). Enucleated human eyes were prepared for surgery. Using a radial or radial plus lateral (cross) incision, the sclera was cut down to the suprachoroidal space above the medial rectus muscle attachment near the pars plana. After accessing the suprachoroidal space, the microcannula was advanced into the space while visually observing the beacon signal at the tip. The beacon tip could be observed from the outside of the eye through the overlying sclera, and also from the inside of the eye through the interposing choroidal and retinal tissues. The tip of the device could be positioned by manipulation of the proximal end while observing the beacon signal at the device distal tip. With the microcannula directed posteriorly, the device was able to be advanced adjacent to the optic nerve. Directed laterally, the device could be advanced completely around the globe, tracking a great circle route. Directed anteriorly, the device could be advanced into Schlemm's Canal and then into the anterior chamber. In a second experiment, the flexible microcannula was placed into the suprachoroidal space under guidance with a high frequency ultrasound imaging system. The microcannula could be observed and guided within the suprachoroidal space under imaging. An injection of viscoelastic was made while observing the site with the imaging system showing a viscoelastic dissection of the space in the area of the microcannula distal tip. The flexural modulus in bending for this design was calculated to be 1.15E-9 kNm2 and was measured on a mechanical tester to be 1.32E-9 kNm2.
Two different sizes of flexible microcannulae comprising a polyether block amide (Pebax, Arkema Corp., Philadelphia Pa.) tubular shaft with an 85 micron diameter plastic optical fiber residing in the lumen to create a beacon signal at the device tip, were fabricated. The smaller microcannulae furthermore incorporated a stainless steel anti-kink core wire within the lumen and the shaft was fabricated using a 72D durometer shaft tube. The larger size of microcannula was fabricated from 63D durometer shaft tubing and furthermore incorporated markings at 5 mm intervals from 5 to 20 mm from the distal tip to aid in determining the depth of penetration during the initial placement into the suprachoroidal space. The distal tips of the tubes were formed into an atraumatic tip by applying heat to the distal end to allow the surface tension of the melt to form a ball shape. The distal 50 mm of each shaft was coated with a cross-linked polyvinylchloride based hydrophilic lubricious coating (Harmony™, Surmodics Inc., Eden Prairie Minn.) to reduce friction during cannulation. The microcannulae were fabricated with shaft outer diameters of 200 and 330 microns, inner diameters of 150 and 200 microns, and with distal tip maximum diameters of 250 and 400 microns respectively. The proximal end of each microcannula consisted of an infusion tube connected proximally to a luer fitting and distally to the cannula shaft, and a flexible plastic fiber optic light pipe connected distally to the plastic optical fiber in the shaft lumen and proximally to a 25 mW laser diode illumination source. Using enucleated human eyes as in Example 1 above, both microcannula designs were able to successfully enter and advance in the suprachoroidal space to the posterior pole of the eye.
To determine the compliance range (flexural modulus) for flexible microcannula or catheter designs to access the suprachoroidal space (SCS) in a human eye, mechanical models were prepared with a range of stainless steel wire diameters to test a range of flexural rigidities. Furthermore, a 19 gauge stainless steel hypodermic tube was also tested. Flexural rigidity of a body is equal to the product of the flexural modulus, E, and the moment of inertia of the cross-section, I, and is typically called EI. The flexural rigidity of the microcannulae were evaluated by calculation for the tests units of uniform geometry and calculated and determined by mechanical testing for the prototype microcannulae. The microcannula cantilever force-displacement characteristics were tested on a mechanical testing apparatus with a high sensitivity load cell (Instron model 5542, 5N Load Cell). The linear region of the resultant data was used to calculate the measured flexural rigidity of the test samples. Wire of 0.002″, 0.004″, 0.006″, 0.008″, 0.011″ and 0.014″ diameter were prepared with atraumatic ball tip formed by a YAG laser welder. The balls ends were approximately 2-3× the wire diameter. A 19 gauge hypodermic tubing with outer diameter of 0.042″ and an inner diameter of 0.027″ was prepared by forming a radius on the inner and outer edges with the YAG laser welder. A pars plana incision ˜3 mm long was made in a whole globe through the sclera and exposing the choroid. Each test sample was advanced into the SCS and posteriorly around the globe. The distance to where the distal tip of the device was seen against the sclera was recorded as shown in Table A.
