This invention relates to hydroforming operations. More particularly the invention relates to coordinated movement of dies used to perform concurrently two or more hydroforming operations in a press.
Hydroforming is a well known metal working process that uses pressurized fluid to expand a closed channel or tubular workpiece outwardly into conformance with the surface of a die cavity. A typical hydroforming apparatus includes a frame having two die sections supported for relative movement between opened and closed positions. The die sections have cooperating recesses, which together define a die cavity having a shape corresponding to a desired final shape for the workpiece. When moved to the open position, the die sections are spaced apart from one another to allow a workpiece to be inserted and removed from the die cavity. When moved to the closed position, the die sections are adjacent one another and enclose the workpiece within the die cavity. Although the die cavity is usually somewhat larger than the workpiece to be hydroformed, movement of the two die sections from the opened position to the closed position may, in some instances, cause some mechanical deformation of the workpiece. In any event, the workpiece is then filled with fluid, typically a relatively incompressible liquid such as water. Fluid pressure within the workpiece is increased to such a magnitude that the workpiece is expanded outward into conformance with the surface contour of the die cavity. As a result, the workpiece is deformed into the desired final shape. Hydroforming is an advantageous process for forming vehicle frame components and other structures because it can quickly deform a workpiece into a desired complex shape.
In a typical hydroforming apparatus, the two die sections are arranged such that a first die section is supported on a displaceable ram, while a second die section is supported on a immovable base. A mechanical or hydraulic actuator is provided for moving the ram and the first die section to the opened position relative to the base and the lower die section, thereby allowing a previously formed workpiece to be removed from the die cavity and a new workpiece to be inserted therein. The actuator also moves the ram and first die section to the closed position relative to the base and second die section before performing the hydroforming process.
Use of a single hydroforming die within a single hydroforming apparatus has been found to be somewhat inefficient from a time consumption standpoint. This is because each operational cycle performed by the hydroforming apparatus involves both a preliminary step of filling the article to be hydroformed with the fluid prior to performing the hydroforming process, and a subsequent step of emptying the hydroforming fluid from the article after performing the hydroforming process. These filling and emptying steps can consume relatively long periods of time, particularly when the articles to be formed are physically large, as is often the case in the manufacture of vehicle frame components. This inefficiency is amplified when the hydroforming apparatus is used to manufacture products in relatively high volumes, as is also the case in the manufacture of vehicle frame components. Thus, it would be desirable to provide an improved structure for a hydroforming apparatus that is capable of performing two or more hydroforming operations concurrently in order to decrease the operation cycle time and to increase overall productivity.
If multiple die cavities are arranged side-to-side in a horizontal configuration in a hydroforming press, the required press tonnage increases in proportion to the number of cavities. By positioning the die cavities in a stacked vertical arrangement in the press, the required press tonnage does not increase. The use of stacked dies allows multiple parts to be made using the same press tonnage as required to form a single part. It is desirable to provide an improved structure for a hydroforming apparatus that is capable of performing two or more hydroforming operations concurrently without increasing press tonnage.
Furthermore, when multiple dies are used to concurrently form parts n a single hydroforming operation, there is need to open the dies, to remove formed workpieces and to insert in the die cavities workpieces to be formed subsequently. Although a ram can assist an operator to open one die cavity, other die cavities not in direct contact with the ram cannot be opened by the ram. This deficiency increases process time and slows the production rate. It is preferable that each die cavity be opened and closed in a process coordinated with movement of the ram.
The invention relates to an improved apparatus and method for opening and closing dies that are used to concurrently performing two or more hydroforming operations. The apparatus includes a platen located between a stationary base and a ram that is linearly displaceable relative to the base. A platen, located between the base and the ram, is engageable with the ram so that they move as a unit at certain times during the operation and move separately at other times. Each of several dies, arranged in stacked relationship, includes a pair of cooperating die sections having respective recesses that define a die cavity.
A first die section of the first die is preferably mounted on or otherwise connected to the ram for movement therewith. A second die section of the first die is preferably connected to, or formed integrally with the first die section of the second die, and the combined assembly is preferably supported on the platen for movement therewith. The second die section of the second die is preferably connected to or formed integrally with the stationary base.
The ram is displaced relative to the platen and base a distance in a first direction sufficient to open the first die. Later the ram is displaced relative to the base an additional distance in the first direction sufficient to open the second die. A workpiece is inserted in each of the dies. Then the dies are closed by displacing the ram in a second direction opposite the first direction such that the pairs of cooperating die sections of the first and second dies engage one another. End feed cylinders are then moved laterally into engagement with the ends of the tubular blanks to facilitate filling the dies with a hydroforming fluid. The pressure of the fluid within the workpieces is then increased to such a magnitude that the workpieces expand outward into conformance with the surface of their respective die cavities.
In this way, the hydroforming apparatus performs two or more hydroforming operations concurrently to decrease process time and increase productivity without increasing press tonnage. The ram assists an operator to open both the dies that are adjacent the ram and other dies distant from the ram. Guide pins transmit certain portions of ram displacement to dies distant from the ram to assist in opening those dies. Linear actuators are used in coordination with the ram to assist in opening die cavities near the ram, and to move interior dies that cannot be opened directly by the ram. This feature reduces process time and further increases the production rate.
Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
Referring now to the drawings, there is illustrated in
The first die 14 includes a first pair of cooperating die sections 18 and 20, which have respective recesses 18a and 20a formed therein. When the two die sections 18 and 20 are moved together as shown in
Frame 12 supports a ram or actuating cylinder 30, whose ram 32 is secured by bolts to a first platen 34, to which die section 18 is secured. In this way, reciprocating linear displacement of the ram 32 is transmitted directly to die section 18 of the first die 14. A base 36, fixed to the frame 12 against displacement, supports a die section 24 of the second die 16 in alignment with the other die sections, which are mutually aligned.
