The application claims the benefit of the earlier filing date of co-pending European Patent Application No. 12150055.7, filed Jan. 3, 2012, and incorporated herein by reference.
The invention relates to a method and an apparatus for in situ mobilizing of heavy oil or crude oil by steam injection.
Oil sand, as well referred to as tar sand comprises sand grains coated with tar like petroleum crude oil, briefly referred to as crude oil. The crude oil in the oil sand has a high viscosity and must be heated or diluted to flow. In-situ exploitation of oil sands can be accomplished by “steam assisted gravity drainage”, abbreviated as SAGD. SAGD uses a horizontally extending steam injection well forming a steam generation chamber for mobilizing the crude oil in the oil sand. The mobilized crude oil pours downward and is recovered by a second horizontally extending well, as so called production well, as disclosed in U.S. Patent Publication No. 2001/0278001A1.
The steam can be either produced by above ground facilities or downhole by an electrical heater as suggested by U.S. Pat. No. 4,805,698. The water is supplied from above ground by a water supply line. The electrical steam generator heats the water to generate steam. The steam is injected into the sand and mobilizes the crude oil, which is collected by adjacent production wells.
The problem to be solved by the invention is to improve in-situ oil sand exploitation.
Solutions of the problem are provided by a downhole apparatus and a method for exploitation of an oil sand reservoir as described by the respective independent claims. The dependent claims relate to further improvements of the invention.
The downhole apparatus for oil sand exploitation, comprises a least a casing which houses a water conduit for receiving water via a water pipe and at least one steam generation chamber being in fluid communication with said water conduit and having at least one steam outlet. The steam generation chamber is thermally connected to an electrical heater. The downhole apparatus further comprises at least one crude oil conduit for recovering crude oil, which has been mobilized by said steam. Such downhole apparatus permits to inject steam for mobilization of the crude oil into the oil sand and to recover the crude oil by a single apparatus, and thus requires only a single bore.
The casing may preferably house the at least one crude oil conduit. The casing may for example be or include a multiple conduit tube, wherein the at least one water conduit and the at least one crude oil conduit are each at least one of the multiple conduits. This permits a stable design of the housing.
The at least one steam generation chamber is preferably supported by the peripheral surface of the casing. This position of the steam generation chamber permits a simple injection of the steam generated in said steam generation chamber into the oil sand.
Preferably there are multiple, e.g. five or nine, at least two steam generation chambers arranged around the peripheral surface of the casing defining a bundle of steam generation chambers. In one embodiment, there is one bundle of steam generation chambers. In another embodiment, there are two or more bundles arranged at different positions along a distal length of the casing. The one or more bundles of steam generation chambers permit homogeneous injection of steam and thus an efficient exploitation of the oils sand. Because the one or more bundles of steam generation chambers are arranged around the casing, the one or more bundles also act to maintain or raise a temperature of the casing which aids in removal of crude oil from a reservoir (via the crude oil conduit in the casing).
Each steam generation chamber preferably has a cladding compartment surrounding a heater tube. The heater tube may house at least one electrical heater cartridge. This permits on the one hand to efficiently heat the water and on the other hand a simple replacement of the electrical heater cartridge in case of failure. The heater tube preferably houses at least one spare electrical heater cartridge. This permits longer operating intervals between retracting the downhole apparatus.
The heater tube may be hollow and may have an interior containing a composition of inorganic compounds and possibly pure elemental species. Examples for such a composition are described in U.S. Pat. Nos. 6,132,823; 6,911,231; 6,916,430; 6,811,720 and U.S. Patent Publication No. 2005/0056807, which are incorporated by reference as if fully disclosed herein. Such composition acts as a thermally conductive material or medium to provide at least an almost perfect homogenous distribution by the heater tube of the heat provided by the heater cartridge. The heater tube may as well be evacuated as suggested in the above references.
The heater tube may extend over the steam generation chamber, e.g. extend axially. Thus, at least one section of the heater tube extends out of the steam generation chamber into the bore. The heater tube thus reheats steam or water that cooled in a reservoir after its injection and enhances the efficiency of the exploitation.
The method for exploitation of an oil sand reservoir comprises at least the steps of producing steam in a steam generation chamber of a downhole apparatus, injecting said steam via steam outlets into the oil sand reservoir for mobilizing crude oil of the oil sand reservoir. At least part of the mobilized crude oils is recovered by said downhole apparatus. This method reduces the minimum number of bores for in situ oil sand exploitation compared to SAGD, and thus the costs.
In the following, the invention will be described by way of example, without limitation of the general inventive concept, on examples of embodiment with reference to the drawings.
The oil sand exploitation system 100 in
The oil sand exploitation system 100 includes an extraction well 120 with a downhole apparatus inserted into bore 105. The downhole apparatus includes a multi conduit tube like casing 130, e.g. for a power cable 230 (see
Extraction well 120 is configured to collect oil (including mobilized oil in the oil sand). To this end casing 130 of the extraction well 120 includes one or more oil inlets 135 along its length that allow oil to infiltrate the casing. Disposed within casing 130 is oil conduit 125. The oil conduit 125 extends from the bottom or distal portion of casing 130 to the above ground station 110. Oil that infiltrates casing 130 enters oil conduit 125 at the conduit's distal end and is pumped to the surface and fed to a production line 109 for example by a centrifugal pump 180 being arranged in the bottom or distal portion of casing 130. Before pumping the crude oil to the above ground station 110, water may be separated from the crude oil by separator 176. Also, in the bottom or distal portion of casing 130 are an Electric Cable Clip 195, a Venting Valve 172, Single Flow Valve 185, a Power Cable 175, the Rotary Separator 176, a Protector 165, a Cable Head 162, a Motor 152 and Well Monitor Device 140. In between are a couple of water spray holes 145 to eject water or steam (e.g., when connected to steam generation unit 200 described below) and oil inlets 135.
