The present invention relates to devices and methods for delivering curable materials for use with stabilizing bone structures. More particularly, it relates to devices, systems and methods for optimizing the curing time for the curable materials.
Surgical intervention at damaged or compromised bone sites has proven highly beneficial for patients, for example patients with back pain associated with vertebral damage. Bones of the human skeletal system include mineralized tissue that can generally be categorized into two morphological groups: “cortical” bone and “cancellous” bone. Outer walls of all bones are composed of cortical bone, which has a dense, compact bone structure characterized by a microscopic porosity. Cancellous or “trabecular” bone forms the interior structure of bones. Cancellous bone is composed of a lattice of interconnected slender rods and plates known by the term “trabeculae.”
During certain bone procedures, cancellous bone is supplemented by an injection of a palliative (or curative) material employed to stabilize the trabeculae. For example, superior and inferior vertebrae in the spine can be beneficially stabilized by the injection of an appropriate, curable material (e.g., polymethylmethacrylate (PMMA) or other curable material). In other procedures, percutaneous injection under computed tomography (CT) and/or fluoroscopic guidance of stabilization material into vertebral compression fractures by, for example, transpedicular or parapedicular approaches, has proven beneficial in relieving pain and stabilizing damaged bone sites. Other skeletal bones (e.g., the femur) can be treated in a similar fashion. In any regard, bone in general, and cancellous bone in particular, can be strengthened and stabilized by a palliative injection of bone-compatible curable material.
The curable material used in the above procedures is typically fashioned by mixing a liquid component and a powder component within the operating room just prior to placement of the curable material into an injector wherein the injector is then used to introduce the curable material into the patient. Curable material may be prepared by mixing a very fine cement powder, typically PMMA, with a liquid monomer, typically methylmethacrylate.
During preparation of the curable material, such as PMMA, the properties of the curable material can generally be divided into two phases: 1) the pre-injection stage; and 2) working time. In the pre-injection stage, the components of the curable material may be blended together and allowed to cure until the material possesses the appropriate properties for injection. During the working time, curable material may be injected into the bone delivery site. In these phases, the curable material possesses different material properties based on the reaction of the curable material. A clinician must wait until the curable material has reacted properly before he or she may begin injection during the working time.
Several factors affect the reaction time of the curable material. The formulation of the curable material is one variable that will affect the length of time for each of the phases, as well as, the overall time. Different formulations may cause curing times to increase or decrease. Further, the ambient temperature of the operating room is another variable that will affect the length of time for each of the phases, as well as, the overall time. Warmer temperatures in the operating room tend to cause the curable material to cure more quickly, resulting in less time for mixing and working time. Conversely operating room temperatures that are lower tend to slow the cure time, resulting in greater time for mixing and working time. Operating room temperatures, however, vary greatly, owing to factors such as geographic location of the operating room, clinician preference, desire to minimize bacterial growth and the heat provided by equipment. Typical operating room temperatures may vary between 60° F. and over 80° F.
As a result, pre-injection and working time will also vary for a given formulation of curable material depending on the ambient temperature of the operating room. An operating room that is very cold may cause the curable material to react slowly during pre-injection, resulting in excessive delay during the pre-injection period. Also, consistent distribution of additive materials, such as barium sulphate, may also suffer if the curable material has not reacted enough to possess the required viscosity to suspend them. Conversely, an operating room that is very warm may cause the curable material to react quickly after mixing, resulting in improved pre-injection time, but prohibitively shortening the working time.
In response to this problem, specific curable materials have been developed that are formulated to be used in low temperature or high temperature operating rooms. This approach, however, creates the additional problem of causing clinician confusion between the available formulations and increased ordering and inventory demands. There thus exists a need in the medical device field for an improved apparatus and method of optimizing the preparation and working time for curable material.
In one embodiment, an apparatus for preparing curable material for delivery to a bone site is provided. The apparatus has a chamber housing having a chamber operable for holding curable material. The apparatus also has a heater proximal to the chamber housing and in thermal communication with curable material within the chamber.
In another embodiment, a method of preparing curable material for delivery to a bone site is provided. In one step a first component and a second component of curable material are mixed within a chamber to form a curable material. In another step, the curable material is heated with a heater proximal to the chamber and in thermal communication with the chamber.
In yet another embodiment, a method of mixing a first component and a second component in a mixing chamber having a mixing element is provided. In one step, a powder component is loaded into the mixing chamber, the mixing chamber having a first end and a second end. In another step, a liquid component is loaded into the mixing chamber. In yet another step, a drive shaft is inserted into the first end of the mixing chamber. In another step, the mixing element is caused to be rotated by rotating the drive shaft and mixing the first component with the second component and forming a mixture. In another step, the chamber is heated with a heater proximal to the chamber when the first component and the second component are being mixed.
Advantages of the present invention will become more apparent to those skilled in the art from the following description of the preferred embodiments of the invention which have been shown and described by way of illustration. As will be realized, the invention is capable of other and different embodiments, and its details are capable of modification in various respects. Accordingly, the drawings and description are to be regarded as illustrative in nature and not as restrictive.
The system 5, and in particular the mixer section 100, is highly useful for mixing a curable material. The phrase “curable material” within the context of the substance that can be delivered by the system/device of the invention described herein is intended to refer to materials (e.g., composites, polymers, and the like) that have a fluid or flowable state or phase and a hardened, solid or cured state or phase. Curable materials include, but are not limited to injectable bone cements (such as PMMA), which have a flowable state wherein they can be delivered (e.g., injected) by a cannula to a site and subsequently cure into hardened curable material. Other materials, such as calcium phosphates, bone in-growth material, antibiotics, proteins, etc., could be used to augment the curable material (but should not affect an overriding characteristic of the resultant formulation having a flowable state and a hardened, solid or cured state).
With reference to
According to a preferred embodiment depicted in
A port 140 is located at a radial outer surface of the housing 110. The port 140 preferably contains a cylindrical projection 142 and defines a passageway 145 to the mixing chamber 115. The port may also contain threading 143 so that the port may connect with a cap 144 or other device having corresponding threading. The port 140 is preferably located proximal to the second end 130 of the housing 110.
With reference to
The housing 110 is preferably transparent to provide the physician the ability to see the contents of the mixing chamber 115. This will allow the physician to see the progress of the mixing step of the components and to visually inspect the consistency of the curable material. The housing 110 is preferably made of nylon, but may also be made of cyclic olefin copolymer (COC), polycarbonate, Lexan®, and any other transparent material suitable for use with curable material, suitable for use at significant pressure, suitable to withstand sterilization and suitable to withstand gamma radiation without a substantial reduction in strength. With reference to
In one embodiment, the mixer section 100 also has a mixing element holder 150 and a collapsible mixing element 160 for mixing the components of the curable material. The mixing element holder 150 connects to the collapsible mixing element 160 and both are located at least partially within the mixing chamber 115. The mixing element holder 150 defines a passageway 157 that is operative to allow curable material to flow from within the mixing chamber 115 to outside the mixing chamber 115. The slotted projections 152 of the mixing element holder 150 preferably extend within the reduced diameter cylindrical section 127 of the first end 120 of the housing 110. The slotted projections 152 and passageway 157 are operative to removably engage a drive shaft 340 of the driver 300. With reference to
With reference to
Non-collapsible mixing elements may also be used to mix the components of the curable material within the chamber. Paddles, augers or other structures suitable for mixing curable material within the chamber may also be used.
According to a preferred embodiment depicted in
With reference to
With reference to
The driver motor 330 may be activated in various ways. According to one preferred embodiment, a “Mix” button 399, depicted in
In one embodiment, the mixing and delivery system also includes a heater 800 to heat the curable material during or after mixing. In one embodiment of the heater 800, the heater 800 has a heating element 810 in thermal contact with the curable material, a controller 820 for regulating the heating element 810 and a power source 830 for providing power to the heating element 810. With reference to one embodiment shown in
The heating element 810 of
With reference to
The heater 800 also has a controller 820 for regulating the operation of the heater 800. The controller 820 may regulate the activation time and/or intensity of the heater element 810. In the embodiment of
In another embodiment, the controller 820 comprises a thermocouple (not shown). In this embodiment, the controller 820 senses the ambient temperature of the operating room and adjusts the heating time and/or intensity based on a predetermined look-up table of preferred heating times and/or intensities corresponding to specific ambient temperatures. In another embodiment, the thermocouple is in thermal communication with the curable material to sense the temperature of the curable material. In this embodiment, the curable material is heated until it reaches a desired temperature.
In another embodiment, the controller 820 comprises a current sensor (not shown) that senses the drive motor 330 current output, which corresponds to the torque output of the drive motor 330. As viscosity increases, torque output, and motor current, increase. In this embodiment, the curable material is heated until a predetermined current, corresponding to a desired viscosity, is achieved.