The results indicated that all but the least flexible mechanical models appeared to be able to cannulate the entire length to the posterior pole. Ultrasound imaging (iUltrasound, iScience Interventional Corporation, Menlo Park Calif.) was used to examine the mechanical models in-situ. It was found that the choroid was being distended inward quite far with the larger wires and the 19 gauge tube, so that the tip appeared to be at the proper location posteriorly, however the devices did not conform to the SCS curvature and took a straight pathway, thereby applying mechanical force and potential trauma to the choroid. It was from these findings that the second test series was initiated.
In the second test series, the passage of the most flexible mechanical models within the SCS was imaged using the ultrasound system. The amount of inward distension of the choroid layer was measured using the caliper function of the ultrasound system. The smaller sized flexible microcannula described in Example 2, with a 200 micron outer diameter Pebax tubing and a 250 micron diameter ball tip was also tested. The larger flexible microcannula described in Example 1, with a 300 micron outer diameter Pebax tubing with a 370 micron ball tip was also tested. The flexural modulus of each mechanical model (EI) was calculated (Table B) to determine the appropriate flexural properties of a suprachoroidal microcannula or microcatheter. The flexural modulus of the flexible microcannulas fabricated from Pebax polymer were calculated. The amount of distension of the choroid (Table B) was measured by ultrasound with the following results:
Samples of the three flexible microcannulae as detailed in Examples 1 and 2 above were also evaluated on the Instron mechanical tester to determine their flexural moduli in bending. The following results (Table C) were obtained:
The results shown in
A drug formulation was prepared for suprachoroidal administration by injection through a flexible microcannula of the present invention. Three milliliters of sterile triamcinolone acetonide suspension (Kenalog 40, 40 mg/ml, Bristol Meyers Squib) was withdrawn into a sterile syringe. The syringe was attached to a sterile 0.45 micron syringe filter and the drug suspension was injected into the filter, capturing the drug particles. A second syringe with an adjunct mixer was attached to the filter and 0.6 milliliters of sterile hyaluronic acid solution (Healon, 10 mg/ml, Advanced Medical Optics, Irvine, Calif.) introduced into the filter containing the drug particles. The hyaluronic acid and drug particles were then withdrawn into the first syringe and the filter removed. The hyaluronic acid and drug particles were mixed by multiple passage between two sterile syringes. The suspended drug formulation contained 200 mg/ml triamcinolone acetonide and 10 mg/ml hyaluronic acid. The drug formulation was then transferred to a viscoelastic injector for injection through a microcannula. The mean particle size of the triamcinolone acetonide suspended in hyaluronic acid solution was measured using a Coulter Counter instrument, demonstrating a mean particle size of approximately 4 microns.
Microcannulae were fabricated per Example 1. Animal studies were performed to evaluate the microcannula in accessing the suprachoroidal space and advancing to the posterior pole. The study was performed using juvenile farm pigs. In each surgery, the animals were anesthetized and prepared per standard ophthalmic surgical procedures. A limbal perotomy was performed to retract the conjunctiva. A small scleral incision was made in the pars plana region down to the choroid layer. The microcannula was inserted into the incision to access the suprachoroidal space and then advanced back to the posterior pole. Surgical microscope visualization through the pupillary aperture indicated the location of the microcannula distal tip by observing the illuminated beacon tip. The microcannula could be advanced to the posterior region of the eye without difficulty or visible tissue trauma.
Microcannulae similar to those used in Example 5 were made without the atraumatic tip. The devices were used during the porcine animal study as detailed in Example 5. In one case, the microcannula was unable to be advanced into the posterior region, appearing to be caught on the tissues of the suprachoroidal space. In a second case, the microcannula was able to advance to the posterior pole, but was seen to catch on the choroidal tissues in a number of locations, causing tissue irregularities visible upon angiographic imaging. In the remaining trials, the microcannulae without atraumatic tipping were able to be advanced in the suprachoroidal space. It was noted in each case that the devices were more difficult to advance than those with an atraumatic tip.