The steam generator 200 comprises a bundle of heating members 300 (cf.
In one embodiment, heater tube 310 has a circular cross-section and a diameter on the order of 57 millimeters and a length on the order of 3800 millimeters. The front facing (upper) side of the heater tube 310 is closed by conical cap 330, which may be weld connected to the heater tube 310. The rear facing side of the heater tube 310 is closed by an end cap 340, which may preferably be a water tight but releasable connection, e.g. a threaded connection.
Heater tube 310, conical cap 330 and end cap 340 define a volume or chamber 335. In one embodiment, the components, heater tube 310, conical cap 330 and end cap 340 may be pressure tested to withstand, for example, a 1.5 millipascal (mPa) pressure test. Further, an inside surface of heater tube 310 defining a volume of chamber 335, in one embodiment, is free of burrs or other debris or oil to provide a smooth, unvaried and clean surface.
As shown in
Each steam generation chamber 375 is defined by, for example, cylindrical shell 320 a front wall 380 and a rear wall 370 connected by, for example, weld connections. The front wall 380 and the rear wall 370 each have an opening through which a heater tube 310 is disposed. The heater tube 310 extends axially through the steam generation chamber 375. The connection of the heater tube 310 and the front wall 380 and/or the rear wall 370 may be a weld connection.
In one embodiment, shell 320 has a length dimension on the order of 3,000 millimeters. Front wall 380 and rear wall 370 each have a diameter on the order of 110 millimeters. Rear wall 370 of shell 320 includes inlet 395 for a water source to be connected thereto to provide water to steam generation chamber 375. Water is provided from a water source at, for example, ground station 110 to steam generation chamber 375 by a peripheral conduit of casing 130 that is in fluid communication with inlet 395.
The electrical heater cartridge 350 is thermally connected to the heater tube 310 and electrically connected with a power line e.g. by power cable 230. The power (e.g., electrical current) line is preferably controlled by the controlling station 115 and may be ducted via a lateral opening like lateral opening 365. A gasket may be used for sealing the cable feedthrough. Inside heater tube 310 is a thermally conductive material like it is described in the U.S. Pat. Nos. 6,132,823; 6,911,231; 6,916,430; 7,220,365 and U.S. Patent Publication No. 2005/0056807.
Water inserted into the steam generation chamber 375 via a water inlet 395 may be heated by a heat generated in heater tube 310. A current supplied to electrical heater cartridge 350 generates heat in the heater tube 310. This heat is transferred to the steam generation chamber 375. Steam develops inside the steam generation chamber 375 and escapes through steam outlet 390 into the oil sand. A single flow pressure valve may be provided in the steam outlet 390. Thereby it can be avoided that foreign matter, like sand grains and the like enter the steam generation chamber 375. Further, the steam can be pressurized. As the heater tube 310 extends over the steam generation chamber part of the heat provided by the electrical heater cartridge 350 is as well transferred directly to the oil sand. This heat reduces the condensation of the steam close to the extraction well 120 and thus permits the steam to heat a bigger area around the extraction well and thus to better mobilize the crude oil. The mobilized crude oil can be collected via oil inlets 135 (see
As described above and shown in
In an embodiment using the thermally conductive material described in Table 1, the material is introduced into each heater tube 310 of bundle 200 (see
In one embodiment, the thermally conductive material is introduced into a second portion of each heater tube 310 of tube bundle 200 (the second portion of heater tube 310 is defined by cap 360). Each tube is heated to evaporate the water component. The presence of cap 360 allows a proximal portion of chamber 335 to be accessed (to, for example, remove or replace heater cartridge 350) without disrupting the seal or the contents of the second portion of chamber 335. Without wishing to be bound by theory, it is believed that the thermally conductive material in the second portion of each heater tube 310 operates by mechanically conducting heat generated by a heating cartridge to the steam generation chamber 375 (e.g., solid particles of the thermally conductive material colliding with one another and with a wall of the heater tube). The thermally conductive material in heater tube 310 permits heat distribution through the tube and conducts the heat to steam generation chamber 375 (e.g., axially conducts heat). That heat, in turn, evaporates water added to chamber 375 and produces steam.
With 1 kW power provided by a heat source (e.g., an electrical heating rod), heater tube 310 including 1/400,000 by volume of the thermally conductive material described in Table 1 can generate on the order of 2000 kcal of heat or more on the surface (on an outer surface of outer cylinder 310).
Representatively, as described above with reference to
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiments. It will be apparent however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. The particular embodiments described are not provided to limit the invention but to illustrate it. The scope of the invention is not to be determined by the specific examples provided above but only by the claims below. In other instances, well-known structures, devices, and operations have been shown in block diagram form or without detail in order to avoid obscuring the understanding of the description. Where considered appropriate, reference numerals or terminal portions of reference numerals have been repeated among the figures to indicate corresponding or analogous elements, which may optionally have similar characteristics.
It should also be appreciated that reference throughout this specification to “one embodiment”, “an embodiment”, “one or more embodiments”, or “different embodiments”, for example, means that a particular feature may be included in the practice of the invention. Similarly, it should be appreciated that in the description various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects may lie in less than all features of a single disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of the invention.
Number | Date | Country | Kind |
---|---|---|---|
12150055.7 | Jan 2012 | EP | regional |