The first die section 18 of the first die 14 is preferably secured to a portion of the hydroforming apparatus, platen 34, for linear displacement therewith. The second die section 20 of the first die 14 and the first die section 22 of the second die 16 are secured to a platen 38 for movement therewith. Alternatively, if the second die section 20 of the first die 14 and the first die section 22 of the second die 16 are formed as separate pieces, then each may be supported on individual platens, and those platens are secured mutually for movement as a unit. Lastly, the second die section 24 of the second die 18 is preferably secured to or formed integrally with a second portion of the hydroforming apparatus 10, the stationary base 36.
Platen 34 supports guide pins 40, 42 which are secured at connections 44, 46 to the lower surface of platen 34. The connection of the guide pins to the platen 34 may be accomplished by a weld, by mutual engagement of screw threads formed on pins 40, 42 and in platen 34, by bolting each guide pin to the platen, by pinning the guide pins to the platen, or by similar means. Each guide pin is formed with a shank portion 48, 50 that extends from its respective connection 44, 46 through a opening 52, 54 formed through the thickness of the second platen 38 to a head 56, 58, located on the opposite side of platen 38 from the location of platen 34. Each head is sized in relation to the size of the corresponding opening 52, 54 so that the head contacts and releasably engages platen 38 when displacement of platen 34 relative to platen 38 reaches a predetermined magnitude in one direction.
When platen 34 moves toward platen 38 in the opposite direction a sufficient distance, each head 56, 58 can enter an opening 60, 62 formed in the thickness of base 36. Preferably the fit of each the shank 48, 50 in its corresponding opening 52, 54, and the fit of each head 56, 58 in its corresponding opening 60, 62 is a guided fit that assures mutual alignment of the platens 34, 38, base 36, and dies 14, 16.
During series production of parts using the hydroforming apparatus 10, an operational cycle begins with the various components arranged in the die closed position of
Next, the formed parts located in the die cavities 21, 25 are removed, a workpiece 26 is inserted between the spaced apart die sections 18 and 20 of the first die 16, and another workpiece 28 is inserted between the spaced apart die sections 22 and 24 of the second die 18. The illustrated workpieces 26 and 28 are substantially circular in cross-sectional shape. However, it should be understood that the invention is not limited to any specific shape of the workpieces 26 and 28, and that the invention can be practiced using workpieces of any shape, provided they can be located within their respective die cavities 21 and 25 prior to the hydroforming operation.
Use of the embodiment described with reference to
Preferably the available length of travel of the linear actuators 70, 72, 74 enables die cavities 21, 25 to be opened sufficiently to remove and insert workpieces readily within the available extent of travel of the ram 32.
The workpieces 26, 28 can be manufactured in any conventional manner, such as by rolling a sheet of metallic material into a completely closed tubular configuration and welding the adjacent edges together. Alternatively, the workpieces 26 and 28 can be manufactured as seamless tubes. If desired, the workpieces 26 and 28 can be mechanically pre-bent prior to insertion within the first and second dies 16 and 18 so as to approximate the desired final shapes. It will be appreciated that the two die cavities 21 and 25 can be configured to form the workpieces 26 and 28 into either the same shape or into two different shapes, as desired.
After the workpieces are inserted into their respective die cavities 21 and 25, the ram 32 and platens 34, 38 move downwardly relative to the base 36 to the closed position illustrated in
Referring now to
In the next step of the hydroforming method, the pressure of the fluid within the workpieces 26 and 28 is increased to such a magnitude that the workpiece 26 expands outward into engagement with the surface of the recesses 18a and 20a formed in the first and second die sections 18 and 20 of the first die 16, and the second workpiece 28 is expanded outwardly into engagement with the surface of the, recesses 22a and 24a formed in the first and second die sections 22 and 24 of the second die 18. Such expansion causes the workpieces 26 and 28 to conform to the contour of the surfaces of die cavities 21 and 25, respectively.
Preferably, a single source provides pressurized fluid to each of the workpieces 26 and 28 at the same time so that the respective hydroforming processes can be performed substantially simultaneously at the same pressures. As a result, the hydroforming apparatus 10 is capable of performing two or more hydroforming operations concurrently to decrease the overall amount of operational cycle time and, therefore, increase overall productivity. However, the hydroforming processes are essentially independent of one another and, therefore, can be performed with differing parameters, including times, pressures, and the like, if desired.
In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
Number | Name | Date | Kind |
---|---|---|---|
1844098 | Lytle | Feb 1932 | A |
2222762 | Debor et al. | Nov 1940 | A |
2331015 | Dawes et al. | Oct 1943 | A |
2521625 | Benge | Sep 1950 | A |
2869177 | Jurgeleit | Jan 1959 | A |
3236176 | Fischer | Feb 1966 | A |
3659997 | Rees | May 1972 | A |
4857135 | Copp | Aug 1989 | A |
5182121 | Miyashita et al. | Jan 1993 | A |
6170309 | Marando | Jan 2001 | B1 |
6284101 | Marx | Sep 2001 | B1 |
6386009 | Ni et al. | May 2002 | B1 |
Number | Date | Country |
---|---|---|
27 23 848 | Dec 1978 | DE |
195 25 085 | Jan 1997 | DE |
2001 150048 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040255630 A1 | Dec 2004 | US |