Microcannulae were fabricated and used in porcine animal studies as described in Example 5. A viscoelastic (Healon, Advanced Medical Optics, Irvine, Calif.) or a steroid/viscoelastic (triamcinilone acetonide plus Healon) formulation as described in Example 2 was delivered to the suprachoroidal space in the region of the area centralis. Viscoelastic and steroid/viscoelastic delivery amounts ranged from 1.2 to 9.2 mg. The delivered materials could be observed in the suprachoroidal space by direct visualization and by posterior segment imaging using a scanning laser opthalmoscope. Animals were survived up to one month. Posterior segment imaging at sacrifice did not show any observable changes to the retinal or choroidal blood flow, and no adverse tissue reactions were seen, including the retina and the tissues adjacent the suprachoroidal space.
A flexible microcannula comprising a small endoscope was fabricated for use in the suprachoroidal space. An experiment was performed to evaluate the use of the microcannula for direct imaging of the scleral and choroidal tissues from within the suprachoroidal space. A custom micro-endoscope (Nanoptics Inc., Gainesville, Fla.) consisting of about 3000 glass fibers was fabricated. The micro-endoscope had an external jacket dimension of about 250 microns terminating in a 350 micron diameter tip that included a gradient lens objective with a 5 mm focus. The micro-endoscope was coupled via a 10× Mitutoyo microscope objective and tube lens to a CCD video camera, and then to a video monitor.
An enucleated human cadaver eye was used for the experiment. A radial incision at the pars plana was made to the depth of the choroid. A small amount of viscoelastic (Healon GV, Advanced Medical Optics, Irvine, Calif.) was injected into the surgical incision to open the suprachoroidal space for placement of the micro-endoscope and to lubricate the passage. The micro-endoscope was inserted into the incision and advanced posterior in the suprachoroidal space. Transillumination was provided by the surgical microscope, which was adjusted to provide the best image without saturating the camera image. The micro-endoscope was advanced and manipulated to view various locations within the space. The tissues could be easily identified, the sclera appeared as a white colored bright tissue (due to the transillumination) and the choroid appeared dark reddish brown with details of the choroidal surface discernable.
An indwelling microcannula implant to provide repeated access to the suprachoroidal space was fabricated. The microcannula comprised Pebax polymer tubing 0.010″ ID×0.012″ OD. An atraumatic distal tip was created by applying a high viscosity ultraviolet cure adhesive to the tubing end, thus forming a rounded tip. A tissue interfacing flange was created at the proximal end by applying heat to the end of the tube, causing it to flare outwards. The total length of the microcannula was 0.79″. The indwelling microcannula was placed over a delivery microcannula similar to the microcannula of Example 1 with a 4″ working length. The delivery microcannula was 0.008″ OD and contained a plastic optical fiber to provide for an illuminated distal tip. The proximal end of the fiber was connected to a battery powered laser diode source as described in Example 1. The delivery microcannula was sized to fit snugly inside the indwelling microcannula.
An enucleated human cadaver eye was used for the experiment. A radial incision at the pars plana was made, the incision going through the sclera and exposing the choroid. A small amount of viscoelastic fluid (Healon, Advanced Medical Optics, Irvine, Calif.) was injected into the suprachoroidal space at the incision in order to dissect the choroid from the sclera sufficiently to allow placement of the microcannula.
The laser diode was activated, providing a red light beacon tip on the delivery microcannula. The assembly was placed into the suprachoroidal space and advanced under visual guidance toward the posterior pole. The assembly was advanced until the tissue flange of the indwelling microcannula was flush with the scleral surface. Examination of the exterior of the eye showed the beacon tip was located near the macular region.
The delivery microcannula was withdrawn, while holding the indwelling microcannula in place with a pair of forceps. The incision was sealed with cyanoacrylate adhesive. Using a 1 cc syringe, a small amount of methylene blue dye was injected into the exposed lumen of the indwelling microcannula using a 31 gauge hypodermic needle. After completion of the injection, a small incision was made through the sclera at the macular region near the distal tip of the microcannula. Methylene blue dye was seen at this incision confirming the delivery of the injection to the posterior region of the suprachoroidal space from an injection into the proximal end of the microcannula located in the anterior region.
This is a continuation-in-part of U.S. Ser. No. 11/587,784, filed Oct. 25, 2006. Priority is hereby claimed from U.S. Ser. No. 11/587,784, filed Oct. 25, 2006, which is a §371 application of PCT/US05/14980, filed Apr. 29, 2005, which in turn claims benefit of U.S. Provisional Application Ser. No. 60/566,776, filed Apr. 29, 2004, all of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
60566776 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11587784 | Sep 2007 | US |
Child | 12609345 | US |