In another embodiment, the “Mix” button 399 and “Heat” button 398 can be replaced with a single activation button. In this embodiment, heating and mixing may be initiated at the same time. Separate indicator lights for mixing and heating may be provided to visually indicate to the user whether mixing and/or heating are occurring.
In another embodiment, the controller 820 outputs information to a display. In the embodiment of
The heater 800 also has a power source 830 to deliver power to the heating element 810 in order to generate heat. The power source 830 can be conventional batteries, such as AA batteries; however, one of skill in the art will understand other power sources may be used. In the embodiment of
In operation of the device according to the present invention, the mixer section 100 and driver 300 are assembled. According to one preferred embodiment, the mixer section 100 is prepackaged with a predetermined volume of powder component. In another embodiment the removable collar 170 may be removed from the housing 110 to allow powder component to be introduced into the mixing chamber 115. It is understood by one skilled in the art that the powder component may be comprised of additives additional to powder polymer. The additives include other materials, such as calcium phosphates, bone in-growth material, antibiotics, and proteins.
In a preferred embodiment where the powder component had been preloaded into the mixing chamber 115, the removable cap 119 is removed and the driver 300 is connected to the first end 120 of the housing 110. When connecting the driver 300 to the housing, the drive shaft 340 of the housing must be inserted into the passageway 157 of the mixing element holder 150 so that the drive shaft 340 engages and rotates the mixing element holder 150 when the drive shaft 340 is rotated.
After the driver 300 and injector 200 are connected to the housing 110, the port cap 144 is removed from the port 140 and the liquid component is introduced into the mixing chamber 115. After introduction of the liquid component the curable material components are ready to be mixed. Preferably, the physician activates the motor 330 of the driver 300, causing the drive shaft 340 to rotate rapidly. Rotation of the drive shaft 340 causes the mixing element holder 150 and the collapsible mixing element 160 to also rotate rapidly. The components are mixed until the mixture contains the optimum properties for the desired application. For an embodiment using PMMA loaded with barium sulphate, the components are preferably mixed between approximately 30 and approximately 150 seconds and are more preferably mixed for approximately 90 seconds. According to one preferred embodiment, the driver 300 is pre-programmed to cycle through a predetermined mixing sequence. In this embodiment, the physician need only press the mix button 399 and the driver 300 will automatically mix the materials according to a predetermined length of time, speed and rotational direction to obtain the optimum properties of the curable material. According to one preferred embodiment, the mixing element 160 is rotated by the driver 300 in a first direction for a predetermined period of time, and then rotated in the opposite direction for a predetermined period of time. In another preferred embodiment, rotational direction alternates during the mixing cycle.
If the ambient temperature of the operating room is relatively warm, heating of the curable material need not take place. If, however, the ambient temperature of the operating room is relatively cold, the same curable material may be used, but may also be heated during the pre-injection step to decrease the pre-injection time. In this embodiment, the clinician activates the heater 800 of the system 5. In one embodiment, the clinician depresses the heat button 398 at the beginning of the mixing cycle described herein. The heater 800 then heats the curable material during mixing to cause the curable material to react more rapidly. Heating of the curable material is preferably at least partially at the same time as the mixing of the curable material, however, heating can be longer or shorter than the time for mixing or can even occur after mixing. In one embodiment, such as that shown in
After the components are mixed the driver 300 is removed from the first end 120 of the housing 110. According to one preferred embodiment depicted in
The heater may also take other configurations. In one embodiment, the collapsible mixing element 160 within the interior of the chamber 115 may act itself as the heating element 810. The power source 830 would be connected with the collapsible mixing element 160 to provide power for generating heat. In another embodiment, a heating filament may be attached to the collapsible mixing element 160 within the chamber 115 to heat the curable material.
In another embodiment, depicted in
In another embodiment, depicted in
In another embodiment, depicted in
In another embodiment, depicted in
In another embodiment, depicted in
In another embodiment, depicted in
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
This application claims the benefit, pursuant to 35 USC 119(e), of the earlier filing date of U.S. Provisional Patent Application Ser. No. 61/075,197,entitled “APPARATUS AND METHOD FOR OPTIMIZING REACTION TIME FOR CURABLE MATERIAL,” filed in the US Patent Office on Jun. 24, 2008, the contents of which are incorporated by reference, herein.
Number | Date | Country | |
---|---|---|---|
61075197 | Jun 2008 